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Abstract
This paper investigates the controller optimization for a helicopter system with three degrees of freedom (3-DOF). The
system is extensively nonlinear and highly sensitive to the controller’s parameters, making it a real challenge to study these
parameters’ effects on the controller’s performance. We combined fuzzy logic with adaptive control theory to control the
system and used metaheuristic algorithms to determine these parameters. Then, we compare the results with the controller
optimized through the standard PSO and PID controller. The results indicate the high ability of MPSO to perform the global
search and to find a reasonable search space. The proposedmethod’s effectiveness and robustness properties are shown through
computer simulations, while the system is subject to uncertainties and disturbance. We also prove the efficiency of the MPSO
algorithm by comparing it with the standard PSO and six other well-knownmetaheuristic algorithms and analyzing the results
by statistical tests.

Keywords Modified particle swarm optimization (MPSO) · 3-DOF helicopter · Adaptive fuzzy logic controller

1 Introduction

During the last decades, unmanned aerial vehicles (UAVs)
have widely been developed and used due to technological
advancements [1]. They have applications in military and
civil fields, such as traffic condition assessment and forest
fire monitoring, to name a few [2]. They possess essential
features like hovering and vertical take-off, which increase
their applicability. However, they are highly nonlinear and
subject to disturbances and uncertainties. The nonlinearity
and susceptibility to disturbances demand a control structure
that can reject external disturbances, such as wind [3].
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Many classic, adaptive, and robust control strategies have
beenproposed to tackle this control problem. In [4], for exam-
ple, a proportional derivative (PD) and a proportional integral
derivative (PID) attitude andposition controllers are designed
to stabilize a rotorcraft in free flight. In [5], active vibration
control is presented for a helicopter rotor blade that uses
a linear quadratic regulator (LQR) to reduce vibrations. In
[6], designing an adaptive model predictive control has been
addressed for a 2-DOF helicopter in the presence of uncer-
tainties and constraints.

These control strategies perform well in the presence of
parametric uncertainties. However, they may underperform
in real-life applications with uncertainties, such as exter-
nal disturbances, noises, and unmodeled dynamics of the
machine, mainly because the methods are developed and
based on the exact mathematical model of the system [7,8].

On the other hand, intelligent control techniques can
adapt themselves in the presence of uncertainties. These
approaches have various structures, including neural net-
works, fuzzy systems, and machine learning models [9]. The
feature of not being dependent on a precise mathematical
model has led to many publications on their combination
with conventional control strategies for UAVs. In [10], the
design and experimental validation of an adaptive fuzzy PID
controller are presented for a 3-DOF helicopter. The interval
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type 2 fuzzy logic is combinedwith adaptive control theory to
control a 3-DOF helicopter in [7], which is robust to various
types of uncertainties. However, using higher types of fuzzy
systems increases the computational loads. Another example
is the publication [11] that proposes designing data-driven
attitude controllers for a 3-DOF helicopter under multiple
constraints, in which the reinforcement learning technique
updates the controller. An adaptive neural network back-
stepping controller is designed in [12] to compensate for
unmodeled dynamics and external disturbances.

The problem with these intelligent controls is that they
usually have many parameters to tune. Tuning is a com-
plex task and almost impossible to do by trial and error. To
overcome that, researchers usually implement metaheuris-
tic algorithms [13]. These algorithms have recently attracted
increased interest for this purpose thanks to their high con-
vergence speed and high accuracy. For instance, in [14] the
PSO algorithm is implemented to optimize the weighting
matrices of the LQR controller to design an optimal flight
control for a 2-DOF helicopter. The PSO is also used in [15]
to tune the values of design parameters of an adaptive super-
twisting sliding mode controller for a two-axis helicopter in
the presence of model uncertainties. The publication [16]
employs a genetic approach for real-time identification and
control of a helicopter and [17] develops a chaotic artificial
bee colony algorithm to identify a small-scale helicopter in
hover conditions.

In some papers, the researchers have improved the per-
formance of these algorithms by investigating the accuracy,
speed, and convergence rate. For example, in [18], an
improved genetic algorithm (GA) is used to optimize the
initial fuzzy rules of an adaptive fuzzy PID controller for a
micro-unmanned helicopter. However, in large-scale prob-
lems where the search space is not clearly specified, the
algorithm may get trapped into local optimal solutions [9].
Therefore, there is a need for algorithms that offers fast
convergence and high accuracy while simultaneously being
capable of modifying the search space.

In this paper, we employ a modified particle swarm opti-
mization (MPSO) algorithm to optimize the parameters of an
adaptive fuzzy controller for a 3-DOF helicopter. The heli-
copter system is highly nonlinear, and the controller’s values
significantly affect its performance. Therefore, optimizing
these parameters can lead to more effective results. We chose
the MPSO algorithm because it shows a satisfactory per-
formance when dealing with many parameters to optimize.
Furthermore, it eliminates the need for specifying the exact
boundaries of the search space, as the search space of the
particles is modified based on the value of each particle. This
results in searching in a reasonable space, which not only

does it shorten the optimization timebut also results infinding
a better solution by avoiding getting trapped in local opti-
mums. Additionally, the algorithm considers an elimination
phase, meaning some poor particles are substituted by new
particles in the new search space. These modifications have
improved the convergence rate and accuracy of the algorithm.
Indeed, simulation results in [13] prove the superiority of this
algorithm over several metaheuristic algorithms, including
improved GA, imperialist competitive algorithms, and artifi-
cial bee colony. This paper shows the effectiveness of using
the MPSO algorithm to optimize the controller’s parame-
ters for the 3-DOF helicopter through simulations when the
system is subject to uncertainties and disturbance. Also, we
compare the performance of the MPSO algorithm with the
standard PSO algorithm and some other metaheuristic algo-
rithms.

