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Abstract
This paper presents a finite element approach to predict the aeroelastic instabilities of rectangular plates in supersonic airflow
with an arbitrary flow direction. The structure’s mathematical model is developed using a combination of the finite element
method and Sanders’ shell theory. The membrane displacement components of the plate are modeled by bidimensional
polynomials, while the lateral deflection is interpolated based on the exact solution of the equation of motion. Aerodynamic
load induced by supersonic airflow is modeled by linearized first-order piston theory, including flow direction influence.
The mass, stiffness and damping matrices are constructed by exact analytical integration. The flutter bounds are obtained
by solving the developed system of governing equations. The effects of regular and irregular boundary conditions, aspect
ratio and airflow orientation are explored. The results obtained from the present formulation agree well with those in other
published works and show excellent convergence behavior and accuracy.

Keywords Fluid structure interaction · Supersonic flow · Piston theory · Finite element method · Flutter and divergence
detection · Sanders theory

1 Introduction

Aeroelasticity is an essential topic for scientists and engineers
working especially in aerospace and aeronautics engineer-
ing applications. Studying the loss of stability of thin walled
structures interacting with an airflow improves the reliability
of design in many engineering applications. The prediction
of stability bounds of fluid–structure systems is crucial for
the safety requirements. Flutter is a self-excited oscillation
of elastic structure when exposed to airflow. In the practical
sense, flutter means an oscillation which grows and finally
either breaks the structure or remains bounded at some ampli-
tudewhose value is dependent upon the departure from linear
laws [1]. Flutter is dangerous and must be taken into account
to avoid disasters. There have been many incidents reported
in the literature like the German V-2 rocket of World War
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II, the X-15 and the Saturn launch vehicle of the Apollo pro-
gramwhich were failures and are due to flutter of their panels
[2]. Considerable efforts have been devoted to comprehend
flutter behaviors of plates and shells under supersonic air-
flow. According to Singha and Ganapathi [3], it was Jordan
in 1956 who was the first to identify such problem in his
work on the physical nature on panel flutter. To avoid aeroe-
lastic instability, the technique of active flutter suppression
has drawn much attention. Extensive research and develop-
ment efforts have been dedicated to the challenge of active
flutter suppression (AFS). Among the studies in this field,
those were published by Huang, Hu [4–6].

The flutter analysis of plates and shells with different
boundary conditions using different aerodynamic theories
has been studied extensively by experimental, analytical and
numerical approaches. In 1967, Olson [7] applied finite ele-
ments to panel flutter where the panel is reduced to a wide
beam. To include the aerodynamic forces, he extended the
analysis of Leckie and Lindberg [8]. Later, in 1970 Olson
[9] employed two rectangular and one triangular plate bend-
ing elements to simulate supersonic flutter problems. Sander,
Bon [10] followed a finite element method for the analysis
of supersonic panel flutter, and it consists in representing the
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nonstationary aerodynamic forces also by finite elements.
The resulting advantage is an increased flexibility and gen-
erality in the structural configurations that can be treated.
Rossettos and Tong [11] proposed a hybrid stress finite ele-
ment method to study the flutter of cantilever anisotropic
plates. Srinivasan and Babu [12] published a finite element
flutter analysis of cantilevered plates. Linear plate theory
has been used for computing the strain energy and kinetic
energy of the plate, and piston theory [13] has been used to
describe the aerodynamic pressure distribution. A review of
the finite element method applied to the problem of super-
sonic aeroelastic stability of plates and shells is presented
by Bismarck-Nasr [14]. For the study of supersonic flutter
behavior of laminated composite skew flat plates, Singha
and Ganapathi [3] used a shear deformable finite element
approach.

