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Abstract
In this work, a new system abatement method is suggested for obtaining the reduced-order model (ROM) of large-scale linear
time-invariant (LTI) systems. This work proposes the Atom search optimization (ASO) technique to find a reduced-order
model of a complex single-input single-output system (SISO). In control engineering problems, producing a reduced-order
model of a complex system using ASO is relatively simple. This method employs molecular dynamics to identify the best
values for the variables in the search space. ROM’s numerator and denominator coefficients are obtained by minimizing the
integral square error (ISE) value between the original and reduced-order model. This research looks at various examples of
different orders for finding reduced-order models. Finally, a range of evaluation criteria are designed to evaluate how well
the suggested methodology is implemented. The results reveal that the suggested approach yields reduced-order models that
outperform in terms of time response and frequency response when the simulation results are contrasted with those of prior,
well-known research.

Keywords Model order reduction · Atom search optimization · Control system

1 Introduction

Most of the actual system designs are complicated from
a research perspective, which increases the computational
requirements for analysis. It is preferable to reduce the com-
plex model with their equivalent approximate model that
lowers the cost, uses less computing power, and simplifies
the analysis, which maintains the significant characteristics
of the original system, like time response parameters, stabil-
ity margin, and so forth.

All the developed order reduction techniques have been
categorized in three ways: conventional order reduction tech-
niques, optimization-based model order reduction, and a
combination of the above two. In a single conventional or
optimization technique, the numerator and denominator of
the reduced model are obtained by any conventional tech-
nique. In a mixed-order reduction method, the numerator
and denominator coefficients are obtained by two different
methods, and then, a stable reduced-order model is obtained.
Commonly used conventional methods of order reduction
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in the frequency domain are Pade approximation [1], Routh
approximation [2], Routh stability [3], stability equation [4],
Mihailov stability criterion [5], differentiation method [6],
pole clustering method [7], continued fraction [8], dominate
pole [9], moment matching [10]. Ghosh [11] developed a
balanced truncationmethod formodel order reduction. Desai
and Prasad [12] has developed a new reduced-order method
for LTI structures based on Routh approximation (RA).
Sikander et al. [13] suggested a basic model order reduction
technique based on improvedHermite normal form. Prajapati
andPrasad [14] devised an order reductionmethodology for a
linear dynamic system using a generalized version of the pole
clustering method. The conventional pole clustering method
is a generalized form of this approach. The researchers sug-
gest four common approaches for simplifying higher-order
systems in the time domain: Hankel norm approximation
[15], Singular perturbation [16], balanced truncationmethod,
and Krylov subspaces. In [17], various time domain order
reductions for the large-scale dynamical system are thor-
oughly examined.

The optimization approach is not recent in the new
era of machine engineering. Different researchers working
in the field of model order reduction have taken differ-
ent cost functions, such as minimizing the integral square
of impulse response error [18], minimizing integral error,
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minimizing weighted time integral error [19], or minimiz-
ing L1 and L2 norm [20] for finding the reduced model
using optimization techniques. Recently, Ahamad et al. [21]
proposed an order reduction technique based on ant lion opti-
mization. Sikander and Thakur [22] proposed a modified
cuckoo search algorithm (MCS) to find the reduced model of
the complex system. Nature-inspired optimization methods
have been commonly employed to create the reduced-order
model of complex systems. Goldberg et al. [23] proposed a
genetic algorithm (GA), which is the most common algo-
rithm inspired by the concept of biology, and Kennedy et al.
[24] proposed particle swarm optimization (PSO).

In addition, researchers in the different literature have pro-
posedvariousmixed approaches for reduced-ordermodeling.
Erol and Eksin [25] proposed a mixed approach based on
Routh Approximation and Big Bang-Big Crunch (BB-BC)
optimization for model order reduction. In this reduction
approach, the coefficients of denominator polynomials are
calculated using Routh Approximation to maintain stability,
and the numerator polynomial is evaluated with the BB-BC
algorithm. In these mixed processes, the idea is to retain the
reduced system’s stability. The stability-preserving model
order reduction method always leads to a stable reduced
model polynomial [26–28]. Sikander and Prasad [27] sug-
gested a combination of stability equation and optimization
approach to find the reduced model. The stability equation
approach was used to derive the denominator coefficients,
and then, PSO was used to calculate the numerator poly-
nomial of the simplified model. Prajapati and Prasad [29]
developed a mixed method that combines two conventional
techniques to obtain the reduced-order models. Jain andHote
[30] proposed a mixed method of order reduction based on
the Big Bang Big Crunch Algorithm and Pade Approxima-
tion.Other literature that discussed themodel order reduction
concepts could be found in [27,31–33].

