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Abstract
This article proposes a simplemethod to design a linear adaptive controller for output trackingof uncertain roboticmanipulators
with input disturbance, in which their original mathematical models are not used. All model uncertainties and matched
disturbance affecting to the robot behavior will be firstly summarized as the total matched disturbance belonging to a double
integral system. Then, by using a proposed linear disturbance estimator, this lumped disturbance will be estimated and
eliminated from the double integrator system. It means that based on this disturbance elimination, all robot manipulators
would be consistently converted to a double integral system with bounded input disturbance. After all, the required output
tracking controller will be designed for the input-disturbed double integrator system. The effectiveness of the proposedmethod
is theoretically authenticated and confirmed by illustration examples. Moreover, the proposed controller is also compared to
an existing adaptive controller for the planar robot through numerical simulations.

Keywords Model-free control · Robot manipulators · Disturbances estimator · Output tracking · Intelligent control

1 Introduction

It is well known that robotic manipulators have been widely
used in manufactured industry for performing tasks with a
required accuracy, which far exceed human operators [1–3].
Therefore, they have been intensively studied in past decades,
and as an inevitable result, many different methods were
also established to design controllers for them to ensure that
the obtained closed-loop control systems will achieve the
required accuracy, such as traditional methods [1–3], slid-
ing mode control [4–6], robust control [7–9], and iterative
learning control [10,11].

Principally, all these available controller design methods
could be classified in distinctive types, depending on how
complete the mathematical model of robot manipulators had
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been established, i.e., whether model parameters and the
affected disturbance could be determined or not.

In an ideal scenario, the mathematical model of robot
manipulators is absolutely exact, the controlled robots are
not influenced by any disturbance, and then, the method of
feedback linearization, direct passive method, and decou-
pling method seem to be appropriate ones [1–3].

If there are some uncertain parameters in mathematical
models, then the adaptive approaches are applicable, such
as the inversion dynamic [2], the adaptive control based on
passivity [3], Li-Slotine [1,2], and the control with input
constraints [12]. Furthermore, if robotmanipulators are addi-
tionally affected by unwanted disturbance, then suitable
control methods could be PE (persistence of excitation)-
based approach [2], sliding mode control (SMC) [4–6,9],
dual SMC with finite time response [7], adaptive SMC [13–
15], nonsingular TSMC [16], adaptive second-order SMC
[17], and neural adaptive control [18].

A communal feature of all aforementioned conventional
control methods is dependent on model. It implies that the
control performance, provided by them, is strictly depen-
dent on the preciseness of models being used. To overcome
this disadvantage of the conventional methods, some intelli-
gent controllers have been applied for manipulators without
using their mathematical models, such as neural network-
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based techniques [2,19], neural adaptive control [20], neural
network-based PID control [21], fuzzy logic-based con-
trol approaches [8], iterative learning-based control methods
[10,11], Q-learning [22], andmodel-free controllers [23–25].

As a supplement to the model-free control methodolo-
gies for robot manipulators, this article will present a novel
approach to design an adaptive tracking controller for them
without using their original mathematical models. Based on
this proposed approach, firstly, the uncertain robot manipula-
tor with matched disturbance will be consistently converted
to a standard double integrator system with new lumped
matched disturbance, which contains all model uncertainties
and the input disturbance of the robot manipulator. Then, this
matched disturbance will be estimated and eliminated from
the double integrator system. Finally, an output tracking con-
troller will be designed for this double integrator systemwith
bounded input disturbance.

Main contributions of this work can be summarized as
follows:

(1) Propose a novel continuous-time input disturbance esti-
mator for multiple-input multiple-output double integra-
tor systemsusingfilters. Then, a linear adaptive controller
was proposed for the input-disturbed double integra-
tor system for tracking control. Indeed, this disturbance
estimator does not use any information of the robot
manipulator except its state variables and model order.