For predicting the supersonic flutter of circular cylindri-
cal shells, Sabri and Lakis [15] proposed a combination
of Sander’s thin shell theory and the classic finite ele-
ment method, in which the nodal displacements are found
from the exact solution of shell governing equations rather
than approximated by polynomial functions. The authors
concluded that reliable results could be obtained at less com-
putational cost compared to commercial FEM software and
analytical methods. Following the same procedure, Sabri and
Lakis [16] published a hybrid finite element method applied
to supersonic flutter of an empty or partially liquid-filled
truncated conical shell. Using the combination of Sanders’
shell theory and the standard finite elementmethod, the prob-
lems that have been studied by the same team are: effects of
sloshing on flutter prediction of partially liquid-filled circu-
lar cylindrical shell [17]. Hydroelastic vibration of partially
liquid-filled circular cylindrical shells under combined inter-
nal pressure and axial compression [18]. Flutter prediction
of functionally graded cylindrical shells [19]. This hybrid
method was tested and validated also for the flutter analysis
of spherical shells [20, 21].

For thin elastic isotropic rectangular plates, a method for
the dynamic analysis was proposed by Charbonneau and
Lakis [22]. The method is a hybrid of finite element and
classical thin plate theory. The displacement functions are
derived from Sanders’ thin-shell equations and are expanded
in power series. Based on this approach Kerboua, Lakis [23]
explored the effect of various geometrical parameters and
boundary conditions on the dynamic response of rectangular
plates. Kerboua, Lakis [24] investigated the natural frequen-
cies of rectangular plates completely submerged in water or
floating on its free surface. The hybrid approach has been
adopted by Kerboua, Lakis [25] for modeling of plates sub-
jected to flowing fluid under various boundary conditions.
In 2021, we presented a finite element model for vibration
analysis of square plates coupled with a supersonic airflow
[26]. The study of the aeroelastic behavior about rectangular

Fig. 1 A rectangular plate under supersonic airflow

flat plates under regular boundary conditions has received
considerable attention in the literature. However, to the best
of authors’ knowledge, the investigation of the flutter behav-
ior in case of irregular boundary conditions has not been yet
accomplished. Irregular boundary conditions occur after the
accidental failure of one or more supports. In these catas-
trophic cases, it is important to predict the evolution of the
stability bounds of such configurations.

This study presents a finite element approach for flutter
analysis of rectangular flat plates in supersonic airflow with
an arbitrary flow direction. The main objective of this work
is to extend a hybrid of classical finite element method and
Sanders’ shell theory to study the aeroelastic instabilities in a
Cartesian coordinate system. The supersonic airflow is pre-
dicted using the first-order piston theory. The other main
contribution of this work is the investigation of aeroelastic
bounds in the case of irregular boundary conditions. The for-
mulation developed herein is validated with other published
research works. A parametric study has been carried out to
highlight the effect of aspect ratios, flowdirection and various
boundary conditions on the aeroelastic behavior of rectangu-
lar flat plates.

2 Mathematical modeling

The geometry of a rectangular plate subjected to supersonic
airflow is shown in Fig. 1. The length, width and thickness
of the plate are A, B and h. The finite element considered
in this study is a rectangular element with four nodes and
six degrees of freedom at each node. The panel is subjected
to a parallel supersonic airflow making an angle � with the
x-axis.
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2.1 Structure modeling

The plate is assumed to be thin, homogeneous and isotropic.
For modeling the plate, we used the hybrid combination of
the finite element method and Sanders’ shell theory proposed
by Kerboua, Lakis [23]. The in-plane membrane displace-
ment components are presented in terms of bidimensional
polynomials and the bending displacement component by a
function that represents a general form of the exact solution
of the equations of motion [22]. Hence, the displacement
field may be defined as follows:

U (x , y, t) = C1 + C2
x

A
+ C3

y

B
+ C4

xy

AB
(1)

V (x , y, t) = C5 + C6
x
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(2)
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(3)

U and V represent the in-plane displacement components
of themiddle surface in X andY directions.W is the transver-
sal displacement of the middle surface. A and B are the plate
dimensions, and Ci are unknown constants.