Each time and frequency domain method have unique
benefits and drawbacks and can be applied in a particular
circumstance. The mismatch of DC gain and time/frequency
responses are the main concerns in the reduced model. This
technique fails to maintain the stability of numerous types of
complex original models into their corresponding reduced
models. Additionally, they take more time and cost more to
compute. As a result, since they lessen hardware complexity,
machine cost, and compilation time, innovative techniques
for lower-order modeling are much sought after nowa-
days. This encourages the researchers to investigate new,
more potent, all-encompassing, and computationally quicker
system approximation strategies. So, motivated by various
optimization techniques and reduction problems in system
engineering, a new search algorithm based on molecular
dynamics is proposed for order abatement of continuous-time
SISO systems [34]. The proposed method tides over all the
drawbacks of the previously mentioned techniques, namely

the instability issue for large-scale systems with orders equal
to and greater than four, because it ensures the stability of
the reduced order model. The suggested technique is sim-
ple and builds a stable lower-order system. The competency
of the proposed algorithm is shown by finding a reduced
model for standard systems, including a system of order 10,
and the results thus obtained are better than the other tech-
niques existing in the literature. Also, the performance of the
proposed approximated system is analyzed not only in the
time domain but also in the frequency domain. Therefore,
this article contributes a more effective, computationally less
expensive, and general technique of system approximation.

2 Problem description

Let us define a system transfer function for the nth order as
given in Eq. (1):

Gn(s) : u → yn (1)

Transfer function Gr (s) given in Eq. (2) of order r is to be
obtained using the order reduction techniques

Gr (s) : u → yr with r < n (2)

For the two systems mentioned above, input and output char-
acteristics must be the same. If input u(t) given to both the
system is the same, then output yn(t) ≈ yr (t). SISO LTI
systems are considered in this work for the explanation.

Continuous-time SISO LTI system of the higher-order is
also modeled as Eq. (3):

Gn(s) = Nn−1(s)

Dn(s)
=

∑n−1
i=0 pi si

∑n
i=0 qi s

i
(3)

where pi and qi are the coefficients of numerator and
denominator polynomials of the original complex system,
respectively. The steady-state value is unity for p0 = q0. The
goal of model order reduction is to produce the lower-order
system of order ’r ’ (r < n) that retains all of the origi-
nal large-scale system’s significant properties. In the transfer
function form, the reduced-order model can be represented
as Eq. (4):

Gr (s) = Nr−1(s)

Dr (s)
=

∑r−1
i=0 ci s

i

∑r
i=0 di s

i
(4)

where ci anddi are the coefficients of the lower-ordermodel’s
numerator and denominator, respectively.

By minimizing the ISE value as an objective function
given in Eq. (5), optimization helps in determining the
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reduced-order modelGr (s) from the nth order complex plant
Gn(s):

ISE =
∫ t

0
[yn(t) − yr (t)]

2 dt (5)

Other performance indices such as integral time multiplied
by squared error (ITSE), integral of absolute error (IAE), and
integral of time multiplied by absolute error (ITAE) given in
Eqs. (6)–(8) are also computed to compare the closeness of
the obtained reduced-order model.

I T SE =
∫ t

0
t [yn(t) − yr (t)]

2 dt (6)

I AE =
∫ t

0
| yn(t) − yr (t) | dt (7)

I T AE =
∫ t

0
t | yn(t) − yr (t) | dt (8)

where yn(t) and yr (t) are the step response of original and
reduced-order model and t is the simulation time.

3 Proposedmethodology based on Atom
search optimization

Atom search optimization (ASO) [34] is a revolutionary opti-
mization algorithm inspired by molecular dynamics. Each
atom’s position is considered a mass-based solution. The
atom’s mass is heavier if the solution found in the search
space is better and vice versa. According to molecular
dynamics, every atom in the search space attracts or repels
each other due to this; the lower mass atoms migrate towards
the heavier mass atoms. Because atoms with more mass have
a lower acceleration, they aremore aggressive in seeking bet-
ter solutions in local search space. Also, atomswith lowmass
accelerate more quickly, exploring a larger area to find new
approximate positions in the search space.

