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Abstract
In this paper, we have considered a single-strain dengue model with saturated incidence rate as well as saturated treatment.
Three types of controls, namely vaccination for susceptible humans, treatment for infected humans and mosquitoes killing
effort by humans, are considered here. Existence of different equilibrium points and their stability have been investigated
in terms of the basic reproduction number (R0). The system experiences different types of bifurcations such as transcritical
bifurcation, backward bifurcation depending on the different model parameters. To verify the validity of the proposed model,
we have fitted the model with real reported data of dengue outbreak in Singapore from 18th week, 2014 to 1st week, 2015.
Performing sensitivity analysis we have identified most influential model parameters to control the disease.We have discussed
estimation of actual and effective reproduction number. Pontryagin’s maximum principle has been used to find out the most
effective control strategy for reducing dengue infection. Numerically we have shown the effect of different model parameters
on disease spreading. Finally, using efficiency analysis we have identified that treatment for infected humans with mosquitoes
killing effort is the most effective among considered control strategies.

Keywords Backward bifurcation ·Model validation · Parameter estimation · Effective reproduction number ·Optimal control

1 Introduction

The study of vector-borne disease based on mathematical
modeling is an important research area in mathematical epi-
demiology. The vector-borne disease spreads through inter-
action of susceptible hosts with infected vectors or infected
hosts with susceptible vectors. Mosquito-borne dengue dis-
ease mainly spreads by the female mosquitoes Aedes aegypti
and Aedes albopictus species mosquitoes [1]. The dengue-
infected female mosquitoes bite susceptible peoples; then,
susceptible peoples become infected by the disease. Symp-
toms of dengue fever usually appear within three to fifteen
days after biting by the infectious mosquitoes [2].
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Dengue virus (DENV) is mainly a RNA virus [3]. There
are five different strains of dengue virus, namely DENV-1,
DENV-2, DENV-3, DENV-4 and DENV-5 [4]. In particu-
lar when a person is infected with any strain of dengue, his
body develops immunity with respect to that particular strain
[5]; therefore, that personmay be affected by another types of
strains. Thus, infection by anyparticular strain does not imply
person is protected from other types of strains. Dengue epi-
demic occurred in Asia, Africa, and North America first time
simultaneously [6], and it was first reported in 1779–1780,
later it was spread more than 127 countries. Different strains
of dengue virus were first identified in different times. The
DENV-1 was identified in 1977, DENV-2 in 1981, DENV-4
in 1981 andDENV-3 in 1994 [7] but in October 2013, the lat-
est strain DENV-5 has been announced [4]. According to the
report of World Health Organization (WHO), approximately
3.97 billion people are living at risk in tropical and subtrop-
ical region for this disease [8]. It becomes hyper in many
countries like Thailand, Bangladesh, Malaysia, India, Sin-
gapore, Sri Lanka, etc. [8]. The peoples are terrified about
dengue fever due to its high morbidity and mortality rate.
The number of dengue patient has been increasing day by
day. According to the report of World Health Organization
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(WHO), the number of dengue cases was less than one thou-
sand in 1950, but it is highly increasing in last few years,
more than 3 million in 2015 [9] and 4.2 million in 2019 [5].
The record number of dengue cases was reported in 2019
throughout the world. The co-infections of dengue occur
with rate ranging from 5 to 30% as high as 40–50% for
the co-circulation of different strains of dengue in the same
area [10,11]. Due to the presence of three strains, Thailand
becomes in danger, total reported dengue case was 128964
from 77 provinces in 2019 [12]. First time in Philippines
and Thailand, complex form of dengue, dengue shock syn-
drome or DHF found during epidemic of dengue in 1950
[12]. First licensed dengue vaccine Dengvaxia (CYD-TDV)
[13] become commercially available in highly dengue bur-
den countries, but it has side effects like pain and headache.
In 2016, it was approved in 11 countries [14,15], later in
European Union (in 2018) and United States (in 2019) also.

Many researchers from different fields like biology, math-
ematics etc., are trying to investigate about the dynamics of
disease spreading and its control throughmathematical mod-
eling. It is one of the most powerful tools to analyze disease
transmission dynamics and its control. In 1975, Bailey [16]
first proposed a basic SIR dengue model. Esteva and Vargas
[17] modified the Bailey’s model considering constant pop-
ulation of human and constant birth rate of vectors. In their
work, they established that if the basic reproduction number
is less than unity, then the disease free equilibrium point is
stable. The environment plays an important role in spread-
ing of dengue disease. The spreading of this disease depends
on density of mosquitoes. On the other hand, the growth of
mosquitoes is highly dependent on availability of dirty water,
which is gathered mainly through rainfall. To understand
the effect of rainfall on the dengue transmission, Chanpra-
sopchai [18] proposed an SEIR model in 2017. Derouich
and Boutayeb [19] have developed an SIR model to char-
acterize dengue transmission between vectors and humans.
The dengue model of Derouich and Boutayeb was extended
by Erikson [20] in 2010 adding exposed human class.

In recent decades, some researchers have proposed the
multi-strain dengue model to investigate the effect of dif-
ferent strains in the same model [21,22]. Sriprom [21]
introduced a multi-strain dengue model in the presence of
two strains and described the dynamics of sequential trans-
mission of dengue virus. Mishra and Gakkar [22] formulated
a two-strain dengue model and discussed the effect of vec-
tor control, awareness on dengue dynamics. Researchers
included some control strategies like the vector control,
awareness and treatment control, etc., in their model to
identify the most important features to reduce the infection
[23,24]. The vector control policies are: use of adulticide to
increase the mortality rate of adult mosquitoes, use of larvi-
cide to kill the eggs of mosquitoes, etc. [23]. The awareness
and treatment policies include: protection againstmosquitoes

bites, vaccination, treatment of the infected human, etc. To
study the effect of vaccination, Supriatna [24] proposed a
dengue model of single- and two-strain model and discussed
the model with vaccination. Zheng and Nie [11] developed a
mathematical model of two-strain dengue infection, describ-
ing the co-circulation of multiple strains and identified the
most important control strategies using optimal control prin-
ciple. Recently many researchers studied on dengue disease
dynamics [25–29].

Optimal control becomes an important key in mathemati-
cal modelling to investigate the disease dynamics and control
the influenceof the infection.Optimal control is used inmath-
ematical modelling to find out optimal value of the most
effective strategy when more than one controls are used.
Using optimal control, one can identify themost suitable con-
trol function which reduces the infected populations as well
as minimize the implementation cost [30]. Optimal control
policies on dengue disease transmission have been studied
by many researchers in recent years [31–34].

This paper is the extension of the work [35]. In [35],
authors considered saturated type incidence rate of the form

βSI

1 + α I
as this type of incidence rate ultimately tends to

β

α
as I → ∞. For crowding effect of infected population, the
rate of disease transmission ultimately decreases. For this
reason, authors took this type of incidence rate. Also, they
considered three types of control parameters, namely pro-
tection control against mosquito bites (u1), treatment control
for dengue-infected individuals (u2) and insecticide spray
against the mosquito (u3). But in this paper, we have con-

sidered saturated incidence rate in the form
βSVI

1 + αS
and

saturated treatment in the form
au2 I

1 + bu2 I
. This type of inci-

dence rate ultimately tends to
β

α
as S → ∞. For inhibitory

effect and psychological effect of susceptible population,
the rate of disease transmission will reduce. For this rea-
son, we have used this type of incidence rate. Here, we
have also used three types of controls, namely vaccination
for susceptible humans, treatment for infected humans and
mosquitoes killing effort by humans. In [35], system does
not exhibit backward bifurcation; moreover, authors did not
show any types of bifurcation. But in this paper, we show
two types of bifurcation, namely transcritical and backward
bifurcation. In backward bifurcation, for R0 < 1 bistabil-
ity exists (one stable disease-free equilibrium and one stable
endemic). Therefore, here eradication of disease depends on
model parameter as well as initial population density. In [35],
authors used parameter values from some literature to study
sensitivity analysis and optimal control. But, here we have
estimated model parameters by fitting the model with real
reported data of dengue in Singapore to study sensitivity
analysis and optimal control problem. Further, to find out
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best control among applied controls, we have performed effi-
ciency analysis.