Using a matrix form, Eqs. 1, 2 and 3 can be written as
follows:

⎧
⎪⎨

⎪⎩

U

V

W

⎫
⎪⎬

⎪⎭
= [R]{C} (4)

where [R] is a 3× 24matrix and {C} is the unknown constant
vector of order 24.

The used element has four nodes and 6 degrees of freedom
at each node. The nodal displacement vector is given as:

{δ} =
{
{δi } T ,

{
δ j
} T , {δk} T , {δl} T

} T
(5)
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∂Wi
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∂ y
,
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}T

(6)

By introducing Eqs. (1, 2, 3, 4 and 5), the nodal displace-
ment vector is written:

{δ} = [A]{C} (7)

{C} = [A]−1{δ} (8)

Substituting Eq. (8) in Eq. (4), the expression of the dis-
placement field becomes:
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[N ] is a 3× 24 ordermatrix representing the displacement
shape function of the finite element.

The strain–displacement relations for rectangular plates
are written [25]:
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Substituting the displacement components Eq. (9) in
Eq. (10), we obtain:

{ε} = [Q][A]−1{δ} = [B]{δ} (11)

where [Q] is a 6 × 24 order matrix.
The forces and moments per unit length are written:
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For isotropic plate, we have:
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where K = Eh3

12(1−υ2)
and D = Eh

1−υ2 .
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By the substitution of Eq. (11) in Eq. (13), we can obtain:

{ t} = [P][B]{δ} (14)

Using Hamilton’s principle [27], the elementary mass and
stiffness matrices ([m]e and [k]e) can be expressed by:

[m]e = ρmh
∫

Ae

[N ]T [N ]dA (15)

[k]e =
∫

Ae

[B]T [P][B]dA (16)

where ρm is the material density. By using Eq. (9), Eq. (11)
and by substituting them in Eq. (15) and Eq. (16), we obtain:

[m]e = ρmh
[
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]T
(

ye∫
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xe∫

0

[R]T [R]dxdy)[A]−1 (17)

[k]e =
[
[A]−1
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0
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⎞
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2.2 Aerodynamic modeling

The aerodynamic pressure of the airflow applied to the exter-
nal surface of the plate is modeled by piston theory, which
is introduced by Ashley and Zartarian [13]. Generally, first-
order piston theory aerodynamics is used for linear panel
flutter analysis at high supersoic Mach numbers [28]; its
expression is giving as follows:

pa = −ρ U 2∞√
(M2∞ − 1)

((
∂W

∂x
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∂ y
sin�

)

+ 1
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∂W
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)

(19)

where ρ,U∞ and M∞ denote the air density, the free stream
velocity and the Mach number.

Based onEq. (9),we canwrite the deflectionW as function
of nodal displacements as follows:

W =
[
N (3)
1 N (3)

2 N (3)
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24

]
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]
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Therefore, the aerodynamic pressure is written:
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λa is the aerodynamic stiffness parameter and ga is the
aerodynamic damping parameter and they are defined as fol-
lows:

λa = 2q
√(

M2∞ − 1
) (22)

ga = 2q
(
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)
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2 .

By applying the principle of virtual work, we have:
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The equivalent nodal forces due to the aerodynamic pres-
sure are presented by:
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Based on Eq. (24), the elementary aerodynamic stiffness
matrix [ka]e and damping matrix [ca]e are obtained as fol-
lows:

[ka ]
e = −λa

⎛

⎜
⎝

∫
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[N ]T

⎡

⎢
⎣

[0]
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[ca]
e = −ga
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⎜
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The elementary equations of motion are:

[m]e
{
δ̈
} e − [ca]

e{ δ̇
} e + (

[k]e − [ka]
e){δ}e = {0} (29)

2.3 Flutter analysis

From equation Eq. (29) and using the assembly technique
with the application of the necessary boundary conditions,we
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Fig. 2 Considered boundary conditions

Fig. 3 Frequency versus number of elements for a fully simply supported square plate (-a- first-mode frequency in vacuo, -b- second-mode frequency
in vacuo & -c- critical frequency)

