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Abstract
In this paper, a novel method for tuning PIλDμ controllers is proposed. Based on the direct synthesis approach, the pro-
posed technique consists of taking the closed-loop system equivalent to Bode’s ideal loop transfer function. Using a
semi-analytical technique, the parameters of the controller are derived from the desired closed-loop transfer function and
the plant’s input/output signals without using any identification technique. Simulation examples are given to show the effi-
ciency and the applicability of the proposed method to high-order and time delay systems. The results confirm that the
proposed controller satisfies the dynamics requirements with iso-damping property when compared with two other related
tuning methods. As an application example, the proposed tuning method is applied to the automatic voltage regulator system
in order to study the efficiency and robustness of the proposed controller.

Keywords Fractional-order PID controller design ·Bode’s ideal loop transfer function ·Direct synthesis approach ·Analytical
tuning · Automatic voltage regulator

1 Introduction

Nowadays, the fractional-order control, which is the use of
the aspect of the non-integer-order derivative or integral oper-
ators in controller design, became a very important strategy
in the control system field. Indeed, the first sign of fractional-
order control existence was introduced by Bode in [1] where
he proposed the fractional-order integrator as an ideal loop
transfer function. The main reason of this choice is that it
gives a closed-loop system that is insensitive to gain changes
[2]. This idea gave the starting point to Oustaloup in 1991 [3]
where he proposed theCRONEcontrol as the first application
of the fractional-order control. Since 1999, when Podlubny
has proposed the PIλDμ [4], which is a generalization of
classical PID controller, most of the developments in the
fractional-order controller tuning methods were based on
his work. These tuning methods are classified into three
main categories according to review presented in [5] namely
numerical, analytical and rule-based methods. However, due
to the higher number of parameters of the fractional PID
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compared to the classical PID controller, the tuning of its
parameters remains always a challenging task demonstrated
by the recent proposed methods in the literature [6–19].

In classical control, the PID controller is the most com-
monly used for industrial applications. In fact, the success
of this controller is due to its simplicity and achievability to
solve themost required performance specifications in control
systems. However, the tuning of this controller remains an
interest topic of research to the present day. In this context,
the two popular approaches namely internal model control
IMC [20] and direct synthesis DS [21] have known a wide
acceptance in the research community in the field of PID
design, this success may be justified by their simplicity and
their explicit tuning formulas, allowing the derivation of the
controller analytically by using the plant’smodel. In addition,
the controller obtained by these approaches has not neces-
sarily a PID form, but the choice of an appropriate desired
closed-loop transfer function helps the designer to derivate a
PID structure [21].

Since the fractional-order control is considered as an
extension of classical control, most of the theories of integer-
order systems and controllers were extended to the fractional
ones. The IMC has been extended to the fractional-order
PID controller design in [11, 13], where a new controller
structure that includes a fractional filter has been proposed
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in [13]. On the other hand, the second approach; which is
the DS-based technique, has not yet been extended to the
case of PIλDμ controller design. In this paper, a novel DS-
based tuning method of fractional PID is proposed, inspired
from the recent tuning technique of the classical PID con-
troller proposed in [22]. This method consists of making the
closed-loop system equivalent to the Bode’s ideal loop trans-
fer function. The tuning formula is a semi-analytical and
data-based technique where a set of the closed-loop system
input/output signals allows the designer to extract the five
parameters of the PIλDμ controller without the need for any
model approximation of the plant. The main advantage of
this tuning method is that the closed-loop system behaves
as the desired system in the selected frequency band which
allows manipulating the dynamics of controlled system by
adjusting the desired one. The basic idea of the tuning algo-
rithm is presented and illustrative examples are presented to
test the effectiveness and the robustness of the fractional PID
controller tuned by the proposed approach.

Many industrial processes are modeled by transfer func-
tionswith delay; this physical phenomenonmakes the control
of this type very difficult, especially when the system is char-
acterized by a long time delay. Indeed, the presence of time
delay θ in the open loop gives a phase equal to − ωθ , the
phase angle decreases monotonically with frequency, with
this slope in the open-loop phase we cannot obtain a flat
phase [2].