In short, this paper contains the following contributions:

• Optimizing an adaptive type 1 fuzzy logic controller for
a 3-DOF helicopter model through an MPSO algorithm.

• Comparing the performance of the proposed controller
with the PID controller and with the controller optimized
through the PSO algorithm.

• Analyzing the robustness of the proposed controller in
the presence of uncertainty and disturbance.

• Comparing the performance of the MPSO algorithm and
some other well-known metaheuristic algorithms for the
task of optimizing the adaptive type 1 fuzzy logic con-
troller of the helicopter model along with analyzing their
results.

The adaptive type 2 fuzzy logic controller for the 3-DOF
helicopter is presented in [7]. Since the membership func-
tions are fixed in the conventional type 1 fuzzy systems,
which may lead to weak performance in the presence of
uncertainties, the authors of [7] proposed using type 2 fuzzy
controllers for the highly nonlinear helicopter system. How-
ever, they did not present the results of the type 1 fuzzy logic
controller. In our paper, we use an adaptive type 1 fuzzy
controller. We show that, for the considered task, the type 1
fuzzy logic controller performs very well under uncertainties
and disturbance, eliminating the need for employing higher
types of fuzzy systems. As a result, the computational load
is lowered.

The rest of this paper is organized as follows: Sect. 2
presents the dynamic model of the helicopter. Section 3 pro-
vides the adaptive fuzzy logic controller. Section 4 describes
the basic concepts of theMPSOalgorithm. Simulation results
and MPSO algorithm efficiency analysis are presented in
Sect. 5, and Sect. 6 provides the concluding remarks.
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Fig. 1 The 3-DOF helicopter

Table 1 Values of the 3-DOF
helicopter model [3]

Model’s parameter Description Value

Mh Mass of the helicopter 1.426 kg

Mω Mass of the counterweight 1.870 kg

La Distance between the roll axis and the center of mass 0.660 m

Lω Distance between the lifting axis and the counterweight 0.470 m

Lh Distance between the pitch axis and each motor 0.178 m

Jε Moment of inertia about roll axis 1.0348 kg.m2

Jθ Moment of inertia about pitch axis 0.0451 kg.m2

Jε Moment of inertia about yaw axis 1.0348 kg.m2

g Gravitational constant 9.81 m.s2

2 Mathematical model of the 3-DOF
helicopter system

The schematic of the 3-DOF helicopter system is shown in
Fig. 1. It has two DC motors mounted at the two ends of a
frame. The DC motors drive two propellers which generate
the lift forces Ff and Fb. These forces control the attitude of
the helicopter. The system studied here is underactuated, i.e.,
it rotates freely about three axes—the pitch axis θ , the roll
axis ε, and the yaw axis ψ—with only two control forces.
The mathematical model of a 3-DOF helicopter is given by
the following differential equations [3]:

Jε ε̈ = g(MhLa − MωLω)cosε + Lacosθ u1

Jθ θ̈ = Lhu2

Jψψ̈ = Lacosε sinθ u1 (1)

where u1 = Ff + Fb, u2 = Ff − Fb. The pitch θ , roll ε,
and yaw ψ angles give the position of the helicopter body.
Values of the model parameters with their description are
given in Table 1. As it is shown in Fig. 1, the roll (ε) and
yaw (ψ) angles are perpendiculars. The intersection of the

three axes is considered the origin of the coordinate frame.
The helicopter model is defined as follows:

• Pitch angle θ is defined as −45◦ ≤ θ ≤ +45◦.
• Roll angle ε is defined as −27.5◦ ≤ ε ≤ +30◦.

These constraints on the pitch and roll angles will appear as
saturation functions in the program.

3 Adaptive fuzzy logic controller

3.1 Design of the controller

As shown in (1), the roll and yaw dynamics depend on the
pitch value and are actuated by u1, while the pitch dynamic is
actuated by u2. This means that only two input forces control
the system, i.e., the system is underactuated. We must first
define the desired roll and yaw trajectories to control the sys-
temwith only two inputs. Next, the desired pitch trajectory is
obtained based on an internal loop. Figure 2 shows the block
diagram of the control structure of the helicopter system. As
the figure shows, the controller combines backstepping and
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Fig. 2 Block diagram of the control structure

fuzzy controllers. This structure has been previously used to
control nonlinear systems [19]. The reason behind using this
structure is tomake the controllermore robust to disturbances
and uncertainties [20].

In the control structure, two virtual inputs v1 and v2 are
defined to achieve decoupling [7]:

v1 = cos θ u1

v2 = cos ε sin θ u1
(2)

Replacing the virtual inputs v1 and v2 in (1) transforms the
nonlinear system (1) into the decoupled system (3), in which
ε, θ , and ψ are controlled by v1, u2, and v2, respectively:

Jε ε̈ = g(MhLa − MωLω)cosε + Lav1

Jθ θ̈ = Lhu2

Jψψ̈ = Lav2 (3)

Notice that v1 and v2 in (2) are not independent but are linked
through u1.
From (2), we have

u21 = v21

cos2 ε
+ v22 (4)

Then, it follows that

u1 = S

√
v21

cos2 ε
+ v22 , S =

{
sign(v2) v2 �= 0

0 v2 = 0
(5)

(2) also satisfies

tan θ = v2

cos εv1
(6)

As we said, a way to control the system by only two inputs is
to first define the desired roll and yaw trajectories and, then,
to obtain the desired pitch trajectory. From (6), this desired
pitch trajectory is obtained as follows:

θd = tan−1 v2

cos εv1
(7)

So the control strategy is as follows:
First, the control inputs v1 and v2 are computed using the
tracking error between ε and ψ and their desired trajectories
εd and ψd . Then, the pitch desired trajectory θd and u1 are
computed using (7) and (5). Once the θd is computed, the
pitch controller allows to design u2.

