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Abstract
This paper provides a robust approach for controlling large-scale interconnected nonlinear systems under actuator fault
and saturation. Preserving closed-loop robustness despite the simultaneous effects of subsystem interactions, faults, and
perturbations is the main challenge in such systems. Additionally, tackling the actuator saturation constraint increases the
robustness challenge that must be accounted for when designing a controller for the mentioned system. Thus, the main
contribution of this paper is the development of a fault-tolerant control for nonlinear interconnected systems under actuator
saturation. In this framework, the proposal employs slidingmode control, control allocation, and fault estimation/compensation
methodologies to ensure robust closed-loop performance. An augmented unknown input observer is utilized to simultaneously
attain a robust estimation for the fault and state signals. Subsequently, the control allocation technique is used to re-locate
the control signals across the residual actuators when a failure or fault occurs. The Lyapunov analysis and the linear matrix
inequality were used to formulate the design. Finally, the three-degrees of freedom helicopter model are applied to satisfy the
effectiveness of the proposed strategy.
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1 Introduction

With the rapid advancement of technology, the demand for a
system’s reliability and safety under fault scenarios is an evi-
dent and critical issue [1], especially for large-scale systems
(LSS), which are complicated high-dimensional systems
containing coupling, nonlinearity, and uncertainty. External
disturbance and interconnection during operation are addi-
tional difficulties that increase the probability of system
failure. Therefore, developing and maintaining intercon-
nected systems with reliable control are not straightforward
[2]. There are three basic control mechanisms for LSS: cen-
tralized, decentralized, and distributed control. Researchers
are particularly interested in decentralized control since each
subsystem relies on local information without sharing it
with other subsystems. Numerous studies are concernedwith
decentralizing LSS [3–5]. In most practical applications for
interconnected systems, components or subsystems can sud-
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denly fail or break down, making the whole system unstable
or malfunctioning [6–8]. Fault-tolerant control (FTC) is a
system which automatically compensates for potential faults
to ensure the entire system remains stable while providing
the desired performance [9, 10]. Due to the complexity of
nonlinear systems, recent research has focused on the meth-
ods that tackle the nonlinearity of the FTC system, especially
for interconnected nonlinear systems; for example, the issue
of decentralized adaptive tracking with actuator faults and
strong interconnections is presented in [11]. In [12], a decen-
tralized predictor control is studied, which suffers from input
delay and weakly interconnections between subsystems. In
[13], a fuzzy decentralized FTC with unmodeled dynamics
affected by actuator faults and disturbances is discussed with
unknown time delay. Fault diagnosis is the most traditional
method for acquiring fault information that relies on residual
signals.

In contrast, fault estimation (FE) provides essential infor-
mation directly involving faults’ size, time occurrence, and
location without complex procedures. Research has yielded
significant advances in the field of FE design based on state
observers like the adaptive observer (AO) [14], the extended
state observer (ESO) [15], and the sliding mode observer
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(SMO) [16]. Although the methods mentioned above are
effective for fault estimation, the unknown input observer
(UIO) ability to entirely decouple disturbances makes it an
ideal architecture for FE [9]. UIO is created in this article
to simultaneously estimate the fault and state, where the
estimated signals are used to compensate for faults, hence
achieving overall system stability. The robustness problem
of the interactions between the FE and FTC was recently
described in detail by Lan and Patton [17]. This strategy
has been extended to encompass a variety of applications
[18–20].

Faults increase the effort of the actuator to counteract
undesirable consequences, increasing the probability of actu-
ator saturation [21]. However, this critical topic has paid
less emphasis on the FE/FTC approach, particularly when
the system suffers from disturbances and uncertainty [14].
Saturation of actuators is inevitable in LSS, impairing the
closed-loop system’s performance and stability. So, it is
essential to study the control of LSS with actuator satu-
ration to avoid this issue. Numerous noteworthy findings
concerning actuator saturation in control systems were pub-
lished [22, 23]. The author in [23] proposed a decentralized
non-fragile control against actuator faults and saturation.
An optimization method that uses convexity based on linear
matrix inequalities (LMI) formulation is employed to study
bounded disturbances and actuator saturation [24]. A model
predictive control (MPC) is presented in [25], but none of the
previous studies mention using the FTC system.