Fig. 4 Obtained frequencies for a fully simply supported coupled plate
compared to those presented by Song and Li [34] (A = B = 0.1 m,
h = 0.001 m, E = 210GPa, υ = 0.33 and ρ = 7930 kg

/
m3)

intuitively obtain the formulation of the governing equations
of motion in a global system:

[m]e
{
δ̈
} − [ca]

{
δ̇
} + ([k] − [ka]){δ} = {0} (30)

where {δ}, [m], [k], [ca] and [ka] denote global displacement
vector, the global mass matrix, the global stiffness matrix,
the global aerodynamic damping matrix and the global aero-
dynamic stiffness matrix, respectively.

Then, Eq. (30) is reformulated as follows:

[
[0] [m]

[m] − [ca]

]{
δ̈

δ̇

}

+
[

−[m] [0]

[0] [k] − [ka]

]{
δ̇

δ

}

= {0}
(31)

The general solution of Eq. (31) can be expressed as:

{δ} = {δ0}e� t (32)

where � and {δ0} are the eigenvalue and the eigenvector of
the equation.

The substitution of the general solution into Eq. (31)
leads to an eigenvalue problem. Complex eigenvalues can

123



Finite element model for aeroelastic instability analysis… 963

Fig. 5 Influence of dynamic
pressure on mode shapes

be obtained as:

� = �r + i�i (33)

where�r and�i denote the real part of the eigenvalue and the
imaginary part of the eigenvalue. The imaginary part referred
to the natural frequencies of the panel and the real one to its
damping. For convenience, we define the non-dimensional
dynamic pressure parameter λ∗, the non-dimensional fre-
quency�∗

i and the non-dimensional damping�∗
r as follows:

λ∗ = 2 q A3

K
√
M2 − 1

(34)

�∗
i = �i A

2

√
ρm h

K
(35)

�∗
r = �r A

2

√
ρm h

K
(36)

It is important to prevent structural failure due to diver-
gence or flutter [29]. Theoretically, divergence occurs when
the linear response of the system grows exponentially with
time [30]. This type of instability is observed when natural
frequency decreases and tends to 0 [31]. The occurrence of
flutter is usually estimated by the first coalescence of two

consecutive natural frequencies of the panel, and the corre-
sponding aerodynamic pressure is called the critical flutter
aerodynamic pressure [32, 33].

3 Results and discussions

In this section, we present the results of numerical inves-
tigations obtained using a developed in-house code. The
considered plates are made of an aluminum alloy consid-
ered isotropic with the modulus of elasticity E = 70 GPa,
the Poisson’s ratio ν = 0.3 and the mass density ρm =
2700 kg/m3.

As illustrated in Fig. 2, SSSS, CCCC, PSSSS and FCFF
panels are investigated. S, C and PS denote fully simply sup-
ported, clamped and point-supported boundary conditions,
respectively.

3.1 Validation and comparison

At first, the present formulation is validated by considering
flutter analysis of a fully simply supported isotropic square
plate as studied by Song and Li [34]. It is well known that
the accuracy of the finite element method depends on the
used number of elements. Therefore, a set of calculations
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Fig. 6 Flutter bounds for different boundary conditions: a & b SSSS; c & d CCCC; e and f comparison of the first two eigenvalues
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Table 1 Numerical comparison
of flutter bounds for different
boundary conditions