Mathematically, unconstrainedoptimizationproblems can
be stated as Eq. (9):

Minimize f (x), x =
(
x1, . . . , xD

)
(9)

Lb ≤ x ≤ Ub, Lb =
[
lb1, . . . , lbD

]
,

Ub =
[
ub1, . . . , ubD

]
(10)

where xd(d = 1, . . . , D) represents dth , element of the
search space, lbD and ubD represent dth elements of the
lower and upper bounds, respectively, and D indicates the
dimension of variables.

To solve the problem discussed in Eq. (9), the population
of an atom is assumed as N . The location of ith atom is given

by xi

xi =
[
x1i , . . . , x

D
i

]
, i = 1, . . . , N (11)

where dth position component of the ith atom in a D mul-
tidimensional space is xdi (d = 1, . . . , D). Every atom
interacts with another atom in the early phases of ASO
through attraction or repulsion. The repulsion can reduce
the atom’s over-concentration and premature algorithm con-
vergence, allowing for a more thorough exploration of the
solution space.The repulsion reduces as iterations pass,while
the attraction grows, indicating that exploration decreases
and exploitation increases. Each atom connects with others
simply by attraction in the final rounds, ensuring that the
algorithm has a strong exploitation potential.

The following steps are to be followed to find the opti-
mal value of numerator and denominator coefficients of the
reduced system

Step 1: A set of atoms X and their velocity v are created and
initialized

Step 2: Calculate the interaction force Fi and the constraint
force Gi using Eqs. (12) and (13).

Fd
i (t) =

∑

j∈Kbest

rand j F
d
i j (t) (12)

Gd
i (t) = −λ(t)∇θdi (t)

= −2λ(t)
(
xdi (t) − xdbest (t)

)
(13)

where Fd
i j (t) is the interaction force acting on the

ith atom from jth atom in the dth dimension at tth
iteration and where rand j is a random number in
the range of [0,1], λ(t) is the Lagrangian multiplier,
and θi is the constraint of the ith atom.

Step 3: Calculate the acceleration using Eq. (14)

adi (t) = Fd
i (t)

md
i (t)

+ Gd
i (t)

md
i (t)

= − α

(

1 − t − 1

T

)3

e− 20t
T

∑

j∈Kbest

rand j

[
2 × (

hi j (t)
)13 − (

hi j (t)
)7

]

mi (t)
(
xdj (t) − xdi (t)

)

∥
∥xi (t), x j (t)

∥
∥
2

+ βe− 20t
T
xdbest (t) − xdi (t)

mi (t)

(14)

where mi (t) is the mass of the ith atom at the tth
iteration, md

i (t) is the mass of the ith atom in the
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Table 1 Parameters of ASO algorithm

Parameters Symbol Values

Number of populations nPop 10

Maximum Iteration N 100

Number of variables x 5

Depth weight α 50

Multiplier weight β 1.9

dth dimension at the tth iteration and hi j (t) is the
limit of attraction and repulsion between ith and jth
atom.

Step 4: Calculate the mass using equations Eq. (15)

Mi (t) =e
− Fiti (t)−Fitbest (t)

Fitworst (t)−Fitbest (t)

mi (t) = Mi (t)
∑N

j=1 Mj (t)

(15)

where Mi (t) is the mass of the ith atom, Fitbest (t),
Fitworst (t) are the fitness values of best and worst
atom at the tth iteration and Fiti (t) is the func-
tional fitness value of the ith atom at the tth iteration.
Fitbest (t), Fitworst (t) are expressed as:

Fitbest (t) = min
i∈{1,2,...,N } Fiti (t)

Fitworst (t) = max
i∈{1,2,...,N } Fiti (t)

(16)

Step 5: Using Eq. (17), the velocity and position of the
atoms are continuously updated

vdi (t + 1) = randdi vdi (t) + adi (t)

xdi (t + 1) = xdi (t) + vdi (t + 1)
(17)

ISE is considered the objective function to select the opti-
mal values of the numerator and denominator coefficients.
The standard form of a reduced-order model of second order
is studied in this work and expressed in Eq. (18). This strat-
egy, however, can be used to produce a reduced model of any
order system.