On the other hand, a strategy of an adaptive FTC with
a nonlinear system subjected to actuator fault with external
disturbance and actuator saturation based on sliding mode
control (SMC) with radial neural network technique is dis-
cussed in [26]. A surface with a fixed time sliding mode is
created to compensate for a malfunctioning spaceship atti-
tude system to guarantee closed-loop stability [27]. In [28],
the FTC is used to handle the problem of actuator saturation,
assuming that the effectiveness of the actuator loss should
be constant. However, none of the mentioned research used
these techniques with LSS. This fact motivates the paper to
propose a new strategy based on the integration design of
FE/FTC for interconnected LSS with actuator faults, satu-
ration, external disturbance, and nonlinear interactions. The
combination of the SMC with the control allocation (CA) is
applied to design the FTC scheme, where the virtual control
signals are converted into physical actuator requirements via
the CA scheme. At the same time, virtual controllers rely on
the UIO, which is developed to estimate the fault. The main
contributions of this paper are:

1. Compared with previous studies, this work addresses
the problem of saturation level within the framework of
FE and compensation-based FTC for nonlinear intercon-
nected LSS.

2. A new strategy combining SMC, CA, and UIO is pre-
sented based on the integration technique of FE/FTC for
nonlinear interconnected LSS under actuator saturation,
actuator faults, external disturbance, and nonlinear inter-
actions. Both the controller and observer gains can be
obtained concurrently through a technique of LMI.

The paper is structured as follows: The FTC scheme
includes the UIO-based FEwith sliding mode control alloca-
tion is presented in Sect. 2. The integrated strategy of FE/FTC
is proposed in Sect. 3. The simulation results are illustrated
by applying a 3-DOF helicopter model in Sect. 4. Finally,
Sect. 5 discusses the conclusion of the suggested approach.

2 The proposed design of FTC based on FE

The nonlinear interconnected system for the ith subsystem is
presented as follows:

ẋi � Ai xi + Bi ui + fi (xi , t) + hi (xi , t) + Di di

yi � Ci xi (1)

where xi ∈ Rin , yi ∈ Rir , and di are the state, output,
and external disturbance, respectively. The Ai ∈ Rin×in ,
Bi ∈ Rin×im , Ci ∈ Rip×in , and Di ∈ Rip×iq are constant
matrices. fi (xi , t) ∈ Rin and hi (xi , t) ∈ Rin represent the
nonlinear term and nonlinear interaction, respectively.

As shown in Fig. 1, the control input applied to the system
can be described as:

usat
i � sat

(
u∗

i + fai
)

, i � 1, 2, . . . , n (2)

where u∗
i represents the design control input, fai is the actu-

ator fault, and sat : Rim → Rim represent the standard
saturation function, where sat(.) can be described as:

sat(�i ) �
{
sign(�i )ui max |�i | ≥ ui max

�i |�i | < ui max
(3)

where �i � u∗
i + fai and umax is the maximum voltage of

the actuator, respectively.
Substitute the control input in (1) as:

ui � u∗
i + f ∗

ai (4)

Fig. 1 The model of the actuator with fault and saturation
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where f ∗
ai represents the actuator fault influenced by the sat-

uration, which is described as:

f ∗
ai � sat

(
u∗

i + fai
) − u∗

i (5)

Due to the intervention of the saturation function, which
is well known as non-differential, the composite fault f ∗

ai
represents the actuator fault influenced by the saturation and
is non-differentiable, leading to theoretical challenges for
subsequent design work of fault estimation. So, to tackle this
problem, the saturation function is approximated as in (6):

sat(�i ) �

⎧
⎪⎪⎨

⎪⎪⎩

�i 0 ≤ |�i | ≤ ui max

�i −
[
�i −ui maxsign(�i )

]2sign(�i )

2δi
ui max ≤ |�i | ≤ ui max + δi(

ui max +
δi
2

)
sign(�i ) |�i | ≥ ui max + δi

(6)

where δi is a constant, and sat(�i ) is a new function that is
differentiable with constrained estimation error, which can
be restricted further by choosing a suitably small δi .

Remark 1 Different approaches have been utilized to approx-
imate the saturation function in the literature [29, 30].
However, the approximation in [17] is considered in this
work.

The new control input described in (4) can be written as:

ui � u∗
i + f ∗

ai + �ui

f ∗
ai � sat

(
u∗

i + fai
) − u∗

i

�ui � sat
(
u∗

i + fai
) − sat

(
u∗

i + fai
)

(7)

This study includes the following assumptions:

Assumption 1 Assuming that the pair (Ai , Ci ) is observable,
and the pair (Ai , Bi ) is controllable for (i � 1,2,…,n).

Assumption 2 Assume that fi (xi,t) achieves the Lipschitz
constant as follows:

fi
(
x̂i , t

) − fi (xi , t) ≤ L f x̂i − xi , (8)

where Lf denotes the Lipschitz constant.

