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Abstract
The magnetic levitation systems are mismatched systems with inherent unstable nonlinear dynamics. This work has examined
a control strategy that control and stabilize the magnetic levitation system from difficult start-up circumstances to the desired
operating points in presence of uncertainties and disturbances. A cascaded super twisting disturbance observer (STDO)-
based sliding mode controller is devised for both the electrical and electromechanical loops of the system. The overall
stability of the system has been established. The performance of suggested control scheme is evaluated using simulation and
experimentation. The performance of the suggested controller is compared with a classic proportional integral and derivative
(PID) controller and a state and disturbance observer (SDO)-based controller. Performance criteria used for comparison are
Integrated Squared Error(ISE), Integrated Absolute Error(IAE) and Time Weighted Absolute Error(ITAE). The suggested
super twisting disturbance observer-based control scheme outperforms the other two and is able to control and stabilize
magnetic levitation system in presence of parametric uncertainties and disturbances with smooth control.

Keywords Magnetic levitation system · Super twisting observer · State and disturbance observer · Mismatched and uncertain
system

1 Introduction

Magnetic Levitation (Maglev) systems employ electromag-
netic force to keep ferromagnetic items in the proper position
in the air. An electromagnetic field created by maglev sys-
tems provides the electromagnetic force necessary for this
technology. As a result of this capability, friction is removed,
and material wear is decreased. Ground transportation has
profited greatly from maglev systems, which may be used
as active suspension systems [1,2]. They were regarded and
used as the basic foundation for the development of mag-
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netic train technology [3,4]. Maglev systems may be used in
a variety of applications, including vibration isolation in sen-
sitive equipment and high precision chip plate placement in
photo-lithography [5] . When the system model is linearized
in a small region, linear controllers are adequate, but they do
not account for nonlinearities in the real system model. In
contrast, nonlinear controllers regulate the system’s dynam-
ics globally rather than locally, allowing for real-time control.
The search for a good topology for developing optimum non-
linear controllers will never stop, and the best one will meet
the desired performance in a timely and promising manner.
When choosing a nonlinear controller, the most important
thing to evaluate is whether it provides a quick and efficient
dynamic response, such as a short rising time, a short settling
time, a decreased peak value, a low overshoot or undershoot,
and a small steady-state error. Because real-world systems
are subject to model uncertainty and external shocks, steady-
state error is a possibility [6]. The nonlinear controller should
be dealt with as smoothly and effectively as feasible. The
bulk of nonlinear controllers perform poorly or not at all in
the presence of uncertainty and disturbances. As a result, the
primary goal of this study is to create a robust nonlinear con-
troller for controlling the maglev system that can effectively
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deal with uncertainties and disturbances while maintaining
optimal dynamic behavior.

The design of control systems for Magnetic levitation
and magnetic levitation-based systems is a well established
and much addressed topic in the literature. An integral type
control was built in [7], for bringing the magnetic bearing
systems rotor to desired point andmaintaining it at the appro-
priate location. The regulation of the maglev system was the
subject of a comparative control analysis published in [8].
Experiments were carried out in order to compare the sliding
mode controller (SMC) with a conventional controller. Fur-
ther SMC strategies for the control ofmaglev and the systems
based onmaglevwere presented in [9] and [10]. The employ-
ment of SMCs [9], static and dynamic type, ensured that
the maglev systemwas controlled asymptotically while deal-
ing with friction force and other unknowns. Intelligent SMC
based on a radial basis function (RBF) network in [10] pro-
vides position tracking for themaglev system.Experiments in
[11] demonstrated the performance of nonlinear adaptive and
robust controllers on the regulation of the maglev system. In
[12] a self-tuning stabilizing adaptive controller is proposed
for the control of the repelling maglev system. In the men-
tioned investigation, the developed controller offered overall
system stability and regulating precision without requiring
a precise understanding of numerous components. Walter
Barie and John Chiasson discuss how to construct and test
nonlinear and linear state space controllers using velocity
observers in [13]. The control systems used in the study
were both based on linearized system models. The maglev
system’s location tracking problem was solved utilizing a
resilient nonlinear control architecture by Yang et al. [14].
Physical parameter uncertainties, as well as modeling mis-
takes generated by these uncertainties, were accounted for
in the control design, and the controller was built to tolerate
them. The maglev system was controlled with proportional
integral derivative (PID) type SMC controller as well as PID
type dynamic SMC controllers in [15] . Another PID control
solution to deal with the imbalanced vibration difficulties of
an active magnetic bearing system was provided in [16]. To
improve its efficiency, the described PID controller included
a fuzzy gain tuning mechanism. Over the previous ten years,
this issue has remained popular. The work presented in [17],
mentioned the design of a PID controller enhanced with a
velocity observer and a nonlinear feed forward technique
to increase control quality and motion stability of a labo-
ratory maglev system. A mix of linear quadratic Gaussian
control, fault-tolerant control and multi-objective optimiza-
tion were used to control an electromagnetic suspension
system in [18]. In [19], a PID control based on real-time
particle swarm optimization (PSO) was used to provide sta-
bility, balance, and propulsive placement for a maglev transit
system. As suggested by Lin et al. in [20], another control
method combination is made feasible using the PSO and