(2) Practical stability of the tracking control system, involv-
ing the linear state feedback controller, the disturbance
estimator and the robot manipulator, was rigorously ana-
lyzed and proved. An attractive set of the tracking error
has been determined and its radius can be reduced by
changing the poles of the closed-loop system and the fil-
ter.

The remaining part of this work is organized as fol-
lows: Section 2 presents a proposed disturbance estimator,
an output tracking controller with stability analysis, and
also practical stability analysis of the closed-loop system.
In Sect. 3, a two-link planar robot and a three-link cylindri-
cal robot are utilized to illustrate the proposed method. Final
section will draw some conclusions.

2 Main results

It is clear that all robot manipulators can be succinctly
described as [26]

q̈ = u + d, (1)

where q is the n × 1 vector of joint variables, u is the n × 1
vector of control inputs (the generalized force/torque vec-

Fig. 1 A suggested control framework

tor), d is the vector of all model uncertainties and matched
disturbance affecting the robot manipulator’s performance.

For example, their well-known standard Euler–Lagrange
model with time varying uncertain parameters θ(t) is addi-
tionally disturbed by the disturbance ζ on inputs as follows
[19]:

M(q, θ)q̈ + C(q, q̇, θ)q̇ + F
(
θ
)
q̇ + g

(
q, θ

)
= u + ζ ,

(2)

where M(q, θ) is the n × n symmetric positive definite iner-
tia matrix, C(q, q̇, θ)q̇ is the n × 1 vector of Coriolis and
centrifugal terms, F(θ) is the n × n matrix of viscous fric-
tion coefficients, g(q, θ) is the n × 1 vector of gravitational
torques. This model can be always rewritten in the form of
(1) with a redefined vector of all the matched disturbance and
system uncertainties as follows:

d = ζ +
[
In − M(q, θ)

]
q̈ − C(q, q̇, θ)q̇

−F(θ)q̇ − g(q, θ). (3)

In the aforementioned equation, In denotes an identitymatrix
of dimension n × n. Note that all M(q, θ), g(q), C(q, q̇, θ)

and F(θ)q̇ are bounded [19,27].
Since the succinct model (1) does not directly contain

the dynamic information of the original robot manipulators,
except the new lumped matched disturbance d instead of
ζ , any design method based on this model, established for
designing an adaptive output tracking controller q → r ,
where r is the vector of desired references, will be hereafter
called the model-free controller design method.

This paper proposes such an approach, which is carried
out in two following separate steps as illustrated elementally
in Fig.1.

(1) The first part, called “Disturbance estimator”, aims to
estimate the input disturbance d(t) by d̂(t) for eliminat-
ing it from the double integrator system (1).

(2) Then, the second part, named “Output tracking con-
troller”, will drive the system outputs q(t) to their desired
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references r(t) when the matched disturbance d(t) has
been eliminated.

2.1 Linear disturbance estimator design

Currently, there have been various approaches available to
estimate the disturbance d(t) or ζ (t). All these estimators
are created either by using a certain mathematical model of
controlled objects [28–31] or based on neural networks [32–
34]. The model-based estimators operate in continuous-time
domain, whereas the neural network-based ones are carried
out primarily in step-wise manner. It is undeniable that these
existing estimators are effective in disturbance observation,
but they are all nonlinear and complicated to implement in
a concretely given output tracking controller. Recently, lin-
ear disturbance observers [26,35] have been proposed and
applied for nonlinear systems, in which their differential
equations were approximated by using the numerical Euler
method and second-order Lagrange differentiation method.

Therefore, this article will propose another disturbance
estimator using a low-pass filter, which is linear and can be
easily implemented with any existing output tracking con-
troller without any difficulty. Moreover, as being seen below,
this proposed estimator has a surprisingly simple structure
in comparison to the existing ones, but it possibly provides
similar estimation performance.