Assumption 3 The interaction hi (xi , t) achieves:

hT
i (xi , t)hi (xi , t) ≤ σi xT

i H T
oi Hoi xi , (9)

where the σi indicates the positive scalar, which denotes the
uncertain interaction bound; Hoi is a constant matrix. For the
overall system, (9) can be rewritten as follows:

hT (x , t)h(x , t) ≤ xT H T
o Hox , (10)

where h(x , t) � [h1(xi , t), . . . , hn(xn , t)] aggregates the
interaction for the overall interconnected systemwhere Ho �[√

σi H T
o1, . . . ,

√
σn H T

0n

]
.

Assumption 4 It is presumed that the actuator’s usable con-
trol is restricted by:

|ui | ≤ umax for (i � 1, 2, . . . , n) (11)

in which all actuators have the same saturation value of
umax.

From Fig. 2, SMC is an attractive choice for designing
FTC due to its inherent advantages against uncertainties.
Since actuator faults can be modeled as matched uncertainty,
theSMCapproach "naturally" handles actuator faults froman
FTC perspective. If the actuator fails to operate as required, it
cannot respond to control signals; therefore, redundant actu-
ators are essential [31].With CA, redundant control effectors
canbeused efficiently to create fault tolerancewithout chang-
ing the underlying control rule, where the control effect is
equally distributed among the actuators.

As a result of CA’s flexibility, the underlying "vir-
tual" effort can be established using any applicable control
approach; therefore, CA is considered a robust candidate to
be integrated with SMC to address actuator fault and satura-
tion.

Fig. 2 The block diagramof the suggested strategy, including the design
of the observer and FTC system
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The following subsections discuss the method for devel-
oping decentralized SMC allocation for nonlinear LSS to
accomplish the goal.

2.1 Control allocation (CA)

FTC researchers are interested in CA because it can tolerate
actuator faults or failures without modifying the law of base-
line control [32].When the fault occurs, the control allocation
unit redistributes control signals to the healthy one depending
on their effectiveness level without changing the controller.
Consider the system in (1) with redundant actuators to gain
a better understanding of how the CA approach works by
assuming that the distributed matrix Bi can be analyzed into
two components:

Bi � BivBiu (12)

Let vi � Biuui (13)

where vi is the virtual control effort. According to (13), the
control input can rewrite as:

ui � B†,W
iu vi (14)

where B†, W
iu represents the weighted of the right pseudo-

inverse of Biu , that provides some freedom to the design,
which can be defined as (15), and W � diag[w1, . . . , wn]
represent the efficiency level of the actuators.

B†,W
iu � W BT

iu

(
Biu W BT

iu

)−1
(15)

In case ofwi � 1 indicates that the ith actuator is operating
normally with free faults. In contrast, if 1 > wi > 0 means
that a problem is present, and the actuator is operating at a
lower efficiency level, and if wi � 0; this signifies that the
ith actuator has failed and no longer responds to the control
signal.

SubstitutingEqs. (12)–(15) into (1) to obtain the following
description of the new system:

ẋi � Ai xi + Biv B†,W
iu vi + fi (xi , t) + hi (xi , t) + Di di

� Ai xi + Bivv̂i + fi (xi , t) + hi (xi , t) + Di di (16)

where v̂i � B†, W
iu vi .

UIO is advantageous for fault estimation in over-actuated
systems.With input redundancy, control can be reallocated to
restrict the use of malfunctioning actuators once estimated.
It is possible to integrate the CA with the FE technique to
expand the number of faulty events that can be tackled, as
illustrated in Sect. 2.3.

2.2 FE based on unknown input observer (UIO)

The design of UIO has gained much attention in recent
decades. Unknown input decoupling is one of the most
important characteristics of a UIO for state estimation in
systems exposed to unknown inputs. In most practical appli-
cations, control systems are affected by unknown inputs,
including external disturbances, different types of faults, etc.,
resulting in system performance deficiencies. This paper is
motivated by the challenge of making the error signal zero
despite the effect of unknown inputs, where the estimated
states are asymptotically converging toward the actual states.

An augmented UIO with substituting the virtual control
can illustrate as follows:

ẋi � Ai xi + Bi v̂i + f i (xi , t) + hi (xi , t) + Di di

yi � Ci xi (17)

where xi �
[

xi

fi

]
, Ai �

[
Ai Bi

0 0

]
, f i (xi , t) �

[
fi (xi , t)

0

]
,

hi (xi , t) �
[

hi (xi , t)
0

]
, Bi �

[
Bi

0

]
, Di �

[
Di 0
0 Iq

]
,

di �
[

di

fi

]
, Ci � [

Ci 0
]
.