R2(s) = c0 + c1s

d0 + d1s + d2s2
(18)

where c0, c1 and d0, d1, d2 are undetermined numerator and
denominator variables, respectively. Using the flowchart of
ASO given in Fig. 1 and the parameters of atom search
optimization given in Table 1, the coefficients of the reduced-
order model given in Eq. (18) are obtained.

Parameters for the calculation of ROMusing the proposed
algorithm are given in Table 1.

Start

Define variables c0, c1, d0, d1, and d2
Define Cost function, Population size, 

Upper and Lower bound.
   Define constant parameters α, and β 

Initialize the positions x and velocities v
of atoms 

Max. No. of 
iteration 
completed ?

Calculate the fitness value Fiti

Is 
Fiti < Fitbest ?

Fitbest= Fiti, xbest = xi

Compute the atom’s mass using Eq. (15)

Compute the interaction force Fi by Eq. 
(12)

Compute the constraint force Gi by Eq. 
(13)

Update the velocities and positions by 
Eq. (16)

Find solution xbest

End

Yes

No

Fig. 1 Flowchart of ASO

3.1 Advantages of Atom search optimization

• In ASO, the attractive force is easy to cause the atoms to
gather in the early stage, which will cause faster conver-
gence.

• The inertial weight is a nonlinear function that decreases
from 1 to 0, and this trend fits the process of atomic opti-
mization and better balance exploration and exploitation.

• Theneighborhood learning effectively helps the exchange
of population information, and the increase in population
diversity leads to faster convergence.

4 Simulation results

This section presents step response and frequency response
(bode plot) analysis for different test systems. MATLAB
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Fig. 2 Response plots for Example 1

Table 2 Comparative analysis of the original and reduced system for Example 1

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 1.0000 3.9269 − − − −
Proposed ASO 1.0000 3.8693 7.596 × 10−5 7.596 × 10−5 0.0148 0.0303

MCS [22] 1.0000 3.8287 7.6986 × 10−5 8.3151 × 10−5 0.0168 0.0410

RA and BB-BC [12] 1.0027 3.6292 2.8472 × 10−4 0.0010 0.0444 0.1738

GA [35] 0.9999 4.0898 2.3891 × 10−4 4.3814 × 10−4 0.0316 0.0709

FDA and ESA [26] 0.9999 4.0177 2.643 × 10−4 4.9814 × 10−4 0.0261 0.3966

R2021a has been used for simulation purposes. A total of
eight different examples of different orders taken from the
recently published article are considered for obtaining the
reduced-order model. To approve the suggested scheme’s
precision, adequacy, andprevalencewith someother standard
MOR algorithms, ISE, ITSE, IAE, and ITAE are determined
and characterized as Eqs. (6)–(8). The suggested algorithm is
applied to simplify a standard real-time system for illustrating
the accuracy and verifying the conservation of essential char-
acteristics of the higher-order system in the reduced model.

Example 1 A fourth-order stable system given below is con-
sidered from [22].

G4(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24

The original system has poles: −1,−2,−3, and − 4. The
second-order reduced model achieved by the recommended
algorithm is given as:

R2(s) = 4.1267s + 9.9602

5.4616s2 + 14.9110s + 9.9602

The reduced-order model obtained by MCS [22] is

R2(s) = 0.77s + 1.649

s2 + 2.548s + 1.649

The reduced-order model obtained using RA and BB-BC
[12] is

R2(s) = 0.8058s + 0.7944

s2 + 1.65s + 0.7944

The reduced-order model obtained by GA [35] is

R2(s) = 0.4s + 1

0.5s2 + 1.5s + 1

The step response of the original and reduced-order mod-
els obtained using the suggested method is compared with
other previously published research and shown in Fig. 2a.
The bode plot of the original system and the reduced-order
model generated by the suggested approach are presented in
Fig. 2b. The suggested technique’s step response and bode
plot of the reduced systemare also comparedwith [12,22,35].
These responses direct that the behavior of the reducedmodel
accomplished by the suggested algorithm is wholly match-
ingwith the behavior of the original higher-order system. The
convergence graph of Example 1 is shown in Fig. 2c. Table 2
presents a quantitative evaluation of time response parame-
ters and different error indices. Using the suggested method,
the ISE value obtained is 7.596 × 10−5, which is smaller
than the recently developed reduced-order system using the
MCS algorithm [22]. Several time response parameters, such
as settling time, peak value, and performance indices, such
as ITAE, IAE, and ITSE, are also determined to illustrate
the efficacy of the proposed method. By using this reduction
process, the design of the controller for the original higher-
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Fig. 3 Response plots for Example 2