the PID. An adaptive PID controller is integrated with a
PSO approach in this study to give the best learning rates
for the adaptation rule, which work assured maglev system
position monitoring. An adaptive control approach for the
maglev system regulation was presented in [21], based on an
online algebraic estimate of systemparameters, linearization,
and extended proportional-integral control. In [22], position
tracking for a maglev suspension system was implemented
using a nonlinear disturbance observer-based design of a
robust nonlinear controller, whereas exponential tracking
control of the maglev system was described in [23]. In [24],
based on the back-stepping approach, a cognitive online auto-
tune algorithm, a unique position tracking control algorithm,
for a maglev system was developed. During the previous
decade, the SMC technique has remained popular for con-
trolling maglev systems.

Two of the different SMC examples of maglev control
systems that can be found in the literature are the cascade
structured SMC designs given in [5] and [25]. One more
cascaded SMC approach based on two time-scale observer
is proposed in [26]. Fractional order PID to ensure maglev
system control is designed in [27]. In the aforementioned
work, to accomplish fractional order PID control, model ref-
erence adaptive control was used in a closed-loop state and
PID included a disturbance rejection mechanism. According
to Uroš Sadek et al. [28], an upgraded adaptive fuzzy back-
stepping controller was created for controlling the maglev
system even in presence of uncertainty including parametric
and structural. To regulate maglev systems, Baris Bidikli and
Alper Bayrak [29] created and utilized a self-tuning robust
integral of signum of error (RISE)-based controller in a cas-
cade control system. The electromagnetic levitation system
was controlled with a robust control architecture based on
approximate feedback linearization in [30]. In [31], Fatih
Adıgüzel et al. proposed an adaptive back-stepping control
solution aimed to compensate for an iron ball’s inaccuracy
in position monitoring in a maglev system. To obtain a high-
performance step response of the maglev system, Deepti
Khimani et al. [32] built a nonlinear state feedback con-
troller architecture. Humaidi in [33] proposed controllers for
magnetic levitation systems based on linear and nonlinear
active disturbance rejection. For magnetic suspension con-
trol of a low-speed maglev train, Yougang Sun et al. [34]
developed a PID controller and an adaptive neural fuzzy
SMC. For maglev system control, Sun et al. [35] has pro-
posed SMC based on an exponential reaching law with RBF
neural network estimator. For the nonlinear suspension sys-
tem of maglev vehicles, Chen et al. [36] presented a unique
RBF network approximation-based sliding mode adaptive
controller architecture. When the popularity of the issue is
taken into account, these examplesmay readily be broadened.
The inspiration for this work came from a rigorous examina-
tion and evaluation of several controllers for the control of
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MagLev systems thatwere given in the literature. Issues in the
controllers that are now in use are dissected and studied and
solutions to these challenges are suggested. In order to con-
struct an uncertainty and disturbance compensation approach
that decreases the trade-off between performance and stabil-
ity while boosting robustness, SMC is the most extensively
used in the literature to handle the control issues of Maglev.
While going through all these controllersmentioned in the lit-
erature, one can understand that SMC-based controllers are
able to tackle uncertainties and external disturbances. The
well-known problem of SMC is chattering which is not suit-
able for such applications. Many techniques are mentioned
in the literature to address the issue of chattering. A super
twisting algorithm(STA) has been identified as one of the
most powerful second-order continuous SMCs to tackle the
same [37]. It was first published in [38], and it has since been
used in a number of applications [39]. STA is a second-order
sliding mode controller that can be used to control any gen-
eralized system using first-order sliding variable control. It
has the advantage of just requiring information about the out-
put sliding variable. It allows for and simultaneously gives
convergence to the origin in a short amount of time. STA
gives a smoother control effort due to the reduced chattering
[40]. To make use of STA’s smoothing capabilities, this work
employs STA as an uncertainty and disturbance observer [41]
and SMC as the primary controller.