Boundary conditions References In vacuo Coalescence

�1 �2 λ∗ cr �∗ cr

SSSS* Present approach 19.74 49.33 511.45 42.93

Sander, Bon [10] (exact) 19.61 49.35 512.60 42.99

Sander, Bon [10] (FEM)(FEM) 19.74 49.38 511.80 42.93

Srinivasan and Babu [12] 19.31 48.44 521.30 42.86

Abbas, Rui [36] 21.89 54.96 536.90 43.96

Dhital, Han [37] – – 512.50 42.97

Dhital and Han [38] 19.69 49.29 515.29 43.04

Grover, Maiti [42] – – 512.00 43.04

CCCC* Present approach 36.00 73.52 850.58 65.44

Sander, Bon [10](exact) 35.99 73.89 877.00 63.85

Sander, Bon [10](FEM) 36.00 73.53 850.00 65.44

Srinivasan and Babu [12] 35.99 73.80 877.00 65.44

Abbas, Rui [36] 40.35 83.04 913.17 68.45

Durvasula [39] 35.99 73.42 837.73 –

Dhital, Han [37] 35.97 73.38 856.04 65.49

PSSSS* Present approach 7.11 15.77 47.97 11.52

Srinivasan and Babu [12] 6.99 15.65 45.75 11.37

Dowell [40] 7.50 17.30 57.50 11.00

Srinivasan and Munaswamy [41] 7.14 15.79 – –

Abbas, Rui [36] 7.79 16.40 48.36 11.85

FCFF* Present approach 3.47 8.51 58.13 6.46

Rossettos and Tong [11] 3.43 8.23 61.15 6.23

Srinivasan and Babu [12] 3.40 8.48 58.35 6.43

Abbas, Rui [36] 3.79 8.77 47.83 6.68

*The bold notation indicates the leading edge position

were done to find the minimum number of elements required
for plate discretizing. As shown in Fig. 3, for a fully simply
supported square plate in supersonic airflow, grid indepen-
dence has been investigated by analyzing cases with different
mesh sizes until consistent results are achieved. It is observed
that satisfactory results are obtained for 6 × 6 elements. For
closer meshes, there are no observed variations of the critical
frequency and the natural frequencies of the plate in vacuo.

The flutter is an aeroelastic instability induced by the
interactions of aerodynamic, inertial and elastic forces. It
occurswhen twomodes coincide at the same critical dynamic
pressure [31]. The variation of frequencies for increasing val-
ues of dynamic pressure parameter is shown in Fig. 4. It is
observed that the first and second modes of the plate coa-
lesce into one mode for. λ∗ = 511.37, and these obtained
results show a classical flutter instability phenomenon. Also,
in Fig. 4, it can be observed that the present results are well
accordant with those published by Song and Li [34] in their
study on the flutter analysis of a fully simply supported flat
plate coupled with supersonic airflow. To obtain satisfactory

Fig.7 Influence of flow angle on critical dynamic pressure of fully sim-
ply supported square plate

( A
h = 100

)
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Fig. 8 The variation of natural frequencies of a rectangular plate with aspect ratio 0.5 for different flow direction: a � = 30◦, 45◦, 60◦, 90◦;
b � = 0◦

Fig. 9 The variation of natural frequencies of a rectangular plate with aspect ratio 1.25 for different flow direction: a � = 0◦, 30◦, 45◦, 60◦;
b � = 90◦

results, we used only 36 elements, whereas Song and Li [34]
used 225 elements for the same case. The proposed method
reveals better convergence behavior compared to Song and
Li [34].

Figure 5 presents the evolution of the first- and second-
mode shapes for an increase in dynamic pressure (0, 500 and
511.37). It is interesting to note that the first- and second-
mode shapes corresponding to the critical dynamic pressure
are similar.

3.2 Effect of regular boundary conditions on flutter
bounds

In this assessment, we consider two types of boundary con-
ditions SSSS and CCCC. As illustrated in Fig. 6a, for a fully
simply supported square plate, the frequency of the firstmode
increases, while the frequency of the second mode decreases
as the dynamic pressure parameter λ increases. For higher
values of λ, these frequencies merge into a single-mode.
Mode 3 and mode 4 coalesce for a greater value of dynamic
pressure.