Given the desired trajectories, the errors are defined as
follows:

eε = ε − εd

eθ = θ − θd

eψ = ψ − ψd (8)

Each adaptive fuzzy logic controller has to adjust its
weight to track these errors to zero. The errors and their
derivatives are considered as inputs of the controllers. So,
each adaptive fuzzy controller has two inputs and an output.
Using the centroid defuzzification method, the output of the
controller is as follows [21]:

Y (x) =
∑n

i=1
f i yi∑n

i=1
f i

, (9)

where n is the number of fuzzy logic rules and yi is the
output singleton number. f i is expressed by the following
equation1:

f i =
n∏
j=1

μAi
j
(x j ), (10)

where μAi
j
is the value of the membership function for the

fuzzy variable x j .

1 The mathematical expression of μAi
j
(x j ) for the particular case of

optimizing the adaptive fuzzy logic controller is given in Sect. 5
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Considering W ∈ R
n as the adjustable parameter vector

composed of the fuzzy logic consequent part, the output of
the adaptive fuzzy logic controller is expressed by

Y = �T W + σ = �̂T Ŵ , (11)

where σ is the fuzzy logic output error and �̂ ∈ R
n is an

n-dimensional vector representing known functions of the
fuzzy logic antecedent part [7]. �̂ is defined as follows:

�̂ = f i∑n

i=1
f i

. (12)

More details about the choice of fuzzy rules can be found in
[8].

The control law is given as [7]:

v1 = �̂T
ε Ŵε

v2 = �̂T
ψ Ŵψ

u2 = �̂T
θ Ŵθ (13)

and the error dynamic equation is as follows: [7]:

ë + Kdė + Kpe = η̂σ, (14)

where η̂ is the estimation of η, defined as

ηε = La

Jε
, ηψ = La

Jψ
, ηθ = Lh

Jθ
, (15)

and σ = �̂T Ŵ − �T W from (11).
The controllers have to drive the tracking errors eε , eψ ,

and eθ to zero. To guarantee that the outputs of the system
track the desired trajectories, we must have a tuning method
for the parameters Ŵ . The following theorem provides this
tuning method [7,22].

Theorem 1 Considering a nonlinear system in the form of
(1), (2), and (3) with the control law (13), the stability of the
closed-loop system is achieved with the following adaptation
law:

˙̂W = −	�̂BT PE, (16)

where	 = diag(γ1, γ2, ... , γ j ) and γl is a positive constant,
l = 1, ... , j . p is a chosen symmetric positive definite matrix
that satisfies the following Lyapunov equation:

AT P + PA = −Q, (17)

with Q > 0, and:

E =
[
e
ė

]
, A =

[
0 1

−Kp −Kd

]
, B =

[
0
η̂

]
,

where K p > 0 and Kd > 0.

Proof See [7]. ��

3.2 Optimization of the controller

During the adaptive fuzzy controller design, one issue arises,
i.e., selecting the design parameter values of the controller,
including Kp, Kd , and the parameters of the fuzzy system.
For each fuzzy controller, Gaussian membership functions
have been considered. Each membership function has two
parameters, i.e., center c and sigma σ . Choosing the right val-
ues for these parameters can greatly affect the performance
of the controllers. Moreover, because the 3-DOF helicopter
model is highly complex and nonlinear, any small change in
the Kp and Kd values can lead to unstable behavior. In this
paper, the MPSO algorithm is implemented to find the opti-
mal values of these parameters. A fitness function computes
the cost of each particle while the algorithm searches for the
best value. We choose the root-mean-square error (RMSE)
as the cost function because it intensifies the impact of large
errors. So, the optimization problem can be defined as fol-
lows:

min f (K,�, c) =
√
1

n

∑n

i=1
(e2ε + e2ψ + e2θ ) ,

s.t. − 45◦ ≤ θ ≤ +45◦ ,

− 27.5◦ ≤ ε ≤ +30◦ , (18)

whereK = [Kε, Kψ, Kθ , Kp, Kd ], 0 = [	ε, 	ψ, 	θ ], c is a
vector of all centers of themembership functions (they can be
found in Table 2) and the errors (eε, eψ , and eθ ) are defined
in (8).