Aim of the manuscript is to formulate a single-strain
dengue virus transmission model in the presence of vacci-
nation and treatment. Susceptible humans are affected by
bites of infected mosquitoes in saturated form and suscepti-
ble mosquitoes are affected by infected humans in bilinear
form. To include the effect of limitation of medical facility,
we consider the treatment function in saturated form. Three
types of controls have been considered, namely vaccination
for susceptible humans, treatment for infected humans and
mosquitoes killing effort by humans. After discussing qual-
itative analysis of the proposed model, we have estimated
most of the model parameters by fitting the model with real
infection data. Sensitivity analysis has been performed to find
out the most effective parameters to control the infection and
also effect on different model parameters on disease spread-
ing has been discussed here. Estimation of basic reproduction
number and effective reproduction number have been studied
here. Finally, we have identified the optimal policy of con-
trol strategies to minimize the number of infected humans
as well as reduce the implementation cost for using different
controls.

The novelties of the paper are mentioned here:

1. Here we consider saturated type incidence and treatment.
2. The system (1) exhibits backward bifurcation at R0 = 1.

For backward bifurcation, two endemic equilibria exist
when R∗

0 < R0 < 1 (where R∗
0 is the critical value of

R0).
3. To validate the model, we have fitted the model with real

reported data of dengue in Singapore from 18th week,
2014 to 1st week, 2015.

4. To find out most sensitive parameters and to perform
optimal control problem, we go through estimated model
parameters by fitting model with real data.

5. Further we find estimation of actual reproduction number
and effective reproduction number which are generally
uncommon in other literature.

6. To find out optimal value of applied controls to reduce
infected human populations and to minimize imple-
mented cost,we have performedoptimal control analysis.

7. Finally we have studied efficiency analysis to know
which control is best among applied controls.

Organization of this paper is as follows: Formulation of
the model is discussed in Sect. 2. Positivity and boundedness
of the solutions of the model, expression of basic reproduc-
tion number, existence of different types equilibrium points
and their stability criteria are presented in Sects. 3, 4, and 5,
respectively. Different types of bifurcation are investigated
in Sect. 6. Validation of the proposed model and estimation
of model parameters are studied in Sect. 7. Sensitivity anal-

ysis and effect of model parameters are discussed in Sects. 8
and 9, respectively. In Sects. 10.1 and 10.2, estimation of
actual reproduction number and effective reproduction num-
ber have been discussed. Optimal control with numerical
examples and efficiency analysis are studied in Sects. 11 and
12, respectively. We have summarized the results in Sect. 13.

2 Model formulation

In this paper, we have formulated a single-strain dengue
transmission model to study the dengue outbreak in Singa-
pore from18thweek, 2014 to 1stweek, 2015. Let total human
populations be divided into three disjoint classes, namely
susceptible class (S), infected class (I ) and recovered class
(R), and vector populations be divided into two disjoint class,
namely susceptible vectors (Vs) and infected vectors (VI ).
We have considered disease transmission rate by infected

mosquitoes in saturated form
βSVI

1 + αS
, where α represents

inhibitory factor of susceptible population. The above sat-
urated incidence rate is considered here because due to the
lack of knowledge about the disease, rate of disease transmis-
sion increases with number of infected vectors but for social
awareness, inhibitory factor of susceptible human popula-
tions and also crowding effect of infected humanpopulations,
rate of disease transmission will decrease. To introduce the
effect of limited medical resources, we have considered

treatment function in saturated form
au2

1 + bu2 I
, where b rep-

resents delay in getting treatment. For lower abundance of
infected human populations, treatment rate behaves like lin-
ear character but for higher abundance of infected human

populations it ultimately tends to
a

b
where a, b both are

positive constants. We assume that some of infected human
populations are recovered naturally and someother are recov-
ered using treatment. To formulate themodel, we assume that
the susceptible population has constant growth rateω and ω1

for humans and vectors, respectively. The susceptible vec-
tors become infected after biting infected human following
mass action law. Here normal death rate of both humans and
vectors is taken into consideration. Incorporating the above
assumptions dynamics of flow diagram of dengue infection
is presented in Fig. 1, and the corresponding model is given
in the following,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= ω − βSVI

1 + αS
− (μ + u1)S

dI

dt
= βSVI

1 + αS
− (μ + d + γ )I − au2 I

1 + bu2 I
dR

dt
= au2 I

1 + bu2 I
+ γ I + u1S − μR

dVS

dt
= ω1 − μ1VS − cu3VS − σVS I

dVI

dt
= σVS I − cu3VI − μ1VI

(1)
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Fig. 1 Flow diagram of dengue infectionmodel for humans and vectors
both

with the initial conditions S(0) > 0, I (0) ≥ 0, R(0) ≥
0, VS(0) > 0 and VI (0) ≥ 0. In the next section, we shall
investigate the positivity and boundedness of the proposed
model to establish the well definiteness of the model. All
model parameters in model system (1) are written in Table 1.

3 Basic properties of the proposedmodel

First we have to check the uniform boundedness criteria of
solutions of the proposed model to analyze the model. To
check the uniform boundedness first we shall check the posi-
tivity of solutions, i.e., we have to establish that all solutions
of the proposed model are positive starting from any nonneg-
ative initial conditions. For establishing nonnegativity and
boundedness, we shall prove the following two theorems.

Theorem 1 All solutions of the proposed model are nonneg-
ative for any time t satisfying nonnegative initial conditions.

Proof To prove this, we first show that S(t) > 0 for all time
t. From the first equation of (1), we get

dS

dt
≥ − βSVI

1 + αS
− (μ + u1)S

i .e.
1

S

dS

dt
≥ −(βVI + μ + u1).

Integrating and using the initial conditions, we get S(t) ≥
S(0)e−(βVI+μ+u1)t > 0. Again from the second equation of
(1), we get

dI

dt
≥ −(μ + d + γ )I − au2 I

1 + bu2 I

i .e.
1

I

dI

dt
≥ −(μ + d + γ + au2).

Again integrating, we get I (t) ≥ I (0)e−(μ+d+γ+au2)t ≥ 0.
Similarly from other three equations of (1), we have R(t) ≥
R(0)e−μt ≥ 0 , VS(t) ≥ VS(0)e−(μ2+cu3+σ I )t > 0 and
VI (t) ≥ VI (0)e−(cu3+μ2)t ≥ 0 for all t . ��

Theorem 2 All solutions of model system (1) are uniformly
bounded.

Proof Let H = S+ I+R and V = VS+VI , taking derivative
of H with respect to t we get,

dH

dt
= dS

dt
+ dI

dt
+ dR

dt
= ω − μH − d I

⇒ dH

dt
+ μH ≤ ω

Integrating both sides of above expression and then applying
theory of differential inequality [18] , we have

0 < H(S, I , R) ≤ ω

μ
(1 − e−μt ) + H(S(0), I (0), R(0))

as t goes to infinity, the above inequality changes to

0 < H(S, I , R) ≤ ω

μ
+ H(S(0), I (0), R(0)). (2)

Again derivative of V with respect to t gives

dV

dt
= dVS

dt
+ dVI

dt
dV

dt
+ (μ2 + cu3)V = ω1.