A positive damping explicitly signifies a state of insta-
bility [35]. In Fig. 6b, by increasing the dynamic pressure,
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Fig. 10 The variation of natural frequencies of a rectangular plate with aspect ratio 2.0 for different flow direction: a � = 0◦, 30◦, 45◦, 60◦;
b � = 90◦

Fig. 11 Influence of flowangle on critical dynamic pressure for different
aspect ratios

the damping branch corresponding to one of the modes 1
or 2 vanishes and then changes the sign to positive. The
same behavior is observed for the damping of the third and
fourth modes. Figure 6c-d shows the flutter bounds for a
fully clamped panel. A similar behavior to that observed in
the previous case is depicted.

The effect of the boundary conditions on the flutter onset
is illustrated in Fig. 6e–f. This last depicts a comparison of
the evolution of the first two eigenvalues for SSSS and FFFF
panels. It is observed that for the fully simply supported case,
the flutter onset occurs for λ = 511.45 while the critical
dynamic pressure for a fully clamped plate is λ = 850.58.
This is because the clampedplates are stiffer than fully simply
supported ones.

As summarized in Table 1, the obtained results using
the proposed approach are compared to various numerical
and analytical results found in previously published studies
[10–12, 36–42]. For different boundary conditions (SSSS,
CCCC, FCFF, PSSSS), it was observed that natural fre-
quencies and dynamic pressure parameters are found with
reasonable accuracy.

3.3 Effect of arbitrary airflow direction on flutter
bounds

A key factor in predicting dynamic instability boundaries is
the airflow orientation. The influence of this crucial param-
eter is investigated for rectangular panels of various aspect
ratios.

3.3.1 Square plate

According to the results given in Fig. 7, there is a signifi-
cant effect of the flow angle on the critical dynamic pressure
parameter for a fully simply supported square plate. The
results evaluated by the proposed approach are found to
be in good agreement with the available results published
by Sander, Bon [10]. A symmetric variation of the critical
dynamic pressure is observed, and the maximum value cor-
responds to � = 45◦.

The values of dynamic pressure are the same for� = 30◦
and � = 60◦ and also for � = 0◦ and � = 90◦. It is clear
that themost critical case is when the airflow is perpendicular
to one of the edges of the plate.
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Fig. 12 Schematic diagrams of panels with different boundary conditions

3.3.2 Rectangular plate

The last numerical results presented relate to the effect of
flow angle on the aeroelastic stability bounds of SSSS plates.
Figure 8a shows the variation of natural frequencies of a
rectangular plate with an aspect ratio of 0.5. For flow angle�

= 30°, 45°, 60° and 90°, the plate loses its stability through
flutter due to the coupling of the first and second modes.
However, for = 0°,

The first coupling corresponding to the critical dynamic
pressure occurred between modes 3 and 2, as shown in
Fig. 8b. In Figs. 9 and 10, for panels of aspect ratios of 1.25
and 2, it is observed that the increase in flow angle results
in a shift of the critical dynamic pressure to higher values.
It is important to note that for aspect ratios greater than 1
(1.25 and 2), for the flow angle � = 90° the critical mode is
produced by the coupling of the second and third modes.

In Fig. 11, the critical dynamic pressure parameter is plot-
ted against the flow angle for different aspect ratios. It is clear
that critical dynamic pressure is sensitive to the variation of
flow angle and aspect ratio. For aspect ratios A/B = 0.5, the
dynamic pressure decreases as the flow angle increases. For
aspect ratios greater than 1 (i.e., A/B= 1.25 and 2), the most
dangerous case is observed when the flow angle is equal to
0°, i.e., the flow is aligned along the longer side.

3.4 Effect of irregular boundary conditions

The main goal of these numerical simulations is to investi-
gate a variety of potentially catastrophic scenarios and assess
their impact on aeroelastic characteristics. For that, we inves-
tigated the configurations depicted in Fig. 12.