4 MPSO algorithm

The PSO algorithm is an optimization algorithm based on
the behavior of bird flocking and was first introduced in 1995
[23]. For the first iteration of the algorithm, the velocity and
position of all particles are initialized randomly. They share
their information with their neighbors as they move toward
the solution. Therefore, apart from the experience that each
particle gains, they also use other particles’ experience. This
combination updates their positions and velocities based on
their knowledge and the most successful particle’s experi-
ence, i.e., the one closer to the target. And a cost function
measures this success. The longer the distance between a
particle and the target is, the higher the cost function value
for that particle is.
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Table 2 Parameter values of the optimized controllers

Parameters MPSO PSO

Kε 83.21 68.46

Kψ 168.53 157.95

Kθ 10.15 125.58

Kp 1.78 5.57

Kd 48.46 33.19

	ε = 	ψ diag [79 68 33 0 79 42 76] diag [70 102 77 125 55 13 112]

	θ diag [53 48 11 49 3 88 19] diag [172 100 119 185 70 155 113]

cNLe −2.80 −120.92

cNMe −0.00 −48.60

cNSe −0.00 −0.04

cZ e 0.00 0.00

cPSe −cNSe −cNSe

cPMe −cNMe −cNMe

cPL e −cNMe −cNMe

cNL ė −9.51 −129.19

cNM ė −6.32 −125.02

cNS ė −0.97 −0.75

cZ ė 0.00 0.00

cPS ė −cNS ė −cNS ė

cPM ė −cNM ė −cNM ė

cPL ė −cNM ė −cNM ė

RMSE 0.187 0.236

The following equations update the position and velocity
of particle i [13]:

vi (t + 1) = wvi (t) + c1r1(pbest,i (t) − xi (t))

+ c2r2(gbest (t) − xi (t)), (19)

xi (t + 1) = xi (t) + vi (t + 1), (20)

where vi (t) and xi (t) are, respectively, the velocity and the
position of the ith particle at instance t . c1 and c2 are cognitive
and social acceleration factors, respectively. r1 and r2 are uni-
form random numbers distributed within the interval [0, 1],
and w is the inertia weight. pbest,i and gbest are, respectively,
the best solution that the ith particle and all particles have
obtained so far. In every iteration, the best solution of each
particle and the best solution of all particles are stored. In the
following iteration, the algorithm uses the stored informa-
tion to modify the position and velocity of particles. Hence,
the particles gradually move toward gbest until reaching the
target. The parameters of (19) are selected as follows:

• The inertia weight (w) balances the local and global
search. A large value intensifies the global search and
a small value the local search. In the beginning, its value
should be large to search the entire space extensively.

Then, it should gradually be reduced to reach the optimal
solution.

• The cognitive and social acceleration factors (c1 and c2)
also help balance the local and global search; they are
often set to the same value. They represent the effects of
pbest,i and gbest on the velocity of each particle.

The iterative procedure of the algorithm continues until
the stopping condition is met, such as achieving an accept-
able cost function value or reaching a maximum number of
iterations.

The PSO algorithm is easy to implement with few param-
eters to modify. Nevertheless, there are some drawbacks. In
problems with many local minimums, the algorithm is sus-
ceptible to falling into one. Moreover, specifying the exact
area of the search space is not always possible. To overcome
these drawbacks, a modified version of this algorithm is pre-
sented in [13].

In the modified version, the search space of each parti-
cle is modified based on the parameters of that particle. So
after some iterations, the search space of each particle is
decreased or increased independent of other particles. An
adaptive search space leads to searching in a more reason-
able bounded space. Furthermore, the algorithm considers an
elimination phase; the new particles substitute for the poor
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Fig. 3 Flowchart of the MPSO
algorithm (red blocks show the
parts added to the standard PSO
algorithm)

particles, i.e., particles with the largest cost functions. This
elimination phase, ep, depends on the number of iterations.
For example, ep set to 30 means that the elimination phase is
performed every 30 iterations. Figure 3 presents the flowchart
of theMPSO algorithm. The red blocks show the parts added
to the standard PSO algorithm to clarify the differences. The
et in the flowchart is determined based on the percentage of
the initial population and shows the number of particles to be
deleted in every elimination phase. For example, if et = 20,
20% of all particles with the highest cost function values are
substituted by new particles in the new search space at every
elimination step. The saturation percentage is an arbitrary
value of the upper or lower bound of the search space [9].
For instance, if the initial bounds of the search space are con-
sidered to be−1 and 1, and the saturation value is set to 90%,
the values of each particle’s parameters are checked in each
elimination phase. Then, for the upper bound, 1, if these val-
ues are less than or greater than 1, the boundary is decreased
to 0.9 or increased to 1.1. For the lower bound, −1, if the
values are lower than or greater than −1, the boundary is

decreased to −1.1 or increased to −0.9. So, when the value
is lower than the bound, one unit is subtracted from the search
space, andwhen it is greater than the bound, one unit is added.
This unit is determined based on the saturation value: 100%
−90% (saturation value) = 0.1. The general framework of
the algorithm is described in Algorithm 1. [xmin xmax ] in
Algorithm 1 defines the search space.

5 Simulation result

This section presents the effectiveness of the proposed adap-
tive fuzzy controller. We compare the performance of the
MPSO and the standard PSO algorithms to optimize the con-
sidered controller for the 3-DOF helicopter. A comparison
has also been made between the adaptive fuzzy controller
and a classical PID controller.