In the literature, different approaches are used for control-
ling time delay systems. In the case of the desired system,
this last usually includes the same time delay as the one
in the plant [23, 24]. In this variant, the designer looses
the iso-damping property. The second approach consists of
using a well-known Smith predictor as in the works [25–27],
two degrees of freedom (2-DOF) fractional-order internal
model controller was proposed in [28] and direct synthesis-
based controller was proposed in [29]. The third approach is
based on satisfying the condition that the derivative argu-
ment of open-loop transfer functions to be zero at unity
gain crossover frequency. This condition verifies that the
phase of open loop to be constant around gain crossover
frequency which gives the iso-damping property for the
closed-loop system [30].Many existing tuningmethods have
used this condition in controller design [6–10]. An excep-
tion in [14] the designer has used a loop shaping method
and solved the problem with numerical optimization. In the
present work, the Bode’s ideal transfer function as desired
system is used, the results presented in this paper show
that the open-loop system with the PIλDμ controller may
have the same behavior of the desired system for a given
frequency band although the presence of time delay in the
plant.

Knowing that the fractional control has been proven suc-
cessful for application in power generation system as in [31,

C(s) Gp(s) Y(s) 

R(s) 

Fig. 1 Classical unity feedback control

32], an application of the proposed controller designmethod-
ology to an automatic voltage regulator (AVR) is carried out.
Results show implementation simplicity and efficiency of the
controlled system when using the proposed controller.

2 Direct synthesis-based control design

Let us consider a feedback control system shown in Fig. 1
with Gp(s) as the plant’s transfer function; the closed-loop
transfer function is given by:

Gcl(s) � C(s)Gp(s)

1 + C(s)Gp(s)
(1)

The controller transfer function can be derived from
Eq. (1) as:

C(s) � Gcl (s)

Gp(s)(1 − Gcl (s))
(2)

When replacing the closed-loop transfer function by the
desired transfer functionGcl_d with the assumption thatGp(s)
is known, the desired controller is given by:

C(s) � Gcl_d (s)

Gp(s)(1 − Gcl_d (s))
(3)

In the general case, the controller obtained when using
the DS approach has not necessarily the PI or PID form.
Nevertheless, by choosing an appropriate desired closed-loop
function, the PID structure can be derived as in [21], where
the author proposes an analytical design for some known
models such as first and second order plus time delay and
integrator plus time delay.

The advantage of using theDS approach is that the optimal
controller is well-known and the performance of the closed-
loop system is manipulated by adjusting the desired model.
However, this technique, as the IMC technique, depends on
the plant’s model which is generally not available in many
industrial applications. This issue has been treated in [22],
where the designer formulated the same DS approach by
tuning the PI/PID controller analytically using process data
without any model approximation of the process. In the next
section, we present a projection of this new tuning method
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for the design of fractional-order PID controller where an
appropriate desired closed-loop system is considered and the
controller design is carried out for a set-point change instead
of load disturbance rejection as in the work [22]. The objec-
tive of selecting the set-point change as the control goal is to
achieving the iso-damping property in the closed-loop sys-
tem.

3 Direct synthesis-based PIλDμ tuning

3.1 Proposed controller design

PIλDμ controller is the most common structure of fractional
control which is an extension of the classical PID controller.
This controller includes the three actions proportional, inte-
gral and derivative with additional flexibility compared to
the classical one. This flexibility is due to its two additional
parameters λ and μ which can improve the performance and
robustness of the feedback control system.

The transfer function of PIλDμ controller is given by:

C(s) � kc +
Ti
sλ

+ Tds
μ (4)

where λ and μ are the order of integrator and derivative
actions, respectively, these two parameters are generally cho-
sen real in the range 0 to 2 [5].