The following are the primary contributions of the work.

1. The performance of a robust cascaded super twisting
disturbance observer based SMC control technique is val-
idated for model uncertainties and disturbance.

2. The developed control technique is used for maglev
position control, and it perfectly matches the required tra-
jectory with quicker convergence.

3. The use of the super twisting principle generates chatter-
ing free, smooth and continuous signal.

4. On the basis of the time-domain performance criteria ,
the results of STDO-based SMC controller are compared
with SDO-based SMC and traditional PID controllers.
STDO-based controller outperforms the others.

5. Extensive quantitative simulation and hardware experi-
ments are used to prove the efficacy of the suggested
method.

The robust control strategy has certainly been widely
used for the control of a wide range of systems to cope
with uncertainty, parametric and structural both, which are
important issues in maglev system management. The input
voltage is utilized to create the required electromagnet cur-
rent in the electrical subsystem, which is then used to move
the ferromagnetic material to the appropriate location. The
required electromagnet current is first determined by STA-
based uncertainty and disturbance observer-based controller

Fig. 1 Magnetic Levitation System Circuit Diagram

designed for the electromechanical subsystems and then the
current value so determined is obtained from the electrical
subsystem via similar type of controller.

The remainder of the paper is organized as follows: The
basic idea ofMaglev systems is outlined in Sect. 2, alongwith
critical parameters and mathematical modeling. The STA-
based uncertainty and disturbance observer-based controller
design and architecture is discussed Sect. 3. The simulation
results for the designed controller are a explained in this sec-
tion as well. In Sect. 4 the conventional PID controller and
state and disturbance observer-based controller are explained
in brief and simulation results alongwith performance analy-
sis of all three methods is given and explained. Experimental
validation is given in 5 followed by discussion and compar-
ison of results and the conclusion in Sect. 6

2 Themagnetic levitation system:
mathematical modeling

Figure 1 shows a circuit diagram for the Maglev system. A
magnetic force is generated by a ferromagnetic coil, which
lifts a steel ball into the correct position in the system. The
placement of the ball is determined by the current flowing
through the ferromagnetic coil and a sensor positioned at
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the base position. The Maglev system is comprised of two
subsystems, one of them is an electrical system and another
electromechanical system.

2.1 Electrical system

When a voltage of Vc is applied to a ferromagnetic coil, as
shown in Fig. 1, an electromagnetic field is formed. If Kirch-
hoff’s voltage law is used for electrical loop the formula for
Vc is obtained as:

1

Lc
Vc = d Ic

dt
+ (Rc + Rs)

Lc
Ic (1)

The coil inductance is Lc, the coil current is Ic, and the
coil resistance and current sensor resistance are Rc and Rs ,
respectively.

2.2 Electro mechanical system

The coil produces an electromagnetic field that acts on the
ball, as denoted by the symbol Fc given by

Fc = Km I 2c
2z2b

(2)

The electromagnetic force constant is Km , and the air gap
between the ball and the electromagnet’s face is zb > 0. The
gravitational attraction Fg exerted on the ball in the opposite
direction is written as

Fg = Mbg (3)

where the mass of the ball is represented by Mb and g
represents gravitational acceleration. The ball’s equation of
motion can be written as,

d2zb
dt2

= − Km I 2c
2Mbz2b

+ g (4)

In state space, the Maglev system is represented as

ż1 = z2

ż2 = − Kmz23
2Mbz21

+ g

ż3 = − (Rc + Rs)

Lc
z3 + 1

Lc
u

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5)

which is obtained by placing, z1 = zb, z2 = żb, z3 = Ic and
u = Vc.