Table 3 Performance
comparison for Example 2

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 2.2036 4.7796 − − − −
Proposed ASO 2.2289 5.0157 7.10 × 10−4 0.0014 0.0606 0.1688

MCS [22] 2.2373 5.1906 0.0033 0.0069 0.1357 0.3661

FDA and ESA [36] 2.4212 4.3678 0.0481 0.0236 0.3006 0.3869

ESA and PA [26] 2.4212 4.3678 1.7924 1.9824 0.3006 0.3869

GA [35] 2.0813 1.5036 0.5290 0.7403 1.2276 2.1804

order system can be done quickly with less effort and less
mathematical computation.

Example 2 In this example, an eighth-order system given
below is taken from [22] for obtaining the second-order
reduced-order model.

G8(s) = 18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3 + 222088s2 + 185760s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3 + 118124s2 + 109584s + 40320

Poles of the original system are -1, -2, -3, -4, -5, -6, -7, and
-8. By applying the proposedmethod, a reduced-order model
is obtained as:

R2(s) = 16.7526s + 5.2150

s2 + 6.7997s + 5.2150

The reduced-order model obtained by MCS [22] is

R2(s) = 17.6109s + 5.4316

s2 + 7.1752s + 5.4316

The reduced-order model obtained by genetic algorithm
(GA) [35] is

R2(s) = 16.9686s + 15.2295

s2 + 6.8996s + 15.2295

The reduced-order model obtained using RA and BB-BC
[12] is

R2(s) = 24.11429s + 8

s2 + 9s + 8

The contrast of behavior of the higher-order system and
theROMs attained from the endorsed process and other avail-
able algorithms in step responses are displayed in Fig. 3a. The
displayed graph clearly shows that the reduced and original
higher-order models’ responses match perfectly. The Bode
plot of the original system and the reduced-order model gen-
eratedby the recommended approach are presented inFig. 3b.
The suggested technique’s step response and bode plot of the
reduced system are also compared with [12,22,35,37]. The
convergence graph of Example 2 is shown in Fig. 3c. Table 3
presents a numerical data comparison of time response
parameters and different error indices. Using the suggested
method, the ISE value calculated is 7.10 × 10−4, which is
smaller than the recently developed reduced-order system
using the MCS algorithm [22]. This evaluation is completed
using various performance indices such as ISE, ITSE, IAE,
and ITAE. It can be summarized that the suggested diminu-
tion algorithm gives the smallest values of the performance
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Fig. 4 Response plots for Example 3

Table 4 Performance comparison for Example 3

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 1.0187 2.0078 − − − −
Proposed ASO 1.0198 1.9852 9.75 × 10−6 20.704 × 10−4 0.0222 0.0167

MCS [22] 0.9990 2.0274 0.0018 0.0028 0.0772 0.1288

FDA and ESA [36] 0.9981 2.1270 0.0031 0.0039 0.0956 0.1515

ESA and PA [26] 0.9981 2.1270 0.0031 0.0039 0.0956 0.1516

LSMR [38] 0.9981 2.0124 4.3986 × 10−4 0.1125 0.0581 0.4600

indices compared to the traditional procedures and the latest
methods available in the literature.

Example 3 An approximate model of the thermal diffusion
system is considered in this example, which is of 10th order
and represented as follows:

G10(s) = 540.70748 × 1017
∏10

i=1 (s + λi )

where λ1 = 2.04, λ2 = 18.3, λ3 = 50.13, λ4 =
95.15, λ5 = 148.85, λ6 = 205.16, λ7 = 252.21 λ8 =
298.03, λ9 = 320.97, λ10 = 404.16

The reduced-order model obtained by proposed technique
is

R2(s) = −0.9332s + 26.4520

s2 + 14.9093s + 26.4520

The reduced-order model obtained by MCS [22] is

R2(s) = 0.007842s + 16.06

s2 + 9.868s + 16.06

The reduced-order model obtained by ESA and PA [26] is

R2(s) = −28.367s + 647.60193

s2 + 359.999s + 647.60193

The reduced-order model obtained using FDA and ESA [36]
is

R2(s) = −28.3902s + 647.6004

s2 + 359.999s + 647.6004

Figure 4a and b shows the time, and frequency domain
comparison of the original higher-order system and reduced
model obtained by the proposed method and the recently
developed methods [22,35,37]. The cost versus iteration
graph is shown in Fig. 4c. Table 4 presents a numerical
evaluation in terms of time response parameters and differ-
ent integral error parameters. Using the suggested method,
the ISE value obtained is 9.75 × 10−6, which is less than
the recently developed reduced-order system using the MCS
algorithm [22]. Several time response parameters, like set-
tling time, peak value, and integral error, such as ITAE, IAE,
and ITSE, are also determined to illustrate the efficacy of
the proposed method. These values are better than the other
method of order reduction.