Using the similar arguments as used for H(S, I , R), we
obtain,

0 < V (VS, VI ) ≤ ω1

μ2 + cu3
+ V (VS(0), VI (0)) (3)

Using the results of (2-3), we get

0 < S + I + R + VS + VI ≤ M

where M = ω

μ
+ ω1

μ2 + cu3
+ H(S(0), I (0), R(0)) +

V (VS(0), VI (0)).
Hence, all solutions of the system are uniformly bounded. ��

4 Basic reproduction number (R0) and
existence of different types of equilibrium
points

In this section, first we shall determine the basic reproduction
number of the proposedmodel in terms of model parameters,
and then, the expression for the existence of different equi-
librium points will be discussed.

The basic reproduction number (R0) plays a significant
role to determine whether an epidemic will ensure or not
[36]. Since the system (1) has the disease-free equilibrium
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Table 1 Description of model
parameters

Parameter Description

ω Recruitment rate of humans

ω1 Recruitment rate of mosquitoes

β Transmission rate of infection from infected mosquitoes to susceptible humans

σ Transmission rate of infection from infected humans to susceptible mosquitoes

α Inhibitory factor measuring parameter

u1 Vaccinated control parameter

u2 Treatment control parameter

u3 Mosquitoes killing effort control parameter

c Mosquitoes killing efficiency

μ Natural death rate of humans

μ1 Natural death rate of mosquitoes

d Disease induced death rate of humans

γ Auto immune rate of infected humans

b Delayed parameter of treatment

a Cure rate

point (DEF) E0(S0, 0, R
′
0, VS0 , 0) where S0 = ω

μ + u1
,

R
′
0 = ωu1

μ(μ + u1)
and VS0 = ω1

μ1 + cu3
, hence R0 of the

model exists. Here to find the expression of R0 by the next-
generation matrix approach as proposed by Driessche and
Watmough [37], we use the notation F1 = (F11 F12)T and

F2 = (F21 F22)T where F11 = βSVI

1 + αS
, F12 = σVS I and

F21 = (μ + d + γ )I + au2 I

1 + bu2 I
, F22 = cu3VI + μ1VI .

Let F = ∂(F11,F12)
∂(I ,V1)

|E0 =
⎛

⎜
⎝

0
βω

μ + u1 + αω
σω1

μ1 + cu3
0

⎞

⎟
⎠ andV

= ∂(F21,F22)
∂(I ,V1)

|E0 =
(

μ + d + γ + au2 0
0 μ1 + cu3

)

. There-

fore, next-generation matrix (FV−1) is given by

FV−1 =
⎛

⎜
⎝

0
βω

(μ + u1 + αω)(μ1 + cu3)σω1

(μ1 + cu3)(μ + d + γ + au2)
0

⎞

⎟
⎠ .

The spectral radius of the matrix FV−1 is the basic repro-
duction number, which is given by

R0 = 1

μ1 + cu3

√
σβωω1

(μ + u1 + αω)(μ + d + γ + au2)
.

Other than the DEF, the system contains the endemic equi-
librium point is E∗(S∗, I∗, R∗, VS∗ , VI∗) where I∗ satisfies
the biquadratic equation

C4 I
4 + C3 I

3 + C2 I
2 + C1 I + C0 = 0 (4)

with S∗ = ω

μ + u1
− (μ + d + γ )I ∗

μ + u1
− au2 I ∗

(1 + bu2 I ∗)(μ + u1)
> 0 if ω(1 + bu2 I ∗) > au2 I ∗ + (μ + d + γ )(1 + bu2 I ∗),
VI ∗ = σω1 I ∗

(cu3 + μ1)(cu3 + μ1 + σ I ∗)
,

VS∗ = ω1

μ1 + cu3 + σ I ∗ , R∗ = au1 I ∗

μ(1 + bu2 I ∗)
+ γ I ∗

μ
+

u1S∗

μ
and the co-efficients Ci , i = 1, 2, 3, 4 are given in

“Appendix I”.
It is clear from the expression of Ci ’s that C4 is always pos-
itive, and depending on sign of C1, C2, C3 the number of
feasible endemic equilibrium points will be calculated. The
existence of endemic equilibrium point is discussed in the
following theorem.

Theorem 3 An unique endemic equilibrium point E∗(S∗, I∗,
R∗, VS∗ , VI∗) exists for R0 > 1 if C1, C2 and C3 maintain
the same sign.

Proof To obtain the endemic equilibrium point, we have an
expression of I in the form as in Eq. (4) where alwaysC4 > 0
and C0 can be expressed as C0 = (μ1 + cu3)2(μ + d + γ +
au2)(μ + u1 + αω)(1 − R2

0) < 0 if R0 > 1. Therefore, by
Descartes Rule of signs, Eq. (4) has at least one positive root
if C1, C2 and C3 are of same sign for R0 > 1. Thus, the
endemic equilibrium point exists if C1, C2 and C3 maintain
the same sign for R0 > 1. ��

5 Stability analysis of equilibrium points

We shall now discuss the stability of the system about differ-
ent equilibrium points. The eradication or persistence of the
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disease depends on stability of the disease-free equilibrium
point and the endemic equilibrium points, respectively.

Theorem 4 The system is locally asymptotically stable
around its disease-free equilibrium point if R0 < 1.

Proof The characteristic equation of the system at disease-
free equilibrium points is given by:

(λ + μ + u1)(λ + μ)(λ + μ1 + cμ3)(λ
2 + Θ1λ + Θ2) = 0

where Θ1 = μ + d + γ + μ1 + au2 + cu3 > 0 and Θ2 =
(μ1 + cu3)(μ + d + γ + au2)(1 − R2

0).
It is clear from the above equation that among the five roots,
three roots are negative which are −(μ + u1), −μ, −(μ1 +
cu3) andother two roots satisfy the equationλ2+Θ1λ+Θ2 =
0. Since if R0 < 1 then Θ2 > 0, so by Routh–Hurwitz
criteria the last equation will have roots with negative real
part if R0 < 1 [38]. Thus, if R0 < 1, then the system is
locally asymptotically stable about disease-free equilibrium
point. ��

Since at R0 = 1 one root of the characteristic equation
vanishes and other four becomes negative and the usual eigen
analysis method fails. Suppose R0 = 1 occurs at u2 = u[TC]

2
where

u[TC]
2 = 1

a

{
σβωω1

(μ + u1 + αω)(μ1 + cu3)2
− (μ + d + γ )

}

.

Theorem 5 The system is locally asymptotically stable
around its endemic equilibrium point if F2 > 0, F3 > 0 and
F1F2 > F3, where the symbolic parameters are determined
in subsequent steps.

Proof The characteristic equation of system (1) correspond-
ing to the endemic equilibrium point is given by

(λ + μ)(λ + μ1 + cu3)(λ
3 + F1λ

2 + F2λ + F3) = 0

where F1, F2, and F3 are given in “Appendix II”.
Clearly it has two negative real roots −μ, −(μ1 + cu3), and
remaining three roots satisfy the equation

λ3 + F1λ
2 + F2λ + F3 = 0 (5)

It is clear from the expressions of the coefficients that F1
is positive. Thus, by Routh–Hurwitz criteria all roots of the
above characteristic equation will have negative real part if
F2 > 0, F3 > 0 and F1F2 > F3 [38]. Thus, system is locally
asymptotically stable around its endemic equilibrium points.

��
In biological point of view, the stability of disease-free equi-
librium point implies disease eradicates from the system and
stability of endemic equilibriumpoint implies the persistence
of the disease in the system.

6 Bifurcation analysis

In this section, we investigate different types of bifurcations
of the proposed model system (1). First we examine the
Transcritical bifurcation at the DFE E0 in Theorem 6, and
Theorem 7 is dedicated for backward bifurcation. The trans-
critical bifurcation will be discussed with respect to u2, and
the backward bifurcation will be established considering α

as the bifurcation parameter.