The UIO can estimate the augmented state (xi ) as follows:

żi � Fi zi + Gi v̂i + Ki yi

�̇

x i � zi + Hi yi (18)

where zi is the observer state system ∈ Rin+iq , and
�

x ∈
Rin+iq is the estimation of x . The following matrices
[Fi , Gi , Ti , Ki , andHi ] must be held to synthesize the UIO:

(
Iin+iq − Hi Ci

)
Di (19)

Ti � Iin+iq − Hi Ci (20)

Fi � Ii Ai − Ki1Ci (21)

Gi � Ti Bi (22)

Ki2 � Fi Hi (23)

Ki � Ki1 + Ki2 (24)

Ki � Ki1 + Fi Hi (25)

The state estimation error can be determined as: ėi �
xi − ˙̂xi , and then, the dynamic error is:

123



A robust estimation and compensation-based fault-tolerant control for large-scale interconnected… 763

ėi � (
Ti Ai − Ki1Ci

)
ei +

(
Ti Ai − Ki1Ci − Fi

)
zi

+
(
Ti Bi − Gi

)
v̂i +

[(
Ti Ai − Ki1Ci

)
Hi − Ki2

]
yi

+ Ti f i (xi , t) + Ti hi (xi , t) + Ti Di di (26)

By substituting the matrices (19)–(25), the dynamic error
becomes:

ėi � (
Ti Ai − Ki1Ci

)
ei + Ti f i (xi , t) + Ti hi (xi , t) + Ti Di di

(27)

The matrices [Fi , Ti , and Ki2] can be derived, while the
matrices [Hi , Ki1] must be determined.

Because the system under consideration is over-actuated,
there remains a set of control inputs that can be used to toler-
ate faults. This is achieved via CA system which re-allocate
control efforts from failing actuators to healthy ones if any of
the actuators are prone to fault. The most frequent solution
is to alter the weighting matrix (W ), which relies on fault
information from the fault estimation module. The greater
the weighting matrix gain, the lower the control input to the
associated actuator. The weighting matrix is modified based
on the FE module’s implying that there is no control effort
transferred to a specific actuator.

The signal of the virtual control will be designed and syn-
thesized using the SMC technique, as discussed in Sect. 2.4.

2.3 Design of slidingmode control (SMC)

The SMC is among the most potent control schemes widely
used in FTC applications due to its robustness against uncer-
tainty and disturbances [33]. To construct a sliding mode
controller, there are two steps. Firstly, a sliding surface is
created, upon which sliding motion will happen. The next
stage is to develop a control rule that relies on the switch-
ing function and compels the system state routes to slide
optimally upon the sliding surface [34, 35]. Also, the reach-
ability requirement, which ensures the sliding mode exists
on the sliding surface, is an essential criterion in the sliding
mode study. In SMC theory, the selected control law is com-
posed of two components, linear and nonlinear, designed as
follows:

v̂i � v̂il + v̂in (28)

where v̂il , v̂in are linear and nonlinear components, respec-
tively, described as:

v̂il � −Kxi
�

xi (29)

and

v̂in � −ηi sign(si ), (30)

with ηi � ω̂si + εsi , where εsi represents the positive scaler,
and ω̂si is an unknown scalar used to estimate of ωsi for each
subsystem, this scalar can be updated by:

˙̂ωsi � ςi si , ω̂si (0) ≥ 0

where ςi > 0 represents the learning rate, and si represents
the sliding surface which is defined as:

si � Ni x̂i (31)

where Ni � B+
i and B+

i � (BT
i Bi )−1BT

i . The virtual control
v̂i must be determined to achieve the reachability condition
for designing the SMC.

Remark 2 The rationale for using the adaptive term in
Eq. (30) is to tackle the chattering and high activity con-
trol action associated with SMC. Further, adaptive approach
enables designing SMC for systems with disturbance of
unknown upper bound. Hence, by using Eq. 30 (ηi �
ω̂si + εsi , ˙̂ωsi � ςi si , ω̂si (0) ≥ 0, ςi > 0), the magni-
tude of the discontinuous control action becomes adaptive
and can be minimized to the lowest acceptable sliding con-
dition. Extensive explanations on adaptive SMC approaches
can be found in [36, 37]

The differentiating si respective with time is:

ṡi � Ni Ai xi + v̂i + Ni fi (xi , t) + Nihi (xi , t)

+ Ni Di di − Ni ėi (32)