Fig. 13 Non-dimensional frequency variation as a function of the non-
dimensional aerodynamic pressure

Boundary conditions play a major role in the dynamic sta-
bility of the structure. When examining the results in Fig. 13,
for�= 0°, it is shown that the lack of one support to the edges
along the flow direction or in the direction perpendicular
to the airflow causes major modifications in the behavior
of the structure. Plates in case 1 and case 2 exhibit a flut-
ter type instability at λcr = 275.71 and λcr = 256.11,
respectively. However, for cases 3 and 4, a divergence type
instability occurs at a much lower dimensionless dynamic
pressure λcr ≈ 172. By examining these results, it is clear
that removing one support to the edges along or perpendic-
ular to the flow direction has different effects on dynamic
stability. The lack of one support at the edge perpendicular
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Table 2 Influence of flow orientation for a square plate

�(◦) Critical non-dimensional dynamic pressure

Case 1 Case 2 Case 3 Case 4

0 275.71 256.11 172.87* 172.43*

45 251.49 234.12 260.08 273.94

90 275.71 202.03 193.04 256.11

135 251.49 234.12 219.39 234.12

180 275.71 256.11 193.04 202.03

225 251.49 273.94 260.08 234.12

270 275.71 172.43* 172.87* 256.11

315 251.49 273.94 115.98* 273.94

*Indicate divergence instability

Table 3 Critical non-dimensional dynamic pressure for different aspect
ratios

A/B Critical non-dimensional dynamic pressure

Case 1 Case 2 Case 3 Case 4

0.5 69.68 60.26 32.02* 11.29*

0.75 181.85 122.04 86.17* 45.83*

1 275 .71 256.11 172.87* 172.43*

1.25 175.28 178.56 12.81 297.73

1.5 205 .77 330.12 33.91 254.57

1.75 126.65 329.46 78.80 273.06

*Indicate divergence instability

to the airflow significantly reduces the stability limits, mak-
ing the divergence the dominant mode of instability.

The predicted critical dynamic pressures are presented in
Table 2 for different flow directions. Results show that for
case 1, the instability is governed by the flutter phenomenon.
It is also observed that the lowest critical dynamic pressures
are due to divergence type instabilities. Themost critical con-
figurations is that of cases 3 and 4 for � = 0

◦
. One can note

that the removal of the support located on the edge perpen-
dicular to the airflow exposes the structure to instability by
divergence.

As seen in Table 3, for 1 < A
B ≤ 1.75 the explored

configurations experienced flutter instability. However, for
0.5 ≤ A

B ≤ 1, cases 1 and 2 still governed by flutter instabil-
ity, while cases 3 and 4 lose their stability by divergence.

The aforementioned parametric analysis results can be
used as a data set for a future optimization study on themulti-
objective optimal design of aeroelastic flutter of flat plates.
Suitable optimization methods should be used to identify the
ideal values for aspect ratio, flow direction, thickness and
support arrangement to achieve an optimized design. The

critical aerodynamic pressure can be raised considerably, and
the optimization procedure could significantly improve the
structure’s stability.

4 Conclusion

This paper is devoted to a finite element approach for pre-
dicting flutter properties of a rectangular plate in supersonic
airflow with different flow directions and boundary condi-
tions. We used a hybrid method combining a finite element
analysis and Sanders’ shell theory to model the solid sub-
domain. The aerodynamic pressure loading is approximated
by the first-order piston theory. Convergence and compari-
son studies confirm the validity and reliability of the proposed
model.

It was observed that flutter bounds are very sensitive to the
flow angularity variations. For square plates, the maximum
critical dynamic pressure occurs for flow angle� = 45◦ and
minimum for � = 0◦ and � = 90◦. The lowest dynamic
pressure is observed for rectangular plates when the flow
is along the longer side. It was shown that the lack of one
support to the edges causes significant modifications in the
stability bounds. In this case, plates with irregular boundary
conditions undergo a flutter or divergence type instability
depending on aspect ratio and airflow orientation.

This research provides a good database, especially for
flutter characteristics of plates under irregular boundary con-
ditions that could interest other researchers. The quality of the
obtained results leads us to believe in the proposed approach’s
capacity to predict other interesting problems such as super-
sonic panel flutter under a thermal environment andmodeling
shallow shells.
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