Theorem 6 The model system (1) experiences transcritical
bifurcation when the model parameter u2 passes through the

critical value u2 = u[TC]
2 if

u22(μ1 + cu3)4

σ 2ω2
1

�= (μ1 + cu3)

ω1(μ + μ1 + αω)
+ β(μ + u1)

(μ + μ1 + αω)3
.

Proof To establish the above theorem, we have to verify
transversality condition of Sotomayor’s theorem [39] for
transcritical bifurcation at disease-free equilibrium point E0.
We investigate the bifurcation with respect to the model
parameteru2. Let f (S, I , R, VS, VI ) = ( f1, f2, f3, f4, f5)T

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(S, I , R, VS, VI ) = ω − βSVI
1+αS − (μ + u1)S

f2(S, I , R, VS, VI ) = βSVI
1+αS − (μ + d + γ )I − au2 I

1+bu2 I

f3(S, I , R, VS, VI ) = au2 I
1+bu2 I

+ γ I + u1S − μR

f4(S, I , R, VS, VI ) = ω1 − μ1VS − cu3VS − σVS I

f5(S, I , R, VS, VI ) = σVS I − cu3VI − μ1VI

(6)

One of the characteristic roots of J (E0) is zero for u2
= u[TC]

2 . Let V = (v1 v2 v3
v4 v5)

T and W = (w1 w2 w3 w4 w5)
T be eigenvec-

tors corresponding to the zero eigenvalue of the matrices
J (E0)u[TC]

2
and J T (E0)u[TC]

2
, respectively, where v1 =

− βS0
(1 + αS0)(μ + u1)

, v2 = cu3 + μ1

σVS0
, v3 = γ (cu3 + μ1)

μσVS0

− βS0u1
μ(1 + αS0)(μ + u1)

, v4 = −1, v5 = 1 and w1 = 0,

w2 = σ

(μ + d + γ )
, w3 = 0, w4 = 0, w5 = 1.

Since for this system

[
WT fu2(E0(S0, 0, R0, VS0 , 0))

]

u[TC]
2

= 0
[
WT (Dfu2(E0(S0, 0, R0, VS0 , 0))V )

]

u[TC]
2

= −a(μ + u1 + αω)(μ1 + cu3)3

αβωω1
�= 0

[
WT (D2 fu2(E0(S0, 0, R0, VS0 , 0))(V , V ))

]

u[TC]
2

= (μ + u1 + αω)(μ1 + cu3)

βω
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Fig. 2 Transcritical bifurcation diagram with respect to u2 with ω =
1.95, β = 0.8, α = 2.01, μ = 0.1, μ1 = 0.01, d = 0.19, γ = 0.15,
b = 0.001, a = 1.9, ω1 = 5.2, u3 = 0.2, c = 0.9, σ = 0.2, μ2 = 0.2;
the blue and red lines correspond the stable equilibrium and the unstable
equilibrium, respectively. (Color figure online)

{
2abu22(μ1 + cu3)4

σ 2ω2
1

− 2β2ω(μ + u1)

(μ + u1 + αω)3

}

−2(μ1 + cu3)2

ω1
�= 0

if the condition stated in the theorem is satisfied.
Therefore, all conditions of Sotomayor’s theorem for tran-
scritical bifurcation are satisfied, and hence, Sotomayor’s
theorem ensures the proposed system experiences transcrit-
ical bifurcation at the disease-free equilibrium point E0. ��

To interpret the transcritical bifurcation numerically, we
havedrawn the stable–unstable branches of the solution curve
with respect to u2 (see Fig. 2). It is clear from Fig. 2 that for
u2 > u[TC]

2 = 1.2 the disease-free equilibrium point is sta-

ble and for u2 < u[TC]
2 the disease-free equilibrium point

becomes unstable through creation of stable endemic equi-
librium. Therefore, the system exchanges the stability when
u2 crosses the critical value u2 = u[TC]

2 . Biologically the
above result has high importance, because there is a criti-
cal value of the treatment control parameter above which the
disease will eradicate from the system.
Next we study backward bifurcation of the proposed model
(1) at R0 = 1 with respect to bifurcation parameter
α. Suppose R0 = 1 occurs at α = α∗ where α∗ =
1

ω

{
σβωω1

(cu3 + μ1)2(μ + d + γ + au2)
− (μ + u1)

}

> 0

when other parameters are fixed.

Theorem 7 The model system (1) undergoes through back-
ward bifurcation at R0 = 1 ( equivalently for the crit-
ical value of the bifurcation parameter α = α∗) if

abu22(cu23 + μ1)
2

σ 2S0(μ + d + γ )
>

β2σ S20VS0

(1 + αS0)3(μ + μ1)(μ + d + γ )
+

cu3 + μ1

VS0
.

Proof HereCastillo–Chavez and Song’s theorem [40] is used
to find the condition for backward bifurcation of model
system (1). Again consider the function f (S, I , R, VS, VI )

which is already defined explicitly in the previous theorem.
For critical value of the bifurcation parameter α = α∗ (
which is equivalent to R0 = 1) J (E0) has one zero eigen-
value. LetW = (w1 w2 w3 w4 w5)

T be the right eigen vector
of the Jacobian matrix J (E0) corresponding to zero eigen-

value where w1 = − βS0
(1 + αS0)(μ + u1)

, w2 = cu3 + μ1

σVS0
,

w3 = γ (cu3 + μ1)

μσVS0
− βS0u1

μ(1 + αS0)(μ + u1)
, w4 = −1,

w5 = 1. Also, let V = (v1 v2 v3 v4 v5) be the left eigenvec-
tor of the Jacobian matrix J (E0) corresponding to zero eigen

value where v1 = 0, v2 = σ

(μ + d + γ )
, v3 = 0, v4 = 0,

v5 = 1. To use Castillo–Chavez and Song’s theorem [40], we
need to find bifurcation coefficientsψ and φ which are given

by ψ = Σ5
k,i, j=1vkwiw j

∂2 fk
∂xi ∂x j

= 2abu22(cu23 + μ1)
2

σ 2S0(μ + d + γ )
−

2β2σ S20VS0

(1 + αS0)3(μ + μ1)(μ + d + γ )
+ 2cu3 + μ1

VS0
and φ =

Σ5
k,i=1vkwi

∂2 fk
∂xi ∂α

= βσ S0VS0

(μ + d + γ )(1 + αS0)2
> 0.

Now model system (1) undergoes through backward bifur-
cation at R0 = 1 with respect to bifurcation param-

eter α = α∗ if ψ > 0, i.e.,
abu22(cu

2
3 + μ1)

2

σ 2S0(μ + d + γ )
>

β2σ S20VS0

(1 + αS0)3(μ + μ1)(μ + d + γ )
+ cu3 + μ1

VS0
.