Under the assumption that the vector of n joint variables
q = vec(q1, . . . , qn) and its velocity q̇ of the disturbed dou-
ble integrator system (1) are measurable, then by putting q̇
through the low-pass filter

Md(s) = diag[Gd(s),Gd(s), ...,Gd(s)]n×n, (4)

in which

Gd(s) = 1

1 + T s
, (5)

where the small time constant 0 < T � 1 is chosen arbi-
trarily. The output of this system, denoted with z, will be
calculated from its input q̇ as follows:

q̇ = z + T ż, (6)

which implies q̇ ≈ z, since 0 < T � 1, or q̈ ≈ ż = 1
T (q̇−z).

The substitution of q̈ in (1) by ż from the aforementioned
approximation yields:

u + d = q̈ ≈ ż = q̇ − z

T
, (7)

and thiswill be used to estimated in a straightforwardmanner
as follows. First, both “≈” and “d” in (7) are replaced with

“=” and “d̂”, respectively. Then, the approximated value d̂
of d is calculated with:

d̂ = ż − u, (8)

where ż = vec(ż1, . . . , żn) and

żi = q̇i − zi
T

, ∀i = 1 ÷ n, (9)

in which q̇i and zi are the i th input and the i th output of the
filter (4), respectively.

Theorem 1 The value d̂, obtained from (8), minimizes the
approximation error (7).

Proof Denote the approximation error of (7) with:

δ = ż − (u + d), (10)

then the following optimization problem:

d̂ = argmin
d

δT δ = argmin
d

∥
∥ż − (u + d)

∥
∥2 , (11)

has obviously an unique solution by solving the equation
∂δT δ

∂d = 0, which coincides with (8), and with this the proof
is completed. ��
Remark 1 The linear estimator (8) does not use the mathe-
matical model (2) of robot manipulators, except themeasure-
ment of q̇ . Hence, it is a model-free estimator.

Remark 2 Since d̂ − d = ż − u − d = ż − (u + d) =
δ, the disturbance estimation error will be the same as the
approximation error.

Assumption 1 ( [36]) q̇(t), q̈(t),
...
q (t) ∈ � (a compact set)

and bounded, and the initial condition z0 of Eq. (5) is
bounded.

This assumption is feasible due to physical limitations of the
manipulator’s actuators.

Lemma 1 ([36]) Under Assumption1, the disturbance esti-
mation error δ is bounded and its boundedness can be tuned
by changing T .

Although this proposed virtuallymodel-free estimatorwas
only created for the succinct double integral system (1)
and it was established based on a straightforward execu-
tion, it can be applied for a wide range of nonlinear systems
with matched disturbances as well as provides an accept-
able estimation performance. This mentioned effectiveness
of proposed estimator (8) will be visually authenticated by
simulations later.

123



2288 P. D. Nguyen et al.

2.2 Linear output tracking controller design

After the disturbances d(t) have been estimated and its esti-
mated values d̂ was subtracted from the output tracking
controller by u ← u − d̂ , as illustrated in Fig. 1, the dou-
ble integrator (1) becomes:

q̈ = u + d − d̂ = u + δ, (12)

where δ = d − d̂ is the remaining estimation errors. Based
on Lemma1, there exists a small positive constant �δ such
that ‖δ‖ ≤ �δ .

Note that although the system (12),which is obtained from
(1) after eliminating thematched disturbances d by d̂, has the
same structure of a double integrator as the original system
(1) but quite different to (1), in which the disturbance estima-
tion error δ in place of the input disturbance d , this system
contains no more dynamic information of robot manipula-
tors, even in its matched disturbances δ.

In [26], an iterative learning controller based on intelligent
approachwas applied for the the system (12).However, in this
work, a classical state feedback controller will be proposed
instead.