The main role of the controller is to control the position
of the ball and make it follow the reference trajectory r .
As indicated in the state space model, the dynamics of the

system includes Lc, Rs , g, Mb, Rc, and Km , which are all
unknownparameters. Furthermore, the system is notmatched
because the dynamics of z2 are uncontrollable. To address
the aforementioned challenges, the next section introduces a
new approach of super twisting uncertainty and disturbance
observer-based control for electromechanical as well as elec-
trical subsystems.

3 Controller Design

A maglev system control is split into two components. In
the first, the specified controller is used to obtain the elec-
tromagnet current for the electromechanical subsystem. This
current is then utilized to regulate the electrical subsystem as
a reference input.

As previously said, it is a mismatched system and in order
to address the issue of uncertainty in the mismatched system,
a virtual control input z3d is developed, and a super twisting
observer-based control is designed such that z3 will follow
z3d . Defining the errors e1 = z1 − r , e2 = z2 − ṙ and
e3 = z3 − z3d . In the error states form, the model in (5)
may be expressed as

ė1 = e2 (6)

ė2 = −a1e1 − a2e2 + z3d + δ1 (7)

ė3 = −a3z3 + bu + δ2 (8)

where a1, a2 and a3 are nonzero constants and δ1 and δ2 are
the disturbances expressed as

δ1 = a1e1 + a2e2− Kmz23
2Mbz21

+ g − z3d − r̈ (9)

δ2 = a3z3 − bu − (Rs + Rc)

Lc
z3 + 1

Lc
u − z3d (10)

3.1 Super twisting disturbance observer-based
controller design for electro mechanical system

In order to track the desired trajectory, being mismatched
system, the virtual control input z3d is obtained by using
super twisting disturbance observer-based control. In com-
pact form, the dynamics of e1 and e2 may be represented
as:

ė = Ae + Bv + Bδ1

y = Ce

}

(11)

where v = z3d , A, B, andC are matrices and are represented
as,

A =
[

0 1
−a1 −a2

]

; B =
[
0
1

]

;C = [
1 0

];
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Where the vector e is : e = [
e1 e2

]T
.

Defining sliding surface for this as ,

σ1 = Ge (12)

where G = [
c1 1

]
and the constant c1 is positive. When you

differentiate (12) and use (11), you get (13) as

σ̇1 = GAe + GBv + GBδ1 (13)

Design v as, v = veq + vn . Where veq is designed such
that it will compensate known terms as

veq = −(GB)−1(GAe + k1σ1) (14)

where k1 is positive constant. Substituting (14) in (13) and
solving (13) and vn is designed to compensate unknown
terms

vn = −δ̂1 (15)

The estimate δ̂1 is obtained as

δ̂1 = k2|σ1|1/2 + v1 (16)

v̇1 = k3sat(σ1) + δ̇1 (17)

σ̇1 = −k1σ1 + GBδ̃1 (18)

where δ̃1 = δ1−δ̂1 represents an uncertainty estimation error.
Where k1, k2, k3 are selected as positive constants. The

function sat(σ1) is given as,

sat(σ1) =
{
sign(σ1) if |σ1| > ε1
σ1
ε1

if |σ1| < ε1

where ε1 is a small positive constant.

3.2 Controller for the electrical subsystem

In order to achieve the objective of forcing z3 = z3d , a new
approach of Super twisting disturbance observer-based con-
trol is proposed and explained in this section. Let us define
another sliding surface as

σ2 = e3 (19)

after differentiating (19) and using (8)

σ̇2 = −a3z3 + bu + δ2 (20)

u. is designed as u = uk + un . Where uk is intended to
compensate for known terms as,

uk = −1

b
(−a3z3 + k4σ2) (21)

and un is designed for unknown terms as

un = − δ̂2

b
(22)

The estimate δ̂2 is obtained as

δ̂2 = k5|σ2|1/2 + v2 (23)

v̇2 = k6sat(σ2) + δ̇2 (24)