Hence the theorem is proved. ��

In Fig. 3, we have presented the one-parameter bifurcation
diagram with respect to R0. In figure, the blue line corre-
sponds to the stable branch of the solution curve and the
red line corresponds to the unstable branch. It is clear from
Fig. 3 that for R0 < 1 disease-free equilibrium point is stable
and for R0 > 1 disease-free equilibrium point is unstable.
For R0

∗ < R0 < 1, two endemic equilibrium points exist,
endemic equilibrium point with lower density infected is
unstable and endemic equilibrium point with higher density
infected is stable where R0

∗ is a critical value of R0. Biologi-
cally this bifurcation is important because for R0

∗ < R0 < 1
disease may persists in the system depending on initial pop-
ulation density. On the other hand, there is a critical value of
the inhibitory factor above which disease will eradicate from
the system and below which eradication of disease depends
on initial population size.
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Fig. 3 Backward bifurcation diagram with respect to R0(α) with ω =
2.9, β = 0.9, μ = 0.13, μ1 = 0.03, d = 0.0109, γ = 0.15, a = 60,
ω1 = 5.2, u3 = 0.2, c = 0.9, σ = 0.23,μ2 = 0.2, α = 1.6, u2 = 0.75,
b = 30

7 Model validation and parameter
estimation

In this section, we shall validate the proposed model with
real reported data. To fit the model, we consider the real data
of dengue outbreak in Singapore from 18th week of 2014 to
1st week of 2015 [41]. To fit the proposed model with real
reported data, we have used MATLAB minimization soft-
ware package fmincon [38] and estimated best-fitted model
parameters. To obtain best-fitted model parameters, we have
minimized the sum of squares error (SSE), which is defined
as SSE = ∑n

j=1

(
Y j − I (t j )

)2 where Y j is the cumulative
number of real reported data of jth week and I (t j ) is model
predicted cumulative infected density of the same week. By
finding residuals of the data fit, we can verify about the fitness
of themodel. If the residuals

{
Y j − I (t j )| j = 1, 2, ..., n

}
are

randomly distributed, then we can say that model is well fit-
ted.
To perform the data fit process, we consider initial num-
ber of susceptible, infected and recovered human population
are 5525628, 251, 0, respectively, whereas initial number
of susceptible and infected mosquitoes is 200000 and 1500,
respectively. Best-fitted curve of cumulative infected data,
residuals and bar diagram of new infection per week are
shown in Fig. 4. From the figures, it is clear that our model
fitting with real reported data is reasonably good. Among
fifteen model parameters, we have estimated twelve parame-
ters and remainingmodel parameters are taken from [42].We
have summarized estimated values of all model parameters
in Table 2.

8 Sensitivity analysis

Since the proposed model contains many parameters among
them some of the model parameters are highly sensitive on
R0. Sensitivity analysis is performed to find out the model
parameters, which have most significant affect on R0. To
perform sensitivity analysis, we apply normalized forward
sensitivity index method [43,44]. The normalized forward
sensitivity index method of R0 with respect to model param-

eter φ is defined by Λ
R0
φ = ∂R0

∂φ

φ

R0
. Using this method,

one can identify the model parameters, which have posi-
tive or negative impact on basic reproduction number. The
basic reproduction number shows same behavior with the
model parameters for positive sensitivity index parameter
and opposite behavior for negative sensitivity index param-
eter. In Table 3, we have enlisted the sensitivity indexes of
the model parameters. It is clear from Table 3, ω, ω1, β, σ

have positive-sensitive indexes and c, u3, u1, γ have negative
indexes.

9 Effect of different model parameters on
disease spreading

In this section, we have studied the effect of highly sensitive
model parameters on the disease dynamics. For this purpose,
we have found abundance of infected humans changes with
increasing or decreasing values of model parameters consid-
ering base value of the parameters as given in Table 2. Here
we have studied the effect of four state parameters, namely
β, σ, γ, c and two control parameters u2, u3. In the following
subsections first we discuss the effect of β and σ on disease
dynamics.

9.1 Effect ofˇ and� on disease spreading

In Fig. 5, we have presented the density of infected humans
for different values ofβ andσ .Wehaveobserved fromFig. 5a
that number of infected humans increaseswhendisease trans-
mission rate from infectedmosquitoes to susceptible humans
increases and vice versa. Similarly fromFig. 5bwe have seen
that the number of infected humans also increases when dis-
ease transmission rate from infected humans to susceptible
mosquitoes increases. Thus, the number of infected humans
increaseswith the increase ofβ andσ both and vice versa.We
can conclude that to control the density of infected humans,
i.e., spreading of disease, we have to take policy such that
β and σ both decrease. The value of β and σ will decrease
if we can minimize the interaction among the humans and
mosquitoes. The said interaction can be minimized if we iso-
late the humans from mosquitoes. The isolation can be done
using mosquito nets, wearing long-covered clothes, etc.

123



1404 P. Saha et al.

Fig. 4 a Cumulative infection
density: red dots represent
infected reported data, blue line
represents model predicted
infected data. b Residuals of the
data, c Bar diagram of per week
infected data and model
prediction. (Color figure online)

Table 2 Estimated values of the
model parameters

Parameter Value Source Parameter Value Source

ω 0.0098 [42] β 0.406613957 Estimated

α 1.55342169 Estimated μ 0.0047 [42]

u1 0.25877505 Estimated d 0.00516089 Estimated

γ 0.03585862 Estimated a 0.65084593 Estimated

b 0.00007534 Estimated u2 0.01324081 Estimated

ω1 0.22428119 Estimated c 0.64142419 Estimated

u3 0.67673618 Estimated σ 0.13952507 Estimated

μ1 0.06 Assume

Table 3 Sensitivity indexes of model parameters

Parameter Sensitivity index Parameter Sensitivity index

ω 0.4726881769 β 0.4999999998

α − 0.02731182311 μ − 0.05168046723

u1 − 0.04642561281 d − 0.04748948617

γ − 0.03299635516 a − 0.07929854383

u2 − 0.07929854383 ω1 0.5000000000

c − 0.8785609373 u3 − 0.8785609377

σ 0.5000000001 μ1 − 0.1214390619

9.2 Effect of auto immune rate (�) andmosquito
killing efficiency (c)

In Fig. 6, we have presented the time series of infected
humans for different values of γ and c. We have seen from
Fig. 6a that the number of infected humans decreases with
increase of γ . Also from Fig. 6b we have seen that the num-
ber of infected humans decreases with the increase of c.
Therefore, number of infected humans decreases with the
increase of both γ , c and vice versa. This result is biologi-
cally important because the increase of γ and c will decrease
the density of infected humans but increase of γ can be done
taking healthy foods, proper physical exercise and increase
of c can be performed by destroying mosquito larvae, killing
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Fig. 5 Time series of infected humans for different values of model parameters β and σ

Fig. 6 Time series of infected humans for different values of model parameters γ and c

adult mosquitoes, cleaning dirty water, increasing mortality
of mosquito’s eggs, etc.

9.3 Effect of treatment control parameter (u2) and
mosquitoes killing effort control parameter (u3)

In Fig. 7, we have shown density of infected humans for
different values of u2 and u3. It is clear from Fig. 7a that
the number of infected humans decreases with increase of
u2 and vice versa. Similarly, from Fig. 7b it is clear that
the number of infected humans decreases or increases with
the increase or decrease of u3, respectively. Therefore, with
increase in both the control parameters u2 and u3, the num-

ber of infected humans decreases and vice versa. Biologically
disease transmission can be reduced taking proper treatment
as well as using adulticide for killing adult mosquito, larvi-
cide for increasing mortality of eggs, destroying mosquitoes
larvae, etc.

10 Estimation of actual and effective
reproduction number

In this section, we shall estimate R0 from actual data and
estimate the values of effective reproduction number from
actual data of Dengue outbreak in Singapore 2014.
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Fig. 7 Time series of infected humans for different values of model parameters u2 and u3

10.1 Estimation of actual R0 for dengue outbreak

There are several analytical as well as statistical methods
for estimating R0 from the actual data for infectious dis-
ease. To estimate R0 from the initial growth phase of the
disease [45], we assume that at early stage of the disease, the
number of cumulative cases (Q(t)) varies as exponentially
with force of infection (Λ) which can be expressed mathe-
matically as Q(t) ∝ exp(Λt). Similarly number of infected
humans, infected mosquitoes vary as exp(Λt). So we have

{
I (t) ≈ I0exp(Λt)

VI (t) ≈ VI0exp(Λt)
(7)

where I0 and VI0 are constants. Here we assume that both
susceptible populations remain constant and they are given

by S0 = ω

μ + u1
and VS0 = ω1

μ1 + cu3
. Substituting (7) in

second and fifth equation of equation (1) and putting b = 0,
we get

(Λ + ζ1) I0 = βS0
1 + αS0

VI0 (8)

and

(Λ + ζ2) VI0 = σVS0 I0 (9)

where ζ1 = μ+ d + γ +au2 and ζ2 = μ1 + cu3. From Eqs.
(8) and (9), we get

βσ = (Λ + ζ1)(Λ + ζ2)(1 + αS0)

S0VS0
.