Theorem 2 The state feedback controller:

u = r̈ + G1e + G2ė, (13)

with two matrices G1,G2 obtained from an arbitrarily cho-
sen Hurwitz matrix:

G =
[

0n In
−G1 −G2

]
, (14)

where 0n denotes the zero matrix of dimension n × n, will
drive the tracking error e = r − q and its derivation ė of the
disturbed double integrator (12) to the following neighbor-
hood O of origin in finite time:

O =
{
v = vec(e, ė) ∈ R

2n
∣∣
∣∣‖v‖ ≤ �δ‖BT P‖

}
, (15)

in which P is a positive definite solution of Lyapunov’s equa-
tion GT P + PG = −2I2n, BT = [0n, In] and ‖BT P‖
is any induced norm of matrix BT P.

Proof Using a Lyapunov’s function candidate:

V (v) = vT Pv, v = vec
(
e, ė

)
, (16)

for the closed-loop system, including the double integrator
(12) and the feedback controller (13), which could be rewrit-
ten in a standard state equation as follows:

v̇ = Gv − Bδ, (17)

yields:

V̇ = (
Gv − Bδ

)T
Pv + vT P

(
Gv − Bδ

)

=vT
(
GT P + PG

)
v − 2δT BT Pv

= − 2‖v‖2 − 2δT BT Pv

≤ − 2‖v‖2 + 2�δ‖BT P‖‖v‖
= − 2‖v‖

(
‖v‖ − �δ‖BT P‖

)
.

(18)

Since V̇ < 0 if v /∈ O , the trajectory v(t), whereas it stays
outside O , still keeps moving toward to origin until it reaches
the aforementioned neighborhood O .

Denote τ > 0 as a time instance when v(t) intersects the
boundary of the set O, V (0) = σ , V (τ ) = 
, then 
 < σ ,
and the set

VS =
{
v ∈ R

2n
∣∣∣∣
 ≤ V (v) ≤ σ

}
, (19)

is compact. Hence, with

κ1 = min
0≤t≤τ

‖v(t)‖ and κ2 = max
0≤t≤τ

‖v(t)‖, (20)

one obtains 0 < κ1, ‖BT P‖�δ < κ2, 0 ≤ t ≤ τ and

V̇ ≤ 2κ1
(
−κ2 + ‖BT P‖�δ

)
. (21)

By integrating both sides of aforementioned inequality for
0 ≤ t ≤ τ , the following relation is obtained


 − σ ≤ 2κ1
(
−κ2 + ‖BT P‖�δ

)
τ, (22)

or

τ ≤ σ − 


2κ1
(
κ2 − ‖BT P‖�δ

) . (23)

Hence, τ is finite, which completes the proof. ��
Remark 3 The state feedback controller (13) guarantees that
the tracking error system is ultimately bounded (UB) [37].

Remark 4 Usually, the neighborhood of origin O , to which
the trajectory v(t) flocks, is called the attractor in phe-
nomenon of practical stability. Intuitively, the smaller T is
chosen, the smaller the bound of estimation error �δ , and
therefore also the smaller this attractor will be.

Remark 5 It is obviously that the size�δ‖BT P‖of the attrac-
tor O is also dependent on chosen Hurwitz matrix G. Both
matrices G1 and G2 of G could be determined by using
pole placement method to arbitrarily assign eigenvalues for
G. The smaller (negative real part) eigenvalues of G are
assigned, the smaller this attractor will be.
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Remark 6 Since the boundedness of δ and linearity of (17),
the vector v(t) decreases exponentially outside O .

Remark 7 Because the equation ‖v(t)‖ = �δ‖BT P‖ of
exponentially decreasing vector v(t)with initial point v(0) =
v0 /∈ O definitely has a finite solution t = Tv(v0), all trajec-
tories v(t) starting outside O will reach the attractor O in a
finite time Tv(v0).

Remark 8 The obtained controller, including (12) and (13),
is sub-model-free, because it is independent with the model
(2) of the robot manipulator. This controller is linear; hence,
it can only stabilize practically v = vec

(
e, ė

)
to the attrac-

tor O . For an asymptotic stabilization v → 0, a nonlinear
regulator can be used instead of (13), such as sliding mode
controller [38], but this SMC controller will produce chatter-
ing phenomenon which may cause actuators of the robot to
be damaged for long time operation. However, this inherent
chattering can be overcome by using some techniques such
as saturation function.