σ̇2 = −k4σ2 + δ̃2 (25)

where k4, k5, k6 are the positive constants and

δ̃2 = δ1 − δ̂1 (26)

function sat(σ2) is defined as,

sat(σ2) =
{
sign(σ2) if |σ2| > ε2
σ2
ε2

if |σ2| < ε2

where ε2 is a small positive constant. The block diagram
representing the proposed controller is shown in Fig. 2

3.3 The controller’s stability analysis

In this section the stability of the proposed controller, is ana-
lyzed as stated in [6]. From the proposed controller, the part
of control input that deals with uncertainty and disturbance
is the switching term as given in equation (16) and (17) can
be written as shown in equation (27) below

vn = −k2|σ1|1/2sign(σ1) − k3

∫

sign(σ1)dt (27)

where k2 and k3 are given as mentioned in [6] as:

k3 >
ζ

�min
(28)

(k2)
2 >

4ζ�max (k3 + ζ )

�2
min�min(k3 − ζ )

(29)

with conditions

ζ > |dσ̇1

dt
+ σ̇1

dz
[ f (z, t) + b(t)v(t) + δ1(t)]| (30)

and

0 ≤ �min ≤ |dσ̇1

dt
| ≤ �max (31)

The requirements to meet for the system to be stable are: V
is positive definite and radially unbounded, where as V̇ is
negative definite .
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Controller for Electrical Loop Magnetic Levitation SyaytemController for Electromechanical Loop

Uncertainty and disturbance  observer Uncertainty and disturbance  observer

Fig. 2 Block diagram for proposed controller

Using the Lyapunov candidate function as follows:

V = 1

2
σ 2
1 (32)

The first two requirements are met by Eq. (32), the time
derivative of Eq. (32) is as follows:

V̇ = σ1σ̇1 (33)

Substituting σ̇1 from Eq. (13) in Eq. (33)

V̇ = σ1(GAe + GBv + GBδ1) (34)

putting the value of v from section 3 in Eq.(34) and simpli-
fying

V̇ = σ1(−k1σ1 − k2|σ1|1/2sign(σ1)

− k3

∫

sign(σ1)dt − GBδ1) (35)

Further simplifying

V̇ = −k1σ
2
1 − k2|σ1|1/2|σ1|

− k3

∫

|σ1| dt − GBσ1δ1 (36)

Equation (36) demonstrates that V̇ is negative definite, which
implies that setting parameters ( k3 and k2) in accordancewith
(28) and (29) will ensure the controller’s asymptotic stability.

4 Simulation results

This section uses simulation to assess the efficacy of the pro-
posed control strategy. The results of the proposed method

are compared to those of a PID and SDO controller. PID is
referred to as “Approach I”, SDO is referred to as “Approach
II”, and the suggested method is referred to as “Approach
III”. The nominal plant parameters that were used in the
simulation are shown in Table 1. A simulation is done using
MATLAB/Simulink on the Maglev system depicted in Fig.
1 to demonstrate the effectiveness of the proposed controller.
The following are the initial conditions of system states :

x(0) = [
0.014 0 0

]T
,

Approach-I: A PID controller with a feed forward (PID-
FF)component is suggested by [42] for the maglave system
control is applied and tested for the system. The electrome-
chanical loop in maglave is controlled with PID plus FF
control and Proportional Integral(PI) control is applied to
the electrical loop. Both the PID and feed forward con-
troller gains are determined by root locus selection of closed
loop poles that match the performance requirements. In PID
controller design, three independent gains are employed,
resulting in two zeros and a pole at the origin, converting
the system to a Type 1 system with zero steady-state error.
Adjusting for gravitational bias is the goal of the feed for-
ward control operation. When the PID controller adjusts for
dynamic disturbances around the linear operating point, the
feed forward control action reduces the changes in gravita-
tional bias-induced force. The nonlinearmathematicalmodel
of the plant was built using fundamental physical concepts
and around the equilibrium point, the nonlinear equation was
linearized using Taylor’s series. Simple mathematical gain
equations to obtain the needed response have been estab-
lished by combining the tuning philosophy of PID controllers
with the notion of LQR theory. The testing findings showed
that the proposed strategy was effective not only in stabiliz-
ing the ball but in tracking the various reference trajectories
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Table 1 Maglev system nominal parameters