The dynamical system is simulated in a MATLAB Script
file (m-file) with the numerical integration method of trape-
zoidal and the sampling timeof 0.01.Table 1 shows the values
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Algorithm 1 MPSO algorithm
Initialization
for i=1 to the swarm size do

Initialize the velocity and position
randomly
end for
Main loop
for i=1 to the maximum iteration number do

Evaluate each particle
Find and update gbest and pbest for each particle
Elimination phase
if the reminder of i/ep = 0 then

for i=1 to the swarm size do
if gbest > (saturation value)xmax then

xmax ← xmax + (1 − threshold) xmax
xmin ← xmin + (1 − threshold) xmin

end if
if gbest < (saturation value)xmin then

xmin ← xmin − (1 − threshold) xmin
xmax ← xmax − (1 − threshold) xmax

end if
end for
Identify et% of the swarm with the highest

fitness values and delete them
Create new particles in the newly defined

search space
Set velocity of new particles to zero
Evaluate new particles and find pbest for

them
Update gbest for the swarm

end if
for i=1 to the swarm size do

Update velocity and position of particles
according to (19) and (20)

end for
end for

of the 3-DOFhelicoptermodel. The initial values of the pitch,
roll, and yaw angles are set to zero. The following equation
is considered to be the desired trajectory for the roll and yaw
angles [7]:

εd , ψd = 1

1 + e−2.5(t+2)
. (21)

As stated in Sect. 3, the value of the inertia weight w

should be large at the beginning to help the global search
and then be reduced to find the optimal solution. Therefore,
w = 1 at the beginning and linearly is reduced to 0.98 of its
value at each iteration. The acceleration factors, c1 and c2,
are both set to 2, and the population size is chosen to be 30.
These settings are the same for both PSO and MPSO algo-
rithms. In the MPSO algorithm, the elimination percent et
and the elimination period ep are set to 75 and 40, respec-
tively. Both algorithms have been run 25 times, and the best
results for each algorithm have been reported. The constraint
handling method used in PSO is death penalty approach. In
this method, the infeasible regions of search space are not
explored, resulting in losing valuable information in these

regions [24]. But this issue has been addressed in MPSO
algorithm since in MPSO, the search space of each parame-
ter is dynamic and can be modified based on the value of that
parameter.

Each controller has two inputs e and ė, and there are seven
Gaussianmembership functions for each input, namely nega-
tive large (NL), negativemedium (NM), negative small (NS),
zero (Z), positive small (PS), positivemedium (PM), and pos-
itive large (PL) [22]. The membership functions are selected
as follows:

μANL
j

= 1/(1 + e5(x j+cNL ))

μANM
j

= e−(x j+cNM )

μANS
j

= e−(x j+cNS)

μAZ
j

= e−x j

μAPS
j

= e−(x j−cPS)

μAPM
j

= e−(x j−cPM )

μAPL
j

= 1/(1 + e−5(x j−cPL ))

Table 2 represents the final optimized values of con-
trollers’ parameterswith the cost function values. The centers
c of membership functions for all three controllers are the
same, and sigmas are considered to be 1. As the table shows,
the centers of membership functions have substantially high
values when optimized with the PSO algorithm. This hap-
pens when we already know the approximate boundary of
some parameters, but we cannot define it in the algorithm.
Indeed, defining the upper and lower bound of the search
space for each parameter is possible in the MPSO algorithm,
allowing it to avoid falling into local minimums.

Figures 4, 5, and 6 present the yaw, pitch, and roll angles,
the tracking errors, and the control signals for the nominal
case. In these figures, the adaptive fuzzy logic controller’s
performance has been compared with a classical PID con-
troller’s performance when there are three PID controllers to
control roll, yaw, and pitch angles. The control structure for
the PID controller is like the one in [25], and the gains are
optimized through the MPSO algorithms. The figures reveal
a steady-state error of less than 0.02 for the roll and yaw
angles with the PID controller. The system’s settling time
(for all three angles) is higher for the PID controller. The
adaptive fuzzy logic controller improves tracking when opti-
mized with PSO andMPSO algorithms. The PID controller’s
only priority over the adaptive fuzzy controller optimized by
the PSO algorithm is its lower control effort. Overall, these
figures prove the adaptive fuzzy logic controller’s superiority
over the PID controller.
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Fig. 4 Simulation results in the nominal case: outputs of the system
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Fig. 5 Simulation results in the nominal case: motion tracking errors
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Fig. 6 Simulation results in the nominal case: control signals

Table 3 Comparison between the performance of PSOandMPSOalgo-
rithms

IACS RMSE ITAE

PSO 213.429 0.236 6.9818

MPSO 15.177 0.187 0.3077

Comparing the performance of PSO and MPSO algo-
rithms on Figs. 4, 5, and 6, it can be seen that their results
are almost the same for the roll and yaw angles, with the
PSO algorithm having less settling time. But the difference
increases for the pitch angle, where the MPSO algorithm
has much less tracking error. Consequently, the control sig-
nals for the PSO algorithm fluctuate more, especially for the
pitch angle. The main reason for this fluctuation in the con-
trol signal is the incapability of the PSO algorithm in defining
separate search spaces for different parameters and modify-
ing these search spaces based on the value of each parameter.
In other words, it easily gets trapped into local minimums
when there are many local minimums or many parameters to
optimize.

To further investigate the algorithms’ performance, the
results are compared in Table 3 based on RMSE, the integral
of time-weighted absolute error (ITAE), and the integral of
the absolute values of control signals (IACS) which is calcu-
lated as follows:

I ACS =
∫ T

0
(|v1| + |v2| + |u2|) dt, (22)

wherev1,v2, andu2 are the roll, yaw, andpitch control signals
and T is the final time instant. Notice that IACS and ITAE
are only metrics to compare the performance of algorithms
and not the objective function. They have been computed
after optimizing the parameters of controllers and applying
them to the model. As the results in Table 3 show, the MPSO
has a lower value for all three metrics and, therefore, a better
performance.