2.3 UB property of the closed-loop system

As illustrated in Fig. 1, the closed-loop system, including the
robot manipulator (2) and the proposedmodel-free regulator
which contains the first-order derivative systems (4), distur-
bance estimator (8), and the tracking controller (12), (13),
has three vectors of system states e, ė, z and a vector of esti-
mated outputs d̂ . These system states and estimated outputs
satisfy:

0 =u + d − d̂ − q̈

=u + d − (
z − u

) − q̈ = 2u + d − z − q̈

=2u + d −
(
q̈ − T ż

)
− q̈

=2
[
r̈ + G1e + G2ė

] + d − 2q̈ + T ż

=2
[
ë + G1e + G2ė

] + d + T ż,

(24)

which deduces together with Eq. (17):

v̇ =Gv − 1

2
B

(
d + T ż

) = Gv − Bδ

⇔ Bδ = 1

2
B

(
d + T ż

) ⇔ T ż = d − 2d̂ = δ − d̂,

⇔ q̈ = z + T ż = z + δ − d̂,

⇔ T ż = δ + u − z = −z + r̈ + [G1,G2] v + δ.

(25)

Therefore, with (17) again, it is obtained:

[
v̇

T ż

]
=

[
Gv − Bδ

r̈ + [G1,G2] v − z + δ

]
. (26)

Hence, with new symbols defined as follows:

χ =vec
(
v, z

)
, ξ = vec

(
δ, r̈

)
,

G =
[

G 02n×n
1
T [G1,G2] − 1

T In

]
, and B =

[−B 02n×n
1
T In

1
T In

]
,

(27)

the closed-loop system will be described by:

χ̇ = Gχ + Bξ, (28)

where G has 3n eigenvalues involving all 2n eigenvalues of
G and n constants − 1

T .

Theorem 3 If G1, G2 are selected so that G becomes Hur-
witz, then the trajectory χ(t) of closed-loop system (28)
reaches the following attractor O in finite time:

O =
{
χ ∈ R

3n
∣∣∣∣‖χ‖ ≤ �ξ‖BTP‖

}
, (29)

where�ξ denotes the upper bound of ‖ξ‖ andP is a positive

definite solution of GTP + PG = −2I3n.

Proof Since systems (17) and (28) are akin, the proof could
be carried out in the same way as being done for Theorem2.
Hence, it will be omitted here. ��

3 Illustration simulations

To visually illustrate the performance of proposed adaptive
output tracking controller, the controller will be applied for
two different robot manipulators. In addition, a comparison
to the existing method is also carried out. There have been
some methods for modeling uncertain systems such as fuzzy
differential equations [41–44]. However, in this case, the ori-
gin model (2) will be used to simulate the robot manipulators
for all numerical simulations. The filter will be simulated in
continuous-time manner, so the estimated disturbances will
be continuously calculated from Eq. (8).

3.1 Control of uncertain planar robot withmatched
disturbances

The following implementation of the proposed adaptive con-
troller for a robot planar with two joint variables q1 and q2 as
exhibited in Fig. 2a is used to verify the createdmethod’s per-
formance. The verification is carried out based on a numerical
simulation with following system parameters:

g = 9.81, m1 = m2 = 0.3, l1 = 1, l2 = 0.7,

σ1 = σ2 = 0.6, T = 10−5, M =
[
θ1M11 θ2M12

θ3M21 θ4M22

]
, C =

[
θ5C11 θ6C12

θ7C21 θ8C22

]
, Fq̇ =

[
θ11q̇1q̇2
θ12q̇2

]
, g =

[
θ9g1
θ10g2

]
, where
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Fig. 2 Robots for simulation