For DS-based approach, the optimal controller is given by
Eq. (3), so we have:

C(s) � kc +
Ti
sλ

+ Tds
μ � Gcl_d (s)

Gp(s)(1 − Gcl_d (s))
(5)

where the desired closed-loop transfer function is chosen as
follows:

Gcl_d (s) � 1

1 +
(

s
ωc

)m (6)

This system, called Bode’s ideal transfer function, is
widely used as reference model in control system design [2].
The main advantage of this system is that it has the iso-
damping property which is a very suitable property for the
controlled system. The two positive real parametersm andωc

must be chosen in a way that the desired closed-loop system
satisfies the desired performances. If the dynamics require-
ments are given in terms of unity gain crossover frequency
and phase margin so the two parameters m and ωc are given
by:

• ωc is unity gain crossover frequency.
• m � 2(1-ϕm/π ) (ϕm is the phase margin).

The transfer function H(s) is given by:

H (s) � Gcl_ d(s)

Gp(s)(1 − Gcl_ d(s))
� U (s)Gcl_ d(s)

Y (s) (1 − Gcl_ d(s))
(7)

where U(s) and Y (s) are the Laplace transform of the plant’s
input and output signals, respectively. So, from Eqs. (5) and
(7) we have:

kc + Ti s
−λ + Tds

μ � H (s) (8)

This equation can be rewritten as:

[
1

H (s)

s−λ

H (s)

sμ

H (s)

]
p � 1 (9)

where p � [p1 p2 p3]T and

⎧
⎪⎨
⎪⎩

p1 � kc

p2 � Ti

p3 � Td

.

Equation (9) is expressed in the frequency domain by sub-
stituting s � jω as follows:

[
1

H ( jω)

( jω)−λ

H ( jω)

( jω)μ

H ( jω)

]
p � 1 (10)

Initially, we consider that the parameters λ and μ are
known. So, the unknown parameters vector p can be cal-
culated in the way that Eq. (10) is satisfied in the entire
frequency range [ωmin ωmax]. Thus, Eq. (10) is rewritten as:

1n − ψ p � 0 (11)

where ψ �

⎡
⎢⎢⎢⎢⎢⎣

ψ1

ψ2

...

ψn

⎤
⎥⎥⎥⎥⎥⎦

, ψi �
[

1
H ( jωi )

( jωi )−λ

H ( jωi )
( jωi )μ

H ( jωi )

]
.

1n denotes an n×1 column vector of ones.

Since the plant’s dynamic performance is depending
essentially on unity gain crossover frequency, the frequency
range [ωmin ωmax] is chosen around this frequency ωc.

When we use the classical PID, the ψ matrix is known
as in the work presented in [22], where the three parameters
are derived analytically. It’s not the case with the PIλDμ

where the ψ matrix depends on the two parameters λ and μ.
The exponent positions of these last make very difficult their
separation from the ψ matrix in Eq. (11). As it is known that
the values of λ and μ are usually in the range of 0 to 2, we
can numerically scan these two parameters from 0 to 2 and
derivate analytically the p vector for each value of λ and μ.
Hence, the best values of λ and μ are those that satisfy the
optimization criterion that assured more likely Eq. (11).
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The resolution of Eq. (11) is formulated as in [22] where
the author proposed to solve a weighted least-squares prob-
lem:

min
p

(
φ − ψ̃ p

)T
W̃

(
φ − ψ̃ p

)
(12)

With

φ �
[
1n

0n

]
; ψ̃ �

[
Re(ψ)

Im(ψ)

]
; W̃ �

[
W 0

0 W

]

0n is an n × 1 column vector of zeros;
Re(ψ) and Im(ψ) denote real and imaginary parts of the

complex matrix ψ . and W is a weighting matrix. An appro-
priate choice of W for stable process is:

W � diag

[
1

ω1

1

ω2
...

1

ωn

]
(13)

This choice gives a priority to high frequencies over low
frequencies in the optimization problem (12).