To demonstrate the robustness of the controllers, we tested
them under parametric uncertainties. For this purpose, we
decreased the system’s mass to half of its nominal case, and
in another case, we increased it to one and a half times the
nominal case, as it was done in [7]. Figures 7, 8, 9, 10, 11, and
12 depict the results. The roll angle for the PSO algorithm
fluctuates more than the nominal case, leading to more fluc-
tuation in the control signal. Moreover, the pitch angle for
the PSO algorithm does not track the desired trajectory. But
for the MPSO algorithm, results are identical to the nominal
case, demonstrating the controller’s robustness facing uncer-
tainties. The only difference is the magnitude of the u2 to
adjust the mass change. It decreases when the system’s mass
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Fig. 7 Simulation results under the helicopter’s mass change (half
mass): outputs of the system
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Fig. 8 Simulation results under the helicopter’s mass change (half
mass): motion tracking errors
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Fig. 9 Simulation results under the helicopter’s mass change (half
mass): control signals
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Fig. 10 Simulation results under the helicopter’s mass change (one and
a half times mass): outputs of the system
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Fig. 11 Simulation results under the helicopter’s mass change (one and
a half times mass): motion tracking errors
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Fig. 12 Simulation results under the helicopter’s mass change (one and
a half times mass): control signals
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Fig. 13 Simulation results under disturbances: outputs of the system
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Fig. 14 Simulation results under disturbances: motion tracking errors
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Fig. 15 Simulation results under disturbances: control signals

is half of its nominal value and increases when the mass has
increased one and a half times.

Moreover, we performed an additional test; we applied
step disturbances of 1, 1, and 0.1 to the roll, pitch, and yaw
angles at 12, 14, and 16 seconds, respectively. Figures 13, 14,
and 15 show the results. Although applying the disturbance
to the yaw angle leaves a small pitch tracking error, the con-
troller is able to decay the roll and pitch tracking errors to
zero without fluctuation or unstable behavior.

All these algorithms are implemented to optimize the
adaptive fuzzy logic controllers of the 3-DOF helicopter
model. The population size is selected to be 30 for all algo-
rithms. For those algorithms incapable of defining the upper
and lower bound of search space for each parameter, [0 200]
is chosen as the search space. For other algorithms (MPSO,
ACO, and ICA), Table 4 shows the upper and lower bound of
search space for each parameter. The cost function is also the
same for all (RMSE). Other parameters of these algorithms
are all included in Table 5. For PSO and MPSO algorithms,
the parameters’ values are included in Sect. 5.

5.1 Further analysis of the MPSO algorithm
performance against other metaheuristics

To further investigate the effectiveness of the MPSO to opti-
mize the 3-DOF helicopter control, we compare its results
with the following algorithms’ results:

• MPSO algorithm [13]
• Standard PSO algorithm [23]
• Genetic algorithm (GA) [26]
• Ant colony optimization (ACO) [27]
• Imperialist competitive algorithm (ICA) [28]
• Gray wolf optimizer (GWO) [29]
• Bat algorithm (BA) [30]
• Differential evolution (DE) [31]

Each algorithm has been run 25 times in MATLAB. The
best values of the fitness function (the lowest ones) and the
mean of fitness function values for the 25 runs with 500
iterations are reported in Table 6. The elapsed time in the
table refers to the average time required to complete one run
of each algorithm. According to the results in the table, the
MPSO algorithm has the lowest cost function value among
others. As the cost function is RMSE, the MPSO provides
controllers’ gains and parameters that yield better accuracy.
It also has the second-fastest elapsed time. In other words, its
computational complexity is lower than the other algorithms
except for the PSO algorithm.

Figure 16a shows the RMSE evolution of algorithms, with
a zoom between iterations 0–100 in Fig. 16b to make it more
clear; the convergence speed of theMPSO algorithm is faster
than other ones, and it converges to its optimal value (0.1879)
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Table 4 Upper and lower bound
of search space for each
parameter in MPSO, ACO, and
ICA

Parameters Lower bound Upper bound

Kε, Kψ, Kθ 0 200

Kp, Kd 0 100

Centers for all fuzzy membership functions −10 10

	ε, 	ψ, 	θ 0 100

Table 5 Parameters of
algorithms

GA parameters Value ACO parameters Value

Number of population 30 Number of ants 30

Percent of crossover 0.8 q 0.1

Percent of mutation 0.3 ρ 0.85

α 0.8

β 0.8

ICA parameters Value GWO parameters Value

Number of initial countries 30 Number of population 30

Number of initial imperialists 8 a decreases linearly from 2 to 0

Revolution rate 0.3

β 2

γ 0.5

ξ 0.02

BA parameters Value DE parameters Value

Number of population 30 Number of population 30

Loudness 0.5 CR 0.5

Pulse rate 0.5 F 0.3

Minimum frequency 0

Maximum frequency 2

Table 6 Comparison of MPSO and other metaheuristics—500 iterations

Algorithm Best fitness function value Mean of fitness function values Elapsed time (minute)

MPSO 0.1879 0.1949 65

PSO 0.2366 0.3115 64

GA 0.4554 0.7568 76

ACO 0.5780 0.7592 73

ICA 0.4261 0.5234 68

GWO 0.2001 0.2641 81

BA 0.9914 1.2729 75

DE 0.4067 0.7036 74

in less than 50 iterations. Second to the MPSO algorithm is
the GWO with the fitness function value of 0.2001 reached
at iteration 430. (The fitness function values are presented in
Table 6.) The highest fitness function value at iteration 500
belongs to the BA (0.9914), which indicates its incapability
in finding the global optimum or at least a better local opti-
mum. Apart from that, GA has the slowest convergence rate,
reaching its optimal value at iteration 490.