M11 = m1l21
4 +σ1+m2

(
l21 + l22

4 + l1l2 cos q2

)
+σ2, M12 =

M21 = m2l2
2

(
l2
2 + l1 cos q2

)
+ σ2, M22 = m2l2

4 + σ2, C11 =
−q̇2m2l1l2 sin q2, C12 = C11

2 , C21 = q̇1
m2l1l2

2 sin q2, C22 =
0, g1 = m1gl1 cos q1

2 + m2g
[
l1 cos q1 + l2

2 cos(q1 + q2)
]
,

g2 = m2gl2
2 cos(q1 + q2), ζ =

[
q1q̇2 sin(2θ13π t)
q2q̇1 cos(θ14π t)

]
, r =

[
1.5
1.0

]
.

All constants θi , i = 1 ÷ 14, are unknown. Note that
except G1,G2, T and r , all remaining system parameters
above could be vaguely determined. This will not influence
subsequently the control performance, because the proposed
adaptive controller is able to eliminate allmodel uncertainties
and matched disturbances. Matrices G1,G2 are chosen such
that all (four) eigenvalues of matrix G are: λ1 = −200,
λ2 = −300, λ3 = −400 and λ4 = −500.

Figure3a exhibits obtained simulation results for the exe-
cution time Tex = 0.1s. These results show visually that
both joint variables q1 and q2 converged correspondingly to
their desired positions r = (1.5 , 1)T as expected. Partic-
ularity, both joint variables q1 and q2 had reached closely
their desired values r just after 0.04s, and at the final time of
simulation Tex the tracking error of the first joint variable is
≈ 4 ∗ 10−6 and that of the second joint variable is ≈ 10−5.
These very small tracking errors confirm the rightness of
Theorem3, and moreover, all lumped disturbances:

d = ζ + (I2 − M) q̈ − Cq̇ − Fq̇ − g, (30)

had been practically eliminated.
Figure3b illustrates the compound disturbances d in com-

parison with their estimated values d̂ . This obtained result
visually authenticated the previouslymentioned appreciation
that although the created disturbance estimator (8) was estab-
lished based on a straightforward manner, it had produced a
good estimation performance.

We also compare the proposedmethod to an adaptive con-
troller, which was recently developed in [39]. For unbiased
comparison, a same mathematical model of the planar robot
will be used, in which the model’s uncertainties are chosen

as �C = 0.4C , �F = 0.4F , �g = 0.4g, the input distur-

bance is simulated as ζ =
[
4 sin(0.3t) + 2 cos(0.1t)
3 cos(0.2t) + 2 sin(0.5t)

]
and

all parameters θi equal to one. In addition, the references are

selected as r =
[
sin(t)
cos(t)

]
, which are time varying.

Simulation results are shown in Figs. 4a, b and 5 for joint
variables and combined control signals uc = u − d̂ , respec-
tively. The proposedmethod provided smaller tracking errors
for both joint variables as shown in Fig. 4a and Fig. 4b than
the adaptive controller [39]. In addition, the latter controller
caused larger combined control signals for the planar robot
as shown in Fig. 5. Moreover, the proposed control method
requires less computational load because the adaptive con-
troller [39] has to compute the gainmatrix online and perform
more calculations for disturbance estimation. Finally, the
proposed control method can produce faster convergence
rate than the adaptive controller [39] by changing the desired
poles of the matrix G.

3.2 Control of uncertain three-link cylindrical arm
robot with input disturbances

Figure2b physically illustrates a standard three-link cylin-
drical arm robot (TLCA). This TLCA-robot with uncertain
parameters θ and input disturbances ζ on inputs is originally
described by the following modified Euler–Lagrange model
[40]:

q̈ = f
(
q, q̇, θ

)
+ B

(
q, q̇

)
v + ζ , (31)

where v is the vector of inputs, and B
(
q, q̇

)
is a diagonal

matrix with all diagonal entries not equaling to zero, i.e.,
nonsingular. Accordingly, the succinct model (1) of TLCA-
robot has the summarized disturbances on redefined inputs
u as follows:

d = f
(
q, q̇, θ

)
+ ζ and u = B

(
q, q̇

)
v. (32)