Parameter Value Units

Mb 0.068 kg

Rs 1 �

g 9.81 m/s2

Rc 10 �

Km 6.580 × 10−5 Nm2/A2

Lc 413 mH

Tb 0.014 m

that were provided as input. With the controller settings,
Kib = 524, Kpb = 208, Kvb = 3, and K f f = 153, the
ball will track the required reference trajectory. A PI con-
troller is used in the current loop to keep the actual current z3
at the intended current level z3d . kp = 219 and ki = 50, 000
are the PI controller settings.
Approach-II: Cascaded sliding mode control is used for
magnetic levitation systems, as designed in [25]. A distur-
bance observer-based sliding mode controller is utilized for
the electrical loop, while a state and disturbance observer
(SDO)-based sliding mode controller is used for the elec-
tromechanical loop. The SDO is used to estimate both the
state and the uncertainty at the same time. The controller pro-
posed for electrical loop is explained in brief. The observer
dynamics are defined as

˙̂e = Aê + Bv + Bδ̂1 + M(y − ŷ)

y = Ce

}

(37)

where A, B, and C are matrices as defined earlier. M is
observer gain matrix. The sliding surface is defined as,

σ3 = G1ê (38)

where G1 = [
c1 1

]
and c1 is a positive constant. After dif-

ferentiating (38) and using (37) gives,

σ̇3 = G1Aê + G1Bv + G1Bδ̂1 + G1M(y − ŷ) (39)

Design v as,

v = − 1

G1B
(G1Aê + k7σ3 + k8sat(σ3)) − δ̂1 (40)

where k7 and k8 are positive constants.
Disturbance observer-based control strategy is suggested

to achieve the goal of making z3 = z3d . The sliding surface
defined is:

σ4 = e3 (41)
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0 5 10 15 20
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10

15

20

(a)

(b)

(c)

Fig. 3 Simulation Results for proposed Controller with nominal plant

differentiating (41)

σ̇4 = −a3z3 + bu + δ2 (42)

Lets take u = uk + un . Where uk is designed to compensate
for known terms as

uk = −1

b
(−a3z3 + k9σ4 + k10sat(σ4)) (43)

where the positive constants k9 and k10 are used. Design

un = − δ̂2

b
(44)
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Fig. 4 Simulation Results for proposed Controller with nominal plant
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Fig. 5 Simulation Results for proposed Controller with 20% uncer-
tainty in plant

where δ̂2 is a estimate of δ2, obtained using DO as

δ̂2 = p + q2σ4 (45)

where q2 is user defined constant

ṗ = −q2σ̇4 (46)

The controller parameters of SDO-based controller applied
to the electromechanical subsystem and Do based controller
for electrical subsystem are set as k7 = 35, k8 = 35, k9 = 3,
ε3 = 0.05 and ε4 = 0.05.
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Fig. 6 Simulation Results for proposed Controller with 20% uncer-
tainty in plant
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Fig. 7 Comparison of simulation Results for proposed Controller with
nominal plant and with uncertainty

Table 2 Performance comparison of controllers for nominal system

Controller ISE IAE ITAE

STDO(proposed) 4.878 × 10−8 0.000541 0.00390

SDO 1.268 × 10−7 0.000915 0.00610

PID 2.313 × 10−7 0.000623 0.00299

Table 3 Performance comparison of controllers for system with 20%
uncertainty

Controller ISE IAE ITAE

STDO(proposed) 5.413 × 10−8 0.000568 0.00399

SDO 1.48 × 10−7 0.000981 0.00651

PID 9.436 × 10−6 0.00287 0.00645

Approach-III: Proposed super twistingdisturbanceobserver-
based controller is referred as approach-III. The controller
parameters for electromechanical loop are k1 = 25, k2 = 10,
k3 = 0.01, ε1 = 0.05 and for electrical loop are k4 = 50,
k5 = 2, k6 = 45, and ε2 = 0.05. The simulation results
are shown in Fig. 3– 7. From Fig. 3a, it can be seen that the
proposed controller makes the ball position, z1 successfully
track the reference r . The required current and the control
input generated to make the ball position track the refer-
ence trajectory with proposed approach is shown in Fig. 3b,