The analytical solution of weighted least-squares problem
(12) is given by:

p �
(
ψ̃T W̃ ψ̃

)−1
ψ̃T W̃φ (14)

Once the vector p is calculated, the five parameters of
the PIλDμ controller are obtained. The tuning algorithm is
detailed as follows:

This resolution technique is chosen because of its sim-
plicity and the fact that it has an analytical solution allowing
the design of the controller without using the optimization
techniques.

The optimization criterion used in this work is a function
of two variables λ and μ is given by:

F(λ,μ) �
(

φ − ψ̃ p
)T

W̃
(

φ − ψ̃ p
)

(15)

This criterion is chosen in order to satisfy more likely
Eq. (11).

Since the three parameters kc, T i and Td are analytically
obtained from Eq. (14) and the two additional parameters λ

andμ are numerically computed by scanning their range, the
proposed solution is called a semi-analytical technique.

3.2 Fourier transform of the input/output signals

In the previous subsection, the controller parameters p are
given analytically function of ˜ψmatrix usingEq. (14),where
˜ψ is function of H(jωi) according to (11). Numerical com-
putation ofH(jωi) for all frequenciesωi can be done by using
Eq. (7) where H(jωi) is function of the Fourier transform of
the input/output signals U(jωi) and Y (jωi). Finally, the con-
troller tuning can be done through the time domain signals
u(t) and y(t) without need of the plant’smodel. In this section,
we use the technique presented in [22]. The input and output
signals are, respectively, decomposed as follows:

u(t) � 	u(t) + us

y(t) � 	y(t) + ys
(16)

Here, Δu(t) and us are the transit and final steady-state
values of u(t), respectively. The same for the output signal
y(t). It is known thatΔu(t) andΔy(t) are approximately zero
in steady state, so their Fourier transforms are given by:

	U ( jωi) �
∫ ∞

0
	u(t)e− jωitdt ≈

∫ T

0
	u(t)e− jωitdt

	Y ( jωi) �
∫ ∞

0
	y(t)e− jωitdt ≈

∫ T

0
	y(t)e− jωitdt

(17)

where T is the acquisition time of input and output signals, its
value must be greater than the settling time of the plant. So,
Eq. (17) can be calculated at each frequency ωi by numeri-
cal integration or by the FFT technique. Finally, the Fourier
transform of the input–output signals is given by:

U ( jωi) � 	U ( jωi) +
us
jωi

Y ( jωi) � 	Y ( jωi) +
ys
jωi

(18)

3.3 Simulation results

To exhibit the effectiveness of the proposed method and its
online application, the closed-loop data u(t) and y(t) were
generated by simulating a closed-loop system with an initial
controller, then the tuning algorithm is applied. Two different
examples are presented in this section, in the first example
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a complete study is presented that includes the sensitivity
to the noise measurements and the chosen initial tuning. In
the second example, only time and frequency responses are
presented.

The following examples show that the proposed tuning
method is not influenced by the initial (existing) controller
used to generate the closed-loop data.

3.3.1 Example 1: high-order systems

Let use the first example with the transfer function given by:

Gp1(s) � 1

(1 + s)3
(19)

The design specifications are given by:

−ϕm � 60 deg.

−ωc � 0.3 rad/s.

These specifications are satisfied by the desired fractional-
order system:

Gcl_ d(s) � 1

1 +
( s
0.3

)1.33 (20)

We use the controller tuned by the analytical technique
proposed in [24] using the following design specifications
(ϕm � 60 deg, ωc � 0.3 rad/sec) which is given as follows:

C(s) � 0.5926

s0.0774

(
1 +

0.4292

s1.0648

)
(21)

This controller is used for comparison and also to generate
the first initial tuning closed-loop data.

For a second initial tuning, the flowing controller is used:

C(s) � (1 +
1

s
+ s) (22)

Figures 2 and 3 show the two closed-loop data used for
proposed controller design.

Figure 4 shows the Bode plot of the plant transfer function
(19) and those estimated from process data by calculating Y
(jω)/U (jω).