Example 4 In this example, a ninth-order complex roots
system is considered to obtain a third-order reduced-order
model.
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Fig. 5 Response plots for Example 4

Table 5 Performance
comparison for Example 4

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 1.0000 3.3637 − − − −
Proposed ASO 1.0360 4.9875 0.0017 0.0211 0.2223 0.7086

MCS [22] 1.0346 7.5435 0.0168 0.0396 0.2979 1.0314

SE - BBBC [39] 1.0161 9.3120 0.0473 0.1007 0.4879 1.6033

MPC and GA [28] 1.01 5.1518 0.0586 0.8458 0.206 13.175

RMT [40] 0.99 6.9056 0.0877 0.1007 0.9359 14.425

G9(s) = s4 + 35s3 + 291s2 + 1093s + 1700

s9 + 9s8 + 66s7 + 294s6 + 1029s5 + 2541s4 + 4684s3 + 5856s2 + 4620s + 1700

The reduced-ordermodel obtainedby the proposed technique
is

R3(s) = 0.0743s2 − 0.4261s + 0.8679

0.3355s3 + 0.8405s2 + 1.3914s + 0.8679

The reduced-order model obtained by MCS [22] is

R3(s) = 0.001935s2 + 0.005725s + 1.073

s3 + 1.681s2 + 2.183s + 1.073

The reduced-order model obtained by [12] is

R3(s) = 0.0789s2 + 0.3142s + 0.493

s3 + 1.3s2 + 1.34s + 0.493

Time domain response and frequency domain response of
the original higher-order systemand the reduced-ordermodel
generated by the recommended approach are presented in
Fig. 5a and b. The proposed method has a step response, and
bode plot close to the original system and comparable with
other recently developedmethods [18,22,28,35,37]. The con-
vergence graph is shown in Fig. 5c. The convergence graph
seems constant between 10 and 50 iterations but decreases
quickly after 50. The quantitative evaluation of the recom-

mended scheme and other traditional and recently proposed
methods is done in Table 5. Using the suggested method,
the ISE value calculated is 1.7 × 10−3, which is smaller
than the recently developed reduced-order system using the
MCS algorithm [22]. The table shows that the settling time
and peak value of the proposed reduced model are approxi-
mately the same as the original system’s values, showing the
proposed method’s efficacy in retaining essential features.
Also, different performance indices such as ITAE, IAE, ISE,
and ITSE are calculated, which are the least compared to the
recently developed method.

Example 5 In this example, a fourth-order simple pole system
of repeating poles is considered.

G4(s) = 1

(s + 1)4

The third-order reduced-order model by proposed technique
given in Sect. 3 is

R3(s) = 0.0006s2 + 0.0210s + 0.2075

s3 + 1.2615s2 + 0.8541s + 0.2075
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Fig. 6 Response plots for Example 5

Table 6 Performance comparison for Example 5

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 1.0000 9.0853 − − − −
Proposed ASO 3rd Order 1.00 8.9927 9.41 × 10−4 10.5 × 10−3 0.0163 0.0852