Both components work together to drive the system states
toward the si , where the appropriate selection of the si assists
in stabilizing the system after reaching it. Assuming the Lya-
punov function is:

Vsi � 1

2
sT

i si (33)

and the derivative of Vsi is:

V̇si � sT
i

[
Ni Ai xi + v̂i + Ni fi (xi , t) + Ni hi (xi , t)

+ Ni Di di − Ni ėi

]

� sT
i

[
Ni Ai xi + v̂il + Ni fi (xi , t) + Ni hi (xi , t)

+ Ni Di di − Ni ėi

]
− v̂in] (34)

Substituting (29) and (30) in (34) gives (35):

V̇si � sT
i [Ni Ai xi − Kxi x̂i + Ni fi (xi , t) + Ni hi (xi , t)

+ Ni Di di − Ni ėi
]−ηi sign(si )

]

≤ (�si + ωsi − ηi )si (35)

123



764 N. S. Abdul-Jaleel, M. S. Shaker

where �si � Ni Ai − Kxi , ωsi � Ni Di di + Ni ėi .
After the system reaches the proposed si with satisfying

the sliding requirement s1 � ṡ1 � 0, the equivalent equation
is stated as:

v̂equ � −[Ni Ai xi + Ni fi (xi , t) + Ni hi (xi , t)Ni Di di ] + v̂il

(36)

So, the system in (1) is preserved in the sliding mode
with the equivalent control (36). The nonlinearity and the
interactions must be reduced to ensure closed-loop robust-
ness, which can be accomplished using the H∞ optimization
described in the following section.

3 The integrated design of FE/FTC

For the overall LSS, the augmented closed-loop system can
be represented as:

ẋ � Ãx + F̃e + f (x , t) + h(x , t)

ė � Ãee + T f (x , t) + T h(x , t) + T Dd

z � diag[Cx x ,Cee] (37)

where

e � [e1, . . . , en], f (x , t) � [
f 1(xi , t), . . . , f n(xi , t)

]
,

h(x , t) � [
h1(xi , t), . . . , hn(xi , t)

]
, D � diag

[
D1, . . . , Dn

]
,

T � diag[T1, . . . ., Tn], F̃ � diag[B1Kx1 . . . ., Bn Kxn],

Ã � diag(A1 − B1Kx1, . . . ., An − Bn Kxn), Ãe � diag(
T1A1 − K11C1, . . . , Tn An − Kn1Cn

)
,z ∈ R2n+q , repre-

sent the output measured that used to confirm the closed-loop
system by the matrices Cx ∈ Rn×n , and Ce ∈ R(n+q)×(n+q),
where, n � [n1, . . . , nin], q � [q1, . . . qin], respectively.

The design problem of FE and FTC can be handled
through theH∞ optimization and the LMI approach, as illus-
trated in Theorem 1.

Theorem 1 According to Assumptions (1–3), the system is
stable with the performance of H∞ Gzd∞ < β, if the fol-
lowing optimization is possible:

Min
n∑

i�1
(μi + βi ), with subject to:

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

11 12 13 0 15 0 17

∗ 22 0 24 0 26 0
∗ ∗ −δ−1

3 Z 0 0 0 0
∗ ∗ ∗ −δ2Z 0 0 0
∗ ∗ ∗ ∗ −ε I 0 0
∗ ∗ ∗ ∗ ∗ −δ1 I 0
∗ ∗ ∗ ∗ ∗ ∗ −I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0
28 29

0 0
0 0
0 0
0 0
0 0

−I 0
∗ −β

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

< 0 (38)

where
∈� diag(∈1, . . . , ∈n), μ � diag([μ1, . . . , μn]),

11 � diag(111, . . . , 11n), 11i � He(Ai Zi ) +
δ−1

i2 I , 12 � diag([0, F1], .., [0, Fn]), 13 � diag
(B1M1i , . . . , Bn M1n).

15 �
⎛

⎜
⎝

Z1MT
011 · · · Z1MT

0n1
...

. . .
...

Zn MT
01n · · · Zn MT

0nn

⎞

⎟
⎠, 17 �

⎡

⎢
⎣

Z1CT
x1

...
ZnCT

xn

⎤

⎥
⎦,

22 � diag(221, . . . , 22n),22i �
[

T22i T23i

∗ T33i

]
,

T22i � He(Qi1Ai − M4i Ci Ai − M2i Ci ),
T23i � Qi1Fi − M4i Ci Fi − (M5i Ci Ai + M3i Ci )T ,
T33i � He(−M5i Ci Fi ), 24 � [0, I ],
26 � diag(Q1T1, . . . , QnTn), Qi Ti �[

Qi1 − M4i Ci 0
−M5i Ci Qi2

]
,

28 �
⎡

⎢
⎣

CT
e1
...