Hereafter, the proposed adaptive controller will be imple-
mented to control theTLCA-robotwith all systemparameters
given as follows:
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Fig. 3 Simulation results for the planar robot
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Fig. 4 Joint variables, their references and errors

f = [
θ1 f1 θ2 f2 θ3 f3

]T
, ζ = [

θ4ζ1 θ5ζ2 θ6ζ3
]T

, (33)

where θi is unknown constant for all i = 1 ÷ 6.

f1 = −g, f2

= −m

J + j(q3)

[
3

4l

[
q23 + (l − q3)

2
]

+ 2q3

]
q̇3q̇2,

f3 =
[
3

8l

[
q23 + (l − q3)

2
]

+ q3

]
q̇22 , g

= 9.81, m = 2, l = 0.7, J = 3,

j(q3) = q23 , ζ1 = sin(q1q̇2), ζ2

= cos(q2q3), and ζ3 = sin(q̇2q̇3).

(34)

Note that the preciseness of all aforementioned parameters
is not required, because their uncertainties will be eliminated
anyway by using the proposed adaptive controller. In addi-
tion, to carry out the numerical simulation, some controller
parameters are chosen as follows:

T =10−3, r =
⎡

⎣
1
1.5
2

⎤

⎦ ,G1 = 10

⎡

⎣
390 0 0
0 225 0
0 0 220

⎤

⎦ ,

and G2 =
⎡

⎣
125 0 0
0 95 0
0 0 95

⎤

⎦ ,

(35)
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Fig. 5 Combined control
signals
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Fig. 6 Simulation results for TLCA-robot

for the controller. With these chosen matrices G1,G2, the
matrix G has the following six eigenvalues: λ1 = −200,
λ2 = −300, λ3 = −400, λ4 = −500, λ5 = −600 and
λ6 = −700.

Obtained simulation results during the execution time
of Tex = 0.1s are exhibited in Fig. 6a. It is seen that
just after 0.03s all robot joint variables q have reached
closely their desired values r as expected, and the remaining
tracking errors e = (e1 , e2 , e3)T at the end of execu-

tion time Tex are ≈ 10−5. Therefore, this authenticates the
rightness of Theorem3 as well as that the lumped distur-
bance:

d = f + ζ , (36)

had been almost eliminated by their estimated values d̂. Fur-
thermore, in comparison with previous simulation results
for the planar robot, these present obtained results con-
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firm the earlier assertion again that the smaller the neg-
ative real parts of eigenvalues λi are assigned for the
matrix G, the smaller the remaining tracking errors e will
be.

Finally, the expected performance of disturbance estima-
tor, which is embedded in proposed adaptive controller, is
visually represented in Fig. 6b. Once again, it is shown that
the estimated values d̂ had converged closely to their real
disturbances d with a quick convergence rate, i.e., just after
≈ 0.03s.

4 Conclusions

This article proposed an adaptive linear regulator for out-
put tracking control of robot manipulators with uncertain
parameters and matched disturbances. This regulator was
created based on the combination of a novel disturbance
estimator (8) and a tracking controller (13), which were
all linear. Especially, all of the estimator and the track-
ing controller did not use any information of the original
Euler–Lagrange model (2) except its state variables and
differential equation type. They needed only the measure-
ment of q, q̇ from robot manipulators for their opera-
tion.

The effectiveness of this near model-free controller has
been verified through two separate simulation examples, one
for the planar robot and the other for the three-link cylindrical
robot. Obtained good simulation results promised its appli-
cability in practice. Through simulation comparison with the
existing adaptive controller [39], it can be concluded that the
proposed control method provided smaller tracking errors
and smaller magnitudes of the combined control signals, and
reduced computational load for the controller of the planar
robot.
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