Proposed ASO 2nd Order 1.0099 8.6133 0.00384 0.0139 0.1829 1.2912

Jain & Hote 3rd Order [30] 0.9993 8.3037 10.3089 0.3089 0.7987 2.8469

Jain & Hote 2nd Order [30] 1.0099 8.9139 0.0026 0.0128 0.1669 1.0418

MCS 3rd Order [22] 0.9993 11.4912 0.0020 0.0173 0.1674 1.4252

MCS 2nd Order [22] 1.0257 9.4118 0.0459 0.1585 0.6841 4.3022

The second-order reduced-order model by proposed tech-
nique given in Sect. 3 is

R2(s) = 1.0101

3.9414s2 + 4.019s + 1.0101

The third-order reduced-order model obtained by MCS [22]
is

R3(s) = 0.0001064s2 + 0.2325

s3 + 1.238s2 + 0.9371s + 0.2325

The second-order reduced-order model obtained by MCS
[22] is

R2(s) = 0.1 s + 0.1158

s2 + 0.5202s + 0.1158

Figure 6a and b exhibit the step response and bode plot of
the original and reduced-order models obtained by the sug-
gested approach and the other recently developed techniques
[22]. It can be noted from the bode plot that the reduced
model obtained is reliable for higher and lower frequencies.
The proposed third-order model utilizing the approach better
approximates the original model than the second-order sys-
tem when comparing simulation results. The convergence
rate of the proposed method is shown in Fig. 6c. The conver-
gence graph shows that ISE values decreased very fast, and

they became almost constant after 50 iterations. Compara-
tive analysis of the original and reduced system is depicted
in Table 6. As shown in Table 6, the ISE value is significantly
lower than the ISE value of a recently developed MCS algo-
rithm [22]. As a result, it is discovered that the proposed
third-order model performs better than the recently devel-
oped techniques.

Example 6 In this example, a third-order system of actual
power system model is considered from [41–43], whose
transfer function is given below:

G3(s) = 250

s3 + 15.88s2 + 42.46s + 106.2

The reduced-order model by the proposed technique is

R2(s) = −0.8855s + 17.5598

s2 + 2.5436s + 7.4594

The reduced-order model obtained using Balance Trunca-
tion, and Routh Approximation [29] is

R2(s) = −1.268s + 17.25

s2 + 2.391s + 7.327
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Fig. 7 Response plots for Example 6

Table 7 Performance comparison for Example 6

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 2.8074 2.9979 − − − −
Proposed ASO 2.8240 3.1232 7.8 × 10−4 0.0035 0.0827 0.1687

Balance truncation and RA [29] 2.8659 3.1406 0.0062 0.0077 0.1323 0.2060

Routh–Hurwitz [3] 2.8698 3.2341 0.0162 0.0156 0.2122 0.3090

Truncation and SE [27] 2.7077 3.0735 0.0179 0.0220 0.2189 0.3398

The reduced-order model obtained using the Routh–Hurwitz
method [3] is

R2(s) = 250

15.88s2 + 35.772s + 106.2

Step response of the original and reduced-order model
obtained using the suggested method is compared with other
previously published research and shown in Fig. 7a. The
Bode plot of the original system and the reduced-ordermodel
generated by the recommended approach are presented in
Fig. 7b. The Bode plot demonstrates that all techniques
operate effectively for a small range of frequencies but are
unreliable for greater frequencies. The suggested technique’s
step response and bode plot of the reduced system are also
compared with [3,27,29]. The convergence graph shown
in Fig. 7c decreases fast, showing the proposed method’s
effectiveness. A quantitative evaluation of the step response
parameters and different error indices are drawn in Table 7.
Time response parameters like settling time and peak value of
the reduced system are approximately the same as the origi-
nal higher-order system. Also, the ISE value obtained for the
reducedmodel is 7.8×10−4, which is significantly less com-
pared to the recently developed reduced-order system using
the MCS algorithm [29].

Example 7 In this example, a fifth-order system is considered
from [29,44], whose transfer function is given below:

G5(s) = s4 + 7s3 + 42s2 + 142s + 156

s5 + 25s4 + 258s3 + 930s2 + 1441s + 745

The reduced-order model obtained by proposed technique
given in Sect. 3 is

R2(s) = 0.1972s + 0.0022

s2 + 0.9508s + 0.0104

The reduced-order model obtained by Balance Truncation
and Routh Approximation [29] is

R2(s) = 0.1922s + 0.002387

s2 + 0.9295s + 0.0114

The reduced-order model obtained by Stability equation and
Pade Approximation [45] is

R2(s) = 142.0174s + 156

909.5238s2 + 1441s + 745

Step response and bode plot of the original and reduced-
order model obtained using the suggested method are shown
in Fig. 8a and b. It is evident that the response in time and
frequency domains is very well approximated by the pro-
posedmethod. This approach approximates lower and higher
frequencies, as shown in the bode plot. This system is also
considered by [4,29,45,46]. The convergence graph is shown
in Fig. 8c, which shows that all the ISE values of the reduced
model decreased fast before ten iterations which becomes
inferior later on, but the final obtained value of ISE is the
least. Table 8 presents a numerical data comparison of time
response parameters and different error indices. Using the
suggested method, the ISE value calculated is 1.35 × 10−4,
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Fig. 8 Response plots for Example 7