CT
en

⎤

⎥
⎦, 29 � diag(291, . . . , 29n), 29i �

[
0

Qi2

]
.

The gains of the state feedback control and the observer
are:

Kxi � M1i Z−1
i , Ki11 � Q−1

i1 M2i , Ki12 � Q−1
i1 M3i ,

Hi1 � Q−1
i1 M4i , Hi2 � Q−1

i2 M5i

Proof Consider the Lyapunov functions with s.p.d P and Q
matrices:

V1 � eT P e and V2 � xT Qx.
The time derivative of V1 concerning (37) is:
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V̇1 � eT Pė + ėT Pe

� eT P
[

Ãe + T f (x , t) + T h(x , t) + T Dd
]

+
[

Ãe + T f (x , t) + T h(x , t) + T Dd
]T

Pe

� eT He[P
(

Ãe

)
+ δ−1

1 PT T T P + δ1L2
f I + α−1

1 PT

T T P]e + α1xT H T
0 H0x + He

(
eT PT Dd

)

≤ xT [He
(

P Ãe

)
+ δ−1

1 PT T T P + δ1L2
f I + α−1

1 PT

T T P]e + He
(

eT PT Dd
)
+ α1xT H0H T

0 x (39)

where δ1 and α1 are positive scalars, with s.p.d matrice P,
the system is stable V̇1 < 0. �

The time derivative of V2 is:

V̇2 � xT Qẋ + ẋ T Qx

V̇2 � xT Q[ Ãx + F̃e + f (x , t) + h(x , t) + Dd]

+
[

Ãx + F̃e + f (x , t) + h(x , t) + Dd
]T

Qx

� xT Q Ãx + xT QF̃e + xT Q f (x , t) + xT Qh(x , t)

+ xT Q Dd + xT ÃT Qx + eT F̃T + f (x , t)T

+ h(x , t)T + xT Q He
(

Q Ã
)

x + He
(

xT QF̃
)

+ δ−1
2 xT QϕϕT Qx + δ2L2

f I + xT α−1
2 Q Qx

+ α2xT H0H T
0 x ,

≤ xT [He
(

Q Ã
)
+ δ−1

2 QϕϕT Q + δ2L2
f

+ α−1
2 Q Q]x + He

(
xT QF̃e

)
+ He

(
xT Q Dd

)

+ α2xT H0H T
0 x , (40)

where ϕ � In −B N , and δ2 and α2 are some positive scalars.
Clearly, the inequalities in (39) and (40) are obtained by

substituting the upper bound of Assumptions 2 and 3 in equa-
tions of V̇1 and V̇2. The closed-loop system in (37) is stable
if:

V̇1 + V̇2 < 0, (41)

Assuming that 
 � [
xT , eT

]
, the H∞ optimization can

be obtained as:

� �
∞∫

0

(

T 
 − μ2d

T
d
)
dt < 0, (42)

with (zero) initial conditions:

� � ∞∫
0

(

T 
 − μ2d

T
d + V̇1 + V̇2

)
dt − ∞∫

0

(
V̇1 + V̇2

)
dt

� ∞∫
0

(

T 
 − μ2d

T
d + V̇1 + V̇2

)
dt − (V1(∞)

+ V2(∞) + V1(0) + V2(0))

≤ ∞∫
0

(

T 
 − μ2d

T
d + V̇1 + V̇2

)
dt ,

Then,
T 
 − μ2d
T

d + V̇1 + V̇2 < 0 (43)

Substituting (39) and (40) then:

� �
⎡

⎣
x
e
d

⎤

⎦

T ⎡

⎣
�11 �12 �13

∗ �22 �23

∗ ∗ �33

⎤

⎦

⎡

⎣
x
e
d

⎤

⎦ < 0 (44)

Inequality (44) must equal to:

⎡

⎣
�11 �12 �13

∗ �22 �23

∗ ∗ �33

⎤

⎦ < 0 (45)

where

�11 � He
(

Q Ã
)
+ δ−1

2 QϕϕT Q + δ2L2
f I + α−1

2 Q QT

+ α2H0H T
0 + CT

x Cx�12 � �12 � QF̃ , �13 � Q D,

�22 � He
(

P Ãe

)
+ δ−1

1 PT T T P + δ1L2
f I + α−1

1 PT T T P

+ CT
e Ce, �23 � PT D, �33 � −μ2 I .