The algorithms are compared using Wilcoxon and Fried-
man tests to analyze the results statistically. Tables 7 and 8
depict the results of the comparison. According to p values in
Table 7, the null hypothesis is rejectedwith a confidence level
of 0.99, meaning that MPSO shows a significant improve-
ment over other algorithms. The high statistic numbers also
verify that there is a significant difference between the per-
formance of the algorithms. Moreover, the ranks computed
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Fig. 16 RMSE evolution of the MPSO and other metaheuristics: a
Iteration numbers 0 to 500, b iteration numbers 0 to 100

Table 7 Wilcoxon signed-rank test results

Comparison Statistic p value

MPSO vs PSO 4129.0 0.00

MPSO vs GA 3273.0 0.00

MPSO vs ACO 8215.0 0.00

MPSO vs ICA 7075.0 0.00

MPSO vs GWO 8201.0 0.00

MPSO vs BA 5535.0 0.00

MPSO vs DE 18826.0 0.00

Table 8 Friedman ranks

MPSO PSO GA ACO ICA GWO BA DE

Ranks 1.000 3.312 7.256 5.930 5.116 2.218 7.268 3.900

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

7 groups have means significantly different from Group 1

ICA
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DE
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PSO
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Fig. 17 Multiple comparisons of means in Bonferroni test

through the Friedman test in Table 8 show that MPSO is the
best performing algorithm, while BA is the worst.

We also performed the multi-comparison Bonferroni test
with a confidence level of 0.05. The resulting p value is
1.64 × 10−104 < 0.05, which indicates that the differences
between algorithms are significant. The first seven rows of
the matrix of pairwise comparison results (c) are as follows:

1.0000 2.0000 −0.5280 −0.2799 −0.0318 0.0119
1.0000 3.0000 −0.6359 −0.3878 −0.1397 0.0000
1.0000 4.0000 −1.0828 −0.8348 −0.5867 0.0000
1.0000 5.0000 −0.5783 −0.3302 −0.0821 0.0009
1.0000 6.0000 −1.8177 −1.5696 −1.3215 0.0000
1.0000 7.0000 −0.5149 −0.2669 −0.0188 0.0218
1.0000 8.0000 −0.5538 −0.3057 −0.0576 0.0033

and the multi-comparison graph is shown in Fig. 17. The first
seven rows of matrix c show that all comparisons involv-
ing the first group (MPSO) have confidence intervals that
exclude zero,meaning that the differences between themeans
of group 1 and other groups are significantly different from
zero at the 5% significance level. This can also be confirmed
from Fig. 9. However, the differences between PSO, ACO,
DE, GWO, and ICA are not significant since the 95% confi-
dence interval for the difference between them includes zero.
Therefore, the hypothesis that the true difference is zero can-
not be rejected for them.

Thus, we can conclude that theMPSO algorithm is an effi-
cient optimization tool for the 3-DOF helicopter control and
other control systems. Indeed, in a previous paper ([13]), the
MPSO algorithm has been implemented to design an interval
type 2 fuzzy disturbance observer for a real ball and beam
system.
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6 Conclusion

This paper proposed optimizing a fuzzy adaptive controller
for the 3-DOF helicopter system through the MPSO algo-
rithm. The controller has many parameters to be defined,
including themembership functions’ parameters of the fuzzy
part and gains of the adaptive part. As the system is highly
nonlinear, a slight change in the value of these parameters
can significantly affect the controllers’ performance. The
MPSO algorithm has a high ability to avoid the local min-
imums, making it a suitable algorithm for optimizing the
controller.We assessed the algorithm’s performance by com-
paring it with the standard PSO algorithm and six other
well-known metaheuristic algorithms. The results show the
fast convergence rate and low computational complexity of
the MPSO algorithm. In particular, the standard PSO algo-
rithm does not achieve satisfactory results, particularly in
the presence of uncertainties and disturbances. On the other
hand, the controller optimized through the MPSO algorithm
shows robustness properties to uncertainties and disturbance.
Applying theMPSOalgorithm to other control structures and
further improving its performance can be considered in future
research.

Author Contributions SN contributed to conceptualization, methodol-
ogy, software, formal analysis, writing–original draft, data curation,
and visualization; MJB contributed to conceptualization, methodology,
resources, writing—review & editing, funding acquisition, and super-
vision; BR performed writing—review & editing.

Funding This work was funded by NSERC Discovery Grant.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. ChenY,YangX, ZhengX (2018)Adaptive neural control of a 3-dof
helicopter with unknown time delay. Neurocomputing 307:98–105

2. Chen M, Shi P, Lim C-C (2015) Adaptive neural fault-tolerant
control of a 3-dof model helicopter system. IEEE Transact Syst,
Man, Cybernetics: Syst 46(2):260–270

3. Castañeda H, Plestan F, Chriette A, de León-Morales J (2016)
Continuous differentiator based on adaptive second-order sliding-
mode control for a 3-dof helicopter. IEEE Trans Industr Electron
63(9):5786–5793

4. Pounds PE, Dollar AM (2014) Stability of helicopters in compliant
contact under pd-pid control. IEEE Trans Rob 30(6):1472–1486