Putting the value of βσ from the above relation in expression
of R0, we obtain

R0 = 1

ζ2

√
ωω1(Λ + ζ1)(Λ + ζ2)(1 + αS0)

S0VS0ζ1(μ + u1 + αω)
. (10)

Now first we estimate the force of infection (Λ) and then we
estimate basic reproduction number R0. The relation between
new number of cases per day (q(t)) with cumulative cases
per day (Q(t)) as follows q(t) ≈ ΛQ(t).

To obtain the estimation of the force of the infection (Λ),
we maintain the following steps one by one. First we plot
new number of cases along y− axis and cumulative number
of cases along x-axis. Then, from scatter diagram we obtain
threshold cumulative values up to which it shows exponen-
tial growth. Next using least-square method, we fit a linear
regression curve based on the collected exponential growth
data [46]. The slope of the regression line is force of infection
(Λ).

We obtain from Fig. 8b Λ = 0.1506101534251 ±
0.0189325690942 day−1. Putting the values ofΛ in (10) and
using other parameters from Table 2, we obtain the estimated
value of basic reproduction number as R0 = 2.218450740
with lower andupper limit as 2.082235564 and2.352455166,
respectively.

10.2 Effective reproduction number R(t)

In mathematical epidemiology, basic reproduction number
plays a crucial role to control or eradicate the infection from
the community. R0 is defined as the average number of sec-
ondary infection produced by a single infective in its entire
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Fig. 8 a Time series of new cases of dengue outbreak from 18th week, 2014 to 1st week, 2015, b daily number of cases against cumulative number
of cases from 18th week, 2014 to 1st week, 2015

Fig. 9 Effective reproduction number

life span as an infected host, i.e., it is a constant quantity.
But in reality initially disease spreads rapidly in higher rate
among population and after reaching its maximum limit
position, starts to decrease that means basic reproduction
number R0 is not always constant. In this section, we study
time-varying reproduction number that means reproduction
number per week. This type of time-varying reproduction
number is known as effective reproduction number and is
denoted by R(t) [47–49]. Based on the values of effective
reproduction number R(t), researchers can predict about
influence of the disease among the population and can give
idea about the useful control or preventive measures to
decrease the invade of the infection. For estimating effec-
tive reproduction number R(t) from per week wise infection

curve of dengue outbreak data, we use the formula as follows

R(t) = b(t)
∫ ∞
0 b(t − λ)g(λ)dλ

(11)

where b(t) denotes newnumber of cases at t thweek and g(λ)

represents generation interval distribution of the disease. Let
the rate of leaving infected humans, infected mosquitoes be
represented by c1 = μ+d+γ +au2, c2 = cu3+μ1, respec-
tively, and generation interval distribution is the combination
of c1e−c1t , c2e−c2t then explicit formula is given by

g(t) = Σ2
i=1

c1c2eci t

Π2
j=1, j �=i (c j − ci )

. (12)

The above expression is valid when it satisfies the condition
Λ > min {−c1,−c2}, and mean of the above distribution

is given by T = 1

c1
+ 1

c2
. Using daily new cases of dengue

data and formula (11), we can estimate effective reproduction
number R(t) using Eq. (12).

We have calculated effective reproduction number esti-
mating model parameters, and the corresponding figure of
effective reproduction number is presented in Fig. 9. It is
clear from Fig. 9 that values of effective reproduction num-
ber oscillate and it lies near about unity except few weeks.
It is also clear from the figures that value of effective repro-
duction number is dropped from 4.291 to 0.6942.
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11 Application of optimal control technique
to the proposedmodel

In this section, we shall apply Pontryagin’s maximum princi-
ple varying the control parameter to obtain the optimal path
of the control strategies. The main objective to formulate an
optimal control problem is to minimize the infected human
populations as well as infected mosquitoes and also to min-
imize cost applied for controls [30]. There are three types
of control strategies, those are: control u1 represents vacci-
nation applied for susceptible humans, control u2 represents
treatment for infected human populations and control u3 rep-
resents mosquitoes killing effort by humans. In the previous
sections, we have studied the proposed model considering
u1, u2, u3 as constants but here we are considering each of
these parameters as time dependent.

11.1 Formulation of optimal control problem

To formulate optimal control problem, we consider control
strategies as a function of time t . Since if applied controls
are constant then implementation cost may be very high.
So we have to change the control policies as time changes
such that the implementation cost becomes minimum with
minimum number of infected humans. Now we reformulate
model system (1) in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Min M(x, u) = ∫ T
0 L(t, x(t), u(t))dt

subject to

x
′
(t) = f (x(t)) + g(x(t))u(t),∀t ∈ [0, T ]

u(t) ∈ U (t),∀t ∈ [0, T ]
x(0) = x0

(13)

where

x(0) = (S(0), I (0), R(0), VS(0), VI (0)) ≥ 0,

x(t) =

⎛

⎜
⎜
⎜
⎜
⎝

S(t)
I (t)
R(t)
VS(t)
VI (t)

⎞

⎟
⎟
⎟
⎟
⎠

, u(t) =
⎛

⎝
u1(t)
u2(t)
u3(t)

⎞

⎠ ,

g(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−S 0 0 0

0 − au2
1 + bu2 I

0 0

S
au2

1 + bu2 I
0 0

0 0 −cVS 0
0 0 0 −cVI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

f (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω − βSVI

1 + αS
− μS

βSVI

1 + αS
− (μ + d + γ )I

γ I − μR
ω1 − μ1VS − σVS I

σVS I − μ1VI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and integral of cost functional is given by L(x, u) = A1S +
A2 I + A3VS + A4VI + 1

2
B1u21 + 1

2
B2u22 + 1

2
B3u23, which

is also known as the Lagrangian of the optimal control prob-
lem (13). In the expression of L(t, x(t), u(t)), the constants
A1(> 0), A2(> 0) represent per capita loss for presence
of susceptible humans and infected humans, respectively,
whereas A3(> 0), A4(> 0) represent per capita loss for
presence of susceptible mosquitoes and infectedmosquitoes,
respectively. B1, B2, B3 represent weighted cost for apply-
ing controls u1(t), u2(t), u3(t), respectively. The control
variables are Lebesgue-measurable function and are given
as below,

U = {(u1, u2, u3) : 0 ≤ ui ≤ 1, i = 1, 2, 3 and t ∈ [0, T ]} . (14)

11.2 Existence and Uniqueness of optimal control
problem

Theorem 8 The optimal control problem (13) subject to con-
dition Eq. (1) admits optimal control variables u∗

1(t), u
∗
2(t)

andu∗
3(t) such that M(u∗

1(t), u
∗
2(t), u

∗
3(t)) = min {M(u1(t),

u2(t), u3(t)) : (u1, u2, u3) ∈ U } where U is defined in (14).