By using a frequency band [0.1 2] rad/sec with sampling
0.05 rad/s, we obtain the following controller:

Cp(s) � 0.8517 +
0.2763

s1.24
+ 0.4454 s1.302 (23)

These five parameters give an optimum criterion F (1.24,
1.3) � 0.03412 as it is shown in Fig. 5. Note that the F
function has a convex form which implies that it has one
global optimum in the presented rage.
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Fig. 2 Control law signals used for proposed controller design
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Fig. 3 Output signals used for proposed controller design
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Fig. 4 Frequency response of the process and those estimated from pro-
cess data

Figure 6 shows theBodediagramsof the open-loop system
with the controllers (21), (23) and the desired open system
(20).

We can see that the phase is flat around ωc � 0.3 rad/s
which implies that the closed-loop system controlled with
proposed controller is robust to gain variations. These results
are shown in Fig. 7. On the other hand, the system controlled
with (21) has not this property, as shown in Fig. 8, the main
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Fig. 6 Bode diagrams of the open-loop transfer functions

reason is that because the considered reference model in the
method [24] is the Bode’s ideal transfer function with time
delay.

Table 1 shows the different characteristics of the closed-
loop systemcomparedwith the controller (21) and the desired
specifications where Mp is the overshoot, ts is the settling
time and Ms is the peak value of the sensitivity function.

Remark: From Figs. 7 and 8, the closed-loop response of
the nominal plant with the proposed controller seems not
better than that of (21) in terms of overshoot. Such result
is obtained due to the weakness in design precision of the
controller (21) compared to the proposed one. Table 1 shows
that the proposed controller gives the closest performance to
desired one.

In practice, data signals are noisy due to the sensors limi-
tations and the effects of their power supply. To verify the
applicability of the proposed tuning method, a Gaussian
white noise with a standard deviation of 0.05 is added to
input–output signals. Figure 9 shows the estimated frequency
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Fig. 7 Step responses of the closed-loop systemGp1 with different gain
values (using the proposed controller) red line and the desired response
blue line
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Fig. 8 Step responses of the closed-loop systemGp1 with different gain
values (using the controller given by (21)) black line and the desired
response blue line

response obtained from noisy data of the second initial tun-
ing. It’s clear that the estimated frequency response obtained
from the estimated data is approximately the same with the
calculated one and the controller designed from noisy data
is given by:

Cpn(s) � 0.8621 +
0.2719

s1.24
+ 0.4373 s1.33 (24)

Table 2 shows the obtained PIλDμ parameters from dif-
ferent data used for the design where Cin1(s) and Cin2(s)
are, respectively, the controllers obtained from first and sec-
ond initial tuning. It is clear that no remarkable change is
observed in the PIλDμ parameters, which means that the
proposed method is insensitive to the process data.

3.3.2 Example 2: time delay system

The transfer function of the plant is given as follows:

Gp2(s) � 0.0015

(s2 + 0.1547 s + 0.004357)
e−8s (25)
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Table 1 Frequency and time
domain characteristics Controllers ϕm (deg) ωc (rad/sec) Mp (%) ts (s) M

Reference closed-loop system 60 0.3 11.4 18.11 –

Controller (21) 61.6 0.297 8.1 22.76 1.39

The proposed controller 59.6 0.296 15.5 20.62 1.15
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Fig. 9 Frequency response of the process and its estimate from noisy
data

The design specifications are given by:

−ϕm � 60 deg.

−ωc � .01 rad/s

These specifications are satisfied by the desired fractional-
order system:

Gcl_ d(s) � 1

1 +
( s
0.01

)1.33 (26)

By using a frequency band [0.001 0.2] rad/sec with sam-
pling 0.001 rad/s, we obtain the following controller:

Cp(s) �
(
1.0423 +

0.0116

s1.207
+ 22.8742s1.52

)
(27)
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Fig. 10 Bode diagrams of the open-loop system with two controllers
(27) and (28)

This controller is compared with the