123



Design of super twisting disturbance observer... 1199

0 2 4 6 8 10 12 14 16 18 20
7

8

9

10

11

12

13

14

15

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20
Time(Seconds)

-10

-5

0

5

10

15

20

25

u

u

(a)

(b)

(c)

(d)

Fig. 8 Experimental Results for proposed Controller
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Fig. 9 Experimental Results for SDO based controller

c respectively. The generated control input and current to
achieve desired tracking performance are both within the
maximum permitted limits. The designed super twisting esti-
mator is able to estimate uncertainties d1 and d2 in two loops
of the maglave. The plots of d1 and d2 with its respective
estimate d̂1 and d̂2is given in Fig. 4a, b respectively. To
compensate for the influence of uncertainties, the suggested
control law employs the opposite of these estimations. Slid-
ing surfaces used for the control of electromechanical and
electrical loops are shown in Fig. 4c, d respectively.

The same plant is simulated by taking parametric uncer-
tainty of 20% and the tracking performance along with
control input, current, uncertainty estimation is shown in
Figs. 5 and 6. The comparative tracking results for all three
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Fig. 10 Experimental Results for PID controller

controllers are depicted in Fig. 7a, b for nominal and system
with uncertainty. It clearly shows that proposed controller is
performing better than the other two controllers.

5 Experimental Results

The proposed controller architecture is validated experimen-
tally utilizing a magnetic levitation laboratory setup [43]
shown in Fig. 8a. A solid one inch steel ball is suspended
by an electromagnetic suspension mechanism in the Maglev
system. It is basically made up of an electromagnet located
towards the top of the apparatus, which is capable of lifting

the steel ball from its pedestal and sustaining it in free space.
Two system variables are instantly monitored and offered for
feedback on the configuration. The two variables are the coil
current and the ball distance from the magnetic face. The fer-
romagnetic ball travels between 0 and 14 mm, however the
linear range of the optical sensor used to detect ball location
is between 6 and 14 mm . The range of the control input is
between 0 to 24 V and the input current range is between 0
to 3 A . The controller parameters and initial conditions of
Approach-I, II and III are set to the same values as in the
simulation. The tracking performance, control input voltage
and input current graphs are shown for all three controllers
in Figs. 8, 9 and 10. The experimental validation indicates
that the tracking performance of the proposed controller is
better as compared to the other.

5.1 Comparison of proposed controller with PID and
SDO

The efficacy of the suggested method is evaluated in this
part using simulation and experimentation. The suggested
scheme’s results are compared to those of a linear PID
controller and an SDO-based controller. The suggested con-
troller’s efficacy is tested for nominal systems and systems
with 20% parametric uncertainty. The graphical depic-
tion demonstrates that the suggested technique provides
improved tracking by keeping control input within a given
limits. The outcomes are assessed using error-based per-
formance metrics such as IAE, ITAE, and ISE. Table 2
summaries the performances of all three types of controller
on the basis of error-based criteria for system with nomi-
nal parameters. Table 3 shows performance comparison for
all three controllers when applied for plant with 20% uncer-
tainty. The results in the table clearly demonstrate that the
proposed controller’s performance is superior to the other
two .

6 Conclusion

Cascaded super twisting disturbance observer-based SMC,
SDO-based SMC and PID controllers are applied and dis-
cussed for tracking control of a magnetic levitation plant.
The proposed control scheme is immune to uncertainties and
the reference trajectory to be tracked, contrasting methods
that depend on approximate linearization. The whole sys-
tem’s stability has been demonstrated. In simulation and
experimental validation, the suggested approach outperforms
conventional PID- and SDO-based controller. The perfor-
mance of proposed controller is compared on the basis of
error-based criteria with other two controllers and the com-
parison shows superiority of the proposed scheme over the
others. Thefindings demonstrate that the suggested controller
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can stabilize the magnetic levitation system from difficult
start-up circumstances to the desired operating points with
smooth control. It is capable of dealing with intrinsically
unstable nonlinear dynamics and can deal with uncertain
model with external noise as well.
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