Table 8 Performance comparison for Example 7

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 0.2094 3.8145 − − − −
Proposed ASO 0.2106 3.5052 1.35 × 10−4 1.2115 × 10−4 0.0216 0.0717

Balance Truncation and RA [29] 0.2096 4.2608 1.5181 × 10−4 1.4755 × 10−4 0.0218 0.0443

Routh and PA [45,46] 0.2114 3.2382 1.8358 × 10−4 2.5391 × 10−4 0.0271 0.0770

Routh Approximation [4] 0.2114 3.2386 1.8370 × 10−4 2.5397 × 10−4 0.0271 0.0770

which is smaller than the recently developed reduced-order
model by the mixed method of Balance truncation and Routh
approximation [29].

Example 8 The next system which we consider is an eighth-
order system. It has been taken from [29]. The transfer
function of the system is given as:

G8(s) = 35s7 + 10086s6 + 13285s5 + 82402s4 + 278376s3 + 511812s2 + 482964s + 194480

s8 + 33s7 + 437s6 + 3017s5 + 11870s4 + 27470s3 + 37492s2 + 28880s + 9600

On applying the proposed technique, the second-order
reduced model is given by

R2(s) = 31s + 27.7819

s2 + 2.2043s + 1.3714

whereas the reduced-order model obtained by a mixed
method of Balance truncation and Routh approximation [29]
is given by

R2(s) = 30.85s + 30.65

s2 + 2.317s + 1.513

The same example was reduced using a mixed method of
Routh and Pade Approximation [47]. The reduced-order
model hence obtained is

R2(s) = 17.022968s + 6.8574

s2 + 1.018s + 0.3385

The step responses and Bode plots of the original system,
reduced-order model obtained by the proposed technique,
Balance Truncation and RA [29], Routh and PA [47], and
Routh Approximation [2] are depicted in Fig. 9a and b,
respectively. It is seen that the response of the reduced model
obtained by the proposed method iscloser to the response

of the original model, thus demonstrating the successful
applicability of the proposed order reduction scheme. Fig-
ure 9c depicts the change in fitness function value ISE with
the increase in the number of iterations. In addition to the
plots, the values of different error-based performance indices
and the time response specifications are tabulated in Table 9
for quantitative evaluation. The ISE, ITSE, IAE, and ITAE
values for the proposed scheme are the least compared to
recently developed reduction methods. Thus, we can con-
clude that the proposed method exhibits better performance
for the given system than the other methods.

5 Conclusion

This study proposed a novel order abatement method for the
SISO LTI systems. In this method, atom search optimiza-
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Fig. 9 Response plots for Example 8

Table 9 Performance comparison for Example 8

Methods Peak overshoot Settling time ISE ITSE IAE ITAE

Original system 20.3895 1.5828 − − − −
Proposed ASO 20.4411 1.6811 0.9366 0.9246 1.5154 9.3887

Balance Truncation and RA [29] 20.5813 1.7734 0.9530 1.8038 2.1340 5.3482

Routh and PA [47] 21.9585 8.5390 40.2688 79.1101 15.4768 50.8513

Routh Approximation [2] 21.9601 8.5395 40.2273 79.0865 15.4723 50.8713

tion algorithm is used for finding the reduced model of the
higher-order systems. The proposedmethod assesses a stable
and approximate reduced-order model, considering the ISE
as an error between the original and reduced-order model.
A variety of examples are considered to show the superior-
ity of the suggested reduction approach. The step response
and bode plot of the reduced-order model developed utiliz-
ing suggested method and the recently published articles are
compared graphically. The truthfulness and usefulness of the
suggested algorithm are authenticated by evaluating the per-
formance error indices like ISE, ITSE, IAE, and ITAE values
and found to be least compare to the other techniques. The
proposed reduction strategy is the most effective for both
SISO LTI systems and a real-time LFC of the power system.
In future work, the proposed method can be used to obtain
the reduced-order model for interval systems, non-minimum
phase systems, and MIMO systems. This method can also
solve real-time practical challenges such as controller design
in load frequency control, microgrids, and robots.
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