Let Z � P-1, by multiplying both sides of (45) by the
diagonal (Z , I , I), then (45) becomes:

⎡

⎣
�11 �12 �13

∗ �22 �23

∗ ∗ �33

⎤

⎦ < 0 (46)

�11 � He
(

ÃZ
)
+ δ−1

2 ϕϕT + δ2L2
f Z Z + α−1

2 I

+ α2Z H0H T
0 Z + ZCT

x Cx Z , �12 � F̃ , �13 � D,

�22 � He
(

P Ãe

)
+ δ−1

1 PT T T P + δ1L2
f I + α−1

1 PT T T P

+ CT
e Ce, �23 � PT D, �33 � −μ2 I .

Remark 3 By using Schur complement theorem and after
simple manipulation, the matrix inequality (38) can be eas-
ily obtained [38]. LMI toolbox can be used for obtaining
the design variable that achieve negativity of (38). Hence,
by satisfying Assumptions (1–3), solution of the optimiza-
tion problem of Theorem 1 guarantees stability of the system
with H∞ performance of Gzd∞ < β.

123



766 N. S. Abdul-Jaleel, M. S. Shaker

Remark 4 It is worth mentioning that references [5, 9, 15]
neither deal with the actuator saturation nor the integrated
designbetween the fault estimation and fault-tolerant control.
For instance, [5] has dealt with the class of uncertain linear
interconnected systems based on the backstepping method,
considering the disturbance and interconnection consist of
matched and mismatched parts, using the cyclic-small-gain
to handle the problem of mismatched interconnections. On
the other hand, the authors in [9] have dealt with uncertain
nonlinear large-scale systems, using the radial basis func-
tion neural network to approximate the unknown nonlinear
interconnections. Similarly, the nonlinear system with actu-
ator fault has been considered in [15]. Compared with the
research above, the proposed control strategy has employed
the sliding mode control allocation fault-tolerant control to
deal with nonlinear interconnected systems affect by actuator
fault, saturation, and interconnections.

4 Simulation results

A three degree of freedom (3-DOF) helicopter [39] is
described in this paper in order to demonstrate the efficacy
of the proposed approach (see Fig. 3), which can be briefly
described as follows:

where ε(t), p(t), and γ (t) represent the elevation angle,
pitch angle, and travel angle, respectively, and εo is the initial
arm-base angle. Ff , Fb are the control voltages for the front
and back motors. J1, J2, and J3 are the moments of inertia
that pertain to the axis of elevation, pitch, and travel; Kf is
the coefficient of force-thrust between propellers; and m is
the helicopter’s effective mass. The gravity constant denotes
by g equals 9.8 m/s2; La is the distance of the travel axis to
the helicopter’s body; Lh is the distance of the pitch axis to

Fig. 3 The model of a 3-DOF helicopter [39]

each motor. The mathematical model of the proposed model
is [32]:

J1∈̈ � K f La cos p
(
F f + Fb

) − mgLa sin(∈ + ∈0) + d1

J2 p̈ � K f Lh
(
F f − Fb

)
+ d2

J3γ̈ � K f La sin p
(
F f + Fb

)
+ d3 (47)

The control system has two inputs and two outputs. Only
two available control inputs are ready for control in this
model: the helicopter’s elevation and pitch angles. The state-
space can be described as:

ẋ11 � x12

ẋ12 � b1u1

ẋ21 � x22

ẋ22 � b2u2

y1 � x11

y2 � x21

where xT � [x11x12x21x22] � [∈ ∈̇p ṗ
]
represent the state

vector, uT � [u1u2] � [
u f ub

]
is the vector of control inputs

for front and back motors, and yT � [y1y2] � [∈ p] is the
output vector. The values of bi for (i � 1, 2) are given by:
b1 � K f La

J1
cos x21 and b2 � K f Lh

J2

Remark 5 The pitch angle is limited during the interval.
(−π

2 , π
2

)
assuming that x21 ∈ [−π

2 + θ0, π
2 − θ0

]
, where

θ0 is a positive constant.
The helicopter’s significant parameters are mentioned in

Table 1.
Due to mechanical constraints, the pitch angle is limited

to±31 degrees, the elevation angle is to±30.5 degrees, and
the restriction of the maximum voltage is±0.2. According
to Assumption 1, all subsystems are verified locally and
globally controllable and observable. The required param-
eters are given as β � 0.2, δ11 � δ12 � 0.01, δ21 �

Table 1 The parameters of a
3-DOF helicopter [39]

The
parameters

The value

J1 0.9138 kg m2

J2 0.0364 kg m2

K f 0.1188 N/V

m 1 kg

La 0.66 m

Lh 0.178 m
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δ22 � 10, α1 � α2 � 10. The integrated design is
simulated based on the parameters solved by Theorem 1,
which gives: μ1 � 242.031, μ2 � 139.553. The exter-
nal disturbance d1 � 0.01, and d2 � 0.02, and hi (xi , t)

�
n∑

j�1, j ��i
pi j Gi j gi j (xi , x j ), where:

gi j
(
xi , x j

) � sin
(
σi − σ j

) − sin
(
σi0 − σ j0

)
.