Proof The control variables and state variables both are
non-empty and nonnegative. The control constraint set U
is convex set.
Adding all equation of model (1), we get

dN

dt
= ω + ω1 − d I − μ(S + I + R) − μ1(VS + VI ),

where N = S + I + R + VS + VI

i .e.
dN

dt
≤ k − μ

′
N where k = ω + ω1, μ

′ = min {μ, μ1}

Therefore, N (t) ≤ k

μ
′ +

(

N0 − k

μ
′

)

e−μ
′
t , i.e., N (t) −→

k

μ
′ as t −→ ∞, which implies all state variables S, I , R, VS,

VI are bounded.
At the same time, integrand of the objective functional
M(u1(t), u2(t), u3(t)) is convex set with respect to u1, u2
and u3.

123



Transmission dynamics and control strategy of single-strain dengue disease 1409

Again system (1) can be written in the following form:

φt (t) = Eφ + G(φ)where φ(t) =

⎛

⎜
⎜
⎜
⎜
⎝

S(t)
I (t)
R(t)
VS(t)
VI (t)

⎞

⎟
⎟
⎟
⎟
⎠

, φt (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S
′
(t)

I
′
(t)

R
′
(t)

V
′
S(t)

V
′
I (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, G(φ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− βSVI

1 + αS
βSVI

1 + αS
0

−σVS I
σVS I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(μ + u1)S 0 0 0 0

0 −(μ + d + γ ) − au2
1 + bu2 I

0 0 0

u1
au2

1 + bu2 I
+ γ −μ 0 0

0 0 0 −(μ1 + cu3) 0
0 0 0 0 −(μ1 + cu3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,

||G(φ1) − G(φ2)|| =
∣
∣
∣
∣
βS2VI2

1 + αS2
− βS1VI1

1 + αS1

∣
∣
∣
∣

+
∣
∣
∣
∣
βS2VI2

1 + αS2
− βS1VI1

1 + αS1

∣
∣
∣
∣

+ |σVS2 I2 − σVS1 I1| + |σVS2 I2 − σVS1 I1|
≤ | − βS1VI1 + βS2VI2 | + |βS1VI1 − βS2VI2 |

+ | − σVS1 I1 + σVS2 I2|
+ |σVS1 I1 − σVS2 I2|

≤ 2β|S1VI1 − S2VI2 | + 2σ |VS1 I1 − VS2 I2|
≤ 2β|VI1 ||S1 − S2| + 2β|S2||VI1 − VI2 |

+ 2σ |VS1 ||I1 − I2| + 2σ |VS1 − VS2 ||I2|

i.e. ||G(φ1) − G(φ2)|| < B||φ1 − φ2|| where B =
max

{
2kβ
μ′ , 2kσ

μ′
}
.

If we denote F(φ) = Eφ + G(φ), then ||F(φ1) −
F(φ2)|| ≤ ||E ||||φ1 − φ2|| + B||φ1 − φ2|| ≤ C ||φ1 −
φ2|| where (||E || + B) ≤ C < ∞. So all state variables
satisfy Lipschitz condition. Therefore, there exist optimal
control variables u∗

1(t), u
∗
2(t) and u∗

3(t) such that

M(u∗
1(t), u

∗
2(t), u

∗
3(t))

= min {M(u1(t), u2(t), u3(t)) : (u1, u2, u3) ∈ U } .

Hence the theorem is proved. ��

11.3 Characterization of optimal control problem

Theorem 9 For optimal control variables u∗
1(t), u

∗
2(t), u

∗
3(t)

and state variables of Eq. (1) which minimizes M(u1(t),
u2(t), u3(t)) over U, adjoint variables λ1, λ2, λ3, λ4 and

λ5 satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1
dt

= −A1 + βVI

(1 + αS)2
(λ1 − λ2) − u1(λ1 − λ3) − λ1μ

dλ2
dt

= −A2 + au2
(1 + bu2 I )2

(λ2 − λ3) + γ (λ2 − λ3)

+(μ1 + d)λ2 + σVS(λ4 − λ5)
dλ3
dt

= μλ3

dλ4
dt

= −A3 + μ1λ4 + cu3λ4 + σ I (λ4 − λ5)

dλ5
dt

= −A4 + βS

1 + αS
(λ1 − λ2) + λ5cu3 + μ1λ5

with λi (T ) = 0, i = 1, 2, 3, 4, 5 and corresponding control
variables u∗(t) = (u1∗(t), u2∗(t), u3∗(t)) is as follows
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u∗
1(t) = min

(

max

(

0,
(λ1 − λ3)S

B1

)

, 1

)

u∗
2(t) = min (max (0, u2) , 1)

u∗
3(t) = min

(

max

(

0,
c(λ4VS + λ5VI )

B3

)

, 1

)

where u2 is nonnegative root of B2u2(1+bu2 I )2 = aI (λ2−
λ3).

Proof Pontryagin’s maximum principle is used to charac-
terize the optimal control problem of the proposed model
[50–53]. The Hamiltonian of the optimal control problem is
given by:

H(S, I , R, VS, VI , u1, u2, u3, λ1, λ2, λ3, λ4, λ5)

= A1S + A2 I + A3VS + A4VI + 1

2
B1u

2
1

+1

2
B2u

2
2 + 1

2
B3u

2
3 + λ1

{

ω − βSVI

1 + αS
− (μ + u1)

}

+λ2

{
βSVI

1 + αS
− (μ + d + γ )I − au2 I

1 + bu2 I

}

123



1410 P. Saha et al.

+λ3

{
au2 I

1 + bu2 I
+ γ I + u1S − μR

}

+λ4 {ω1 − μ1VS − cu3VS − σVS I }
+λ5 {σVS I − cu3VI − μ1VI } .

The adjoint equations can be found using Pontryagin’s max-
imum principle which satisfies the following relations:
dλ1(t)

dt
= −∂H

∂S
,
dλ2(t)

dt
= −∂H

∂ I
,
dλ3(t)

dt
= −∂H

∂R
,

dλ4(t)

dt
= − ∂H

∂VS
,
dλ5(t)

dt
= − ∂H

∂VI
with λi (T ) = 0, i =

1, 2, 3, 4, 5.
Using above relations, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1
dt

= −A1 + βVI
(1 + αS)2

(λ1 − λ2) − u1(λ1 − λ3) − λ1μ

dλ2
dt

= −A2 + au2
(1 + bu2 I )2

(λ2 − λ3) + γ (λ2 − λ3)

+(μ1 + d)λ2 + σVS(λ4 − λ5)
dλ3
dt

= μλ3

dλ4
dt

= −A3 + μ1λ4 + cu3λ4 + σ I (λ4 − λ5)

dλ5
dt

= −A4 + βS

1 + αS
(λ1 − λ2) + λ5cu3 + μ1λ5

(15)

with

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0. (16)

Using optimality conditions
∂H

∂u1
= 0,

∂H

∂u2
= 0 and

∂H

∂u3
=

0 we get u1 = u∗
1, u2 = u∗

2 and u3 = u∗
3 where u

∗ is defined
in the statement of the theorem.

Now we have
∂2H

∂u21
= B1 > 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2H

∂u21

∂2H

∂u1∂u2
∂2H

∂u2∂u1

∂2H

∂u22

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

B1B2 > 0 and

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2H

∂u21

∂2H

∂u1∂u2

∂2H

∂u1∂u3
∂2H

∂u2∂u1

∂2H

∂u22

∂2H

∂u2∂u3
∂2H

∂u3∂u1

∂2H

∂u3∂u2

∂2H

∂u23

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= B1B2B3 > 0.