5. UddinMM,Sarker P, TheodoreCR,ChakravartyUK (2018)Active
vibration control of a helicopter rotor blade by using a linear
quadratic regulator. In: ASME2018 Internationalmechanical engi-
neering congress and exposition . American Society ofMechanical
Engineers Digital Collection

6. Dutta L, Kumar Das D (2021) Adaptive model predictive control
design using multiple model second level adaptation for parameter

estimation of two-degree freedom of helicopter model. Int J Robust
Nonlinear Control 31(8):3248–3278

7. Chaoui H, Yadav S, Ahmadi RS, Bouzid AEM (2020) Adaptive
interval type-2 fuzzy logic control of a three degree-of-freedom
helicopter. Robotics 9(3):59

8. Chaoui H, Khayamy M, Aljarboua AA (2017) Adaptive interval
type-2 fuzzy logic control for pmsm drives with a modified refer-
ence frame. IEEE Trans Industr Electron 64(5):3786–3797

9. Salahshour E, Malekzadeh M, Gholipour R, Khorashadizadeh S
(2019) Designing multi-layer quantum neural network controller
for chaos control of rod-type plasma torch system using improved
particle swarm optimization. Evol Syst 10(3):317–331

10. Gonzalez H, Arizmendi C, Garcia J, Anguo A, Herrera C (2018)
Design and experimental validation of adaptive fuzzy pid controller
for a three degrees of freedom helicopter. In: 2018 IEEE interna-
tional conference on fuzzy systems (FUZZ-IEEE), pp. 1–6 . IEEE

11. Xue S, Li Z, Yang L (2019) Training a model-free reinforcement
learning controller for a 3-degree-of-freedomhelicopter undermul-
tiple constraints. Meas Control 52(7–8):844–854

12. Yang X, Zheng X (2019) Adaptive nn backstepping control design
for a 3-dof helicopter: theory and experiments. IEEE Trans Industr
Electron 67(5):3967–3979

13. Naderi S, Rezaie B, Faramin M (2020) Designing an interval type-
2 fuzzy disturbance observer for a class of nonlinear systems based
onmodified particle swarm optimization. Appl Intell 50(11):3731–
3747

14. Yu G-R, Hsieh P-H (2019) Optimal design of helicopter control
systems using particle swarm optimization. In: 2019 IEEE interna-
tional conference on industrial cyber physical systems (ICPS), pp.
346–351 . IEEE

15. Humaidi AJ, Hasan AF (2019) Particle swarm optimization-based
adaptive super-twisting sliding mode control design for 2-degree-
of-freedom helicopter. Meas Control 52(9–10):1403–1419

16. Tan K, Cheong C, Peng Y (2016) A genetic approach for real-time
identification and control of a helicopter system. Int J Comput Intell
Control 8(1):11–18

17. DingL,WuH,YaoY (2015)Chaotic artificial bee colony algorithm
for system identification of a small-scale unmanned helicopter. Int
J Aerosp Eng 2015

18. Hu Y, Yang Y, Li S, Zhou Y (2020) Fuzzy controller design of
micro-unmanned helicopter relying on improved genetic optimiza-
tion algorithm. Aerosp Sci Technol 98:105685

19. Azimi MM, Koofigar HR (2015) Adaptive fuzzy backstepping
controller design for uncertain underactuated robotic systems.Non-
linear Dyn 79(2):1457–1468

20. Shakourzadeh S, Farrokhi M (2020) Fuzzy-backstepping control
of quadruped robots. Intel Serv Robot 13(2):191–206

21. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic
systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

22. Teiar H, Boukaka S, Chaoui H, Sicard P (2014) Adaptive fuzzy
logic control structure of pmsms. In: 2014 IEEE 23rd International
symposium on industrial electronics (ISIE), pp. 745–750 . IEEE

23. Kennedy J, Eberhart R (1995) Particle swarmoptimization. In: Pro-
ceedings of ICNN’95-international conference on neural networks,
vol. 4, pp. 1942–1948 . IEEE

24. Jordehi AR (2015) A review on constraint handling strategies in
particle swarm optimisation. Neural Comput Appl 26(6):1265–
1275

25. Chang W-D, Shih S-P (2010) Pid controller design of nonlinear
systems using an improved particle swarm optimization approach.
Commun Nonlinear Sci Numer Simul 15(11):3632–3639

26. ZbigniewM (1996)Genetic algorithms+ data structures= evolution
programs. In: Computational statistics, pp. 372–373. Springer

27. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell Mag 1(4):28–39

123



Optimizing an adaptive fuzzy logic controller of a 3-DOF helicopter... 1913

28. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic
competition. In: 2007 IEEE congress on evolutionary computation,
pp. 4661–4667 . Ieee

29. Mirjalili S,Mirjalili SM, Lewis A (2014) Greywolf optimizer. Adv
Eng Softw 69:46–61

30. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:
Nature inspired cooperative strategies for optimization (NICSO
2010), pp. 65–74. Springer

31. Storn R, Price K (1997) Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Global Optim 11(4):341–359

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Optimizing an adaptive fuzzy logic controller of a 3-DOF helicopter with a modified PSO algorithm
	Abstract
	1 Introduction
	2 Mathematical model of the 3-DOF helicopter system
	3 Adaptive fuzzy logic controller
	3.1 Design of the controller
	3.2 Optimization of the controller

	4 MPSO algorithm
	5 Simulation result
	5.1 Further analysis of the MPSO algorithm performance against other metaheuristics

	6 Conclusion
	References