For the first subsystem

Kx1 �
[
9.136
1.724

]
, G1 �

⎡

⎣
0

−29.102
0

⎤

⎦,

H1 �
⎡

⎣
1 0
0 1

0.002 0.015

⎤

⎦, K1 �
⎡

⎣
0 0
0 0

−0.031 −0.020

⎤

⎦,

F1 �
⎡

⎣
0.220 −0.089 −1.302

−0.035 0.220 −0.247
0 0.021 −21.042

⎤

⎦,

For the second subsystem

Kx2 �
[
7.028
2.301

]
, G2 �

⎡

⎣
0

−18.089
0

⎤

⎦, H2 �
⎡

⎣
1 0
0 1

0.001 0

⎤

⎦,

K2 �
⎡

⎣
0 0
0 0

−0.011 −0.032

⎤

⎦,

F2 �
⎡

⎣
0.782 −0.105 −1.408

−0.301 0.102 −0.235
0 0.042 −18.056

⎤

⎦

Fig. 4 The control input for each subsystem when exceeding the satu-
ration level

Fig. 5 The system state for the first subsystem without FTC

Fig. 6 The system state for the second subsystem without FTC

For the design of the FTC, the SMC is con-
structed when the sliding surface is obtained as:si �
(−0.0246 − 0.8)x̂ ,∂i � ω̂si + 0.8,ω̂si (0) � 1. Keeping the
typical controller magnitude below 0.2 Nm to meet the actu-
ator saturation constraint is necessary.

When adding the actuator fault to the proposed system,
the performance of the control inputs, the elevation and pitch
angles response for each subsystem is shown in Figs. 4, 5
and 6, respectively.
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Fig. 7 Actuator faults and their estimation for: a the first subsystem,
b the second subsystem

Figure 4 illustrates the control input when the permissible
value of saturation level (uimax � 0.2) is exceeded.

Figures 5 and 6 illustrate the performance of the system
states for each subsystem under nominal control; it can be
noticed that the states are still stable without actuator mal-
function despite some overshoot at the starting due to the
disturbance andnonlinear interactions.However, they exhibit
unacceptable performance once the fault occurs at 50 s.

Fig. 8 Fault estimation error

Fig. 9 The control inputs under FTC

Figure 7 shows the actuator faults simulation results and
their estimation for each subsystem. It is clear that the actu-
ator faults completely match their estimation in the first and
second subsystems; in contrast, some overshoot occurs at
starting. Such overshoots can be limited by modifying the
performance index and the parameters of pole placement.

According to Fig. 8, the fault estimation error will even-
tually converge to a value around zero. We notice a small
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Fig. 10 The system state under FTC for: a the first subsystem, b the
second subsystem

increase occurs after 50 s due to the effect of the additive
fault.

The FTC system can be used to compensate for the influ-
ence of fault andmaintains system stability. The control input
responses, elevation and pitch angles are shown in Figs. 9
and 10, from which it may be noted that good control per-
formance is attained. Moreover, the proposed controller has
limited the control input to less than 0.2 Nm, mainly after the
fault occurs.

By summarizing the simulation results, compared to the
nominal approach, the integrated FE/FTC design can stabi-
lize the proposed system with optimum performance, while
avoiding the actuator saturation once a fault occurs.

5 Conclusions

This paper has presented a FTC for nonlinear interconnected
systemsunder actuator saturation.Theproposal combines the
SMC,CA, and fault estimation/compensationmethodologies
to ensure robust closed-loop performance. The integrated
approach of decentralized FE/FTC is illustrated using the
3-DOF helicopter suffering from saturation, actuator fault,
nonlinear interaction, and external disturbance. In the pre-
sented framework, the problem of actuator saturation within
FE/FTC has been highlighted and tackled efficiently. This
has been achieved via employing the decoupling capability
of SMC and UIO within integrated FE/FTC loop. Simula-
tion results have shown the sliding mode FTC allocation
technique efficacy in compensating for the hard effect of sat-
uration and actuator fault, thereby achieving the stability of
the whole system.
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