Thus the minimality condition for H is satisfied at u∗ =
(u1∗, u2∗, u3∗). ��
To solve optimal control problem numerically, we use
forward–backward sweep method. In this method, forward
application of fourth-order Runge–Kutta method of system
(1) is combined with backward application of fourth-order
Runge–Kutta method of system (15) with transversality con-
dition (16). To draw the problem numerically, we consider
time interval [0, 36], i.e., after 36 weeks all the controls are
terminated automatically. To solve the control effect, we con-
sider values of model parameters as in Table 2 and the cost

coefficients A1 = 0.00015, A2 = 0.2, A3 = 0.000015,
A4 = 0.000131, B1 = 0.01, B2 = 0.3, B3 = 0.1 satisfy-
ing S(0) = 5525628, I (0) = 251, R(0) = 0, VS = 200000,
VI = 1500. In Fig. 10 , the blue line and the red line represent
time series of infected components with control and without
control, respectively. From Fig. 10a, b, it is clear that number
of infected decreases when controls are used. In Fig. 10c–e,
time series of all controls are represented.

12 Efficiency analysis

In this section, our target is to find out best effective control
strategy using efficiency analysis. In the proposed model,
three types of control strategies are used. Among three con-
trols always u2 control is used since treatment is more
essential to get recovery from the dengue disease. There-
fore, two cases may arise (i) Strategy 1: u1 �= 0, u2 �= 0,
u3 = 0 (ii) Strategy 2: u1 = 0, u2 �= 0, u3 �= 0.
Among these two cases which strategy is better to control
dengue outbreak, to know this we need to apply efficiency
analysis. The efficiency index (E. I.) is defined by E. I. =(

1 − Ac

Ao

)

× 100, where Ac and Ao are number of cumula-

tive infected humans with and without control, respectively.

We find the value of Ao and Ac using Simpson’s
1

3
rd rule

where Ao = ∫ 36
0 I (t)dt = 101.8026. The values of Ac and

efficiency index (E.I.) are given in Table 4 for different strate-
gies. The strategywith highest number efficiency index (E.I.)
is the best strategy [50,52,54]. In our problem, the best effi-
cient policy is the second strategy. In epidemiological point of
view, mosquitoes killing effort by humans with taking treat-
ment for infected humans is the best efficient policy among
the two strategies.

13 Conclusion

In this study, we have proposed a single-strain dengue model
with saturated type incidence rate. To get recovery from
mosquitoes bites, two types of recovery functions have been
introduced for human populations, namely vaccination for
susceptible populations and saturated treatment for infected
populations. Three types of control functions are considered,
namely vaccination for susceptible populations, treatment for
infected populations and mosquitoes killing effort to recover
from dengue infection. We have proved that disease-free
equilibrium point is stable for R0 < 1 and unstable for R0 >

1. Similarly we have shown that endemic equilibrium point
is stable under some conditions. Using Sotomayor’s theo-
rem, we have proved that model system undergoes through
transcritical bifurcation about disease-free equilibrium point
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Fig. 10 Time series of the population with control (blue line), without control (red line) and control variables; a Infected humans, b Infected
mosquitoes, c Control u1, d Control u2, e Control u3. (Color figure online)

when model parameter u2 passes through its critical value
u[TC]
2 . This result is biologically significant because below

the critical value of the treatment parameter (i.e., u2 < u[TC]
2 )

disease will persist in the system. Also we have shown using
Castillo–Chavez and Song’s theorem that model system has
backward bifurcation at R0 = 1. We have observed that for

R∗
0 < R0 < 1 two endemic equilibrium points exist, one

with smaller infected is unstable and other one with higher
infected is stable where R∗

0 is critical value of R0. Biolog-
ically we can conclude that eradication of disease depends
not only on model parameter but also on initial population
density.
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Table 4 Strategies with their efficiency indices

Strategy Applied controls Ac E .I .

Strategy 1 u1 �= 0, u2 �= 0, u3 = 0 86.8926 14.64

Strategy 2 u1 = 0, u2 �= 0, u3 �= 0, 59.3284 41.72

Wehavefittedmodelwith real reported data of dengueout-
break in Singapore from18thweek, 2014 to 1stweek, 2015 to
check the validity of the proposedmodel and estimatedmodel
parameters. To identify the highly effective model parame-
ter, sensitivity analysis has been performed; these parameters
need to control to reduce the disease spreading.

To find the suitable path for control parameters, we
have used optimal control policy which will minimize the
implementation cost with minimum number of infected pop-
ulations. Numerically we have shown the positive impact of
the different controls for eradicating dengue transmission.
Using efficiency analysis, we have found that the best effec-
tive control policy is use of treatment for infected humans
and mosquitoes killing effort simultaneously. Thus from this
work we can conclude that spreading of dengue can be con-
trolled using proper preventive actions.
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Appendices

Appendix I: Expressions of Ci

C4 = ασb2u22(μ + d + γ )2(μ1 + cu3)

C3 = {ασbu2(μ1 + cu3)(μ + d + γ )(μ + d + γ + au2)

+αb2u22(μ1 + cu3)
2(μ + d + γ )2

+ασbu2(μ + d + γ )2(μ1 + cu3)

+abασu22(μ1 + cu3)(μ + d + γ )}
−{σβω1b

2u22(μ + d + γ )

+σb2u22(μ + u1)(μ1 + cu3)(μ + d + γ )

+σαω b2u22(μ1 + cu3)(μ + d + γ )}

C2 = {αbu2(μ + d + γ )(μ1 + cu3)
2(μ + d + γ + au2)

+ασ(μ + d + γ )(μ1 + cu3)(μ + d + γ + au2)

+ασau2(μ1 + cu3)(μ + d + γ + au2)

+αbu2(μ1 + cu3)
2(μ + d + γ )2

+αabu22(μ1 + cu3)
2(μ + d + γ )

+σβωω1b
2u22} − {σβω1bu2(μ + d + γ + au2)

+σβω1bu2(μ + d + γ )

+σbu2(μ + μ1)(μ + d + γ + au2)(μ2 + cu3)

+αbu2(μ + u1)(μ + d + γ )(μ1 + cu3) + b2u22(μ1

+cu3)
2(μ + u1)(μ + d + γ )

+ασωbu2(μ1

+cu3)(μ + d + γ ) + αωbu2(μ + d + γ )(μ1 + cu3)
2

+ασω(μ1 + cu3)(μ + d + γ ) + ασωabu22(μ1 + cu3)}

C1 = {α(μ1 + cu3)
2(μ + d + γ )(μ + d + γ

+au2) + σau2(μ1 + cu3)
2(μ + d + γ + au2)

+2σβωω1bu2} − {σβω1(μ + d + γ + au2)

+bu2(μ1 + cu3)
2(μ + u1)(μ + d + γ )

+σ(μ + u1)(μ1 + cu3)(μ + d + γ + au2)

+bu2(μ1 + cu3)
2(μ + u1)(μ + d + γ + au2)

+2σωbu2(μ + d + γ )(μ1 + cu3)
2

+ασω(μ + d + γ )(μ1 + cu3) + ασωau2(μ1 + cu3)

+αωabu22(μ1 + cu3)
2}

C0 = (μ1 + cu3)
2(μ + d + γ + au2)(μ + u1 + αω)(1 − R2

0)

Appendix II: Expressions of Fi

F1 = 2μ + u1 + d + γ + μ1 + cu3 + σ I

+ βVI

(1 + αS)2
+ au2

(1 + bu2 I )2
,

F2 =
{

(μ + d + γ + au2
(1 + bu2 I )2

)(μ1 + cu3 + σ I )

−αβSVS

1 + αS

}

+
(

μ + u1 + βVI

(1 + αS)2

)

(

μ + d + γ + μ1 + cu3 + σ I + au2
(1 + bu2 I )2

)

,

F3 =
(

μ + u1 + βVI

(1 + αS)2

)(

μ + d + γ + au2
(1 + bu2 I )2

)

(

(μ1 + cu3 + σ I ) − σβ(μ + u1)

(1 + αS)2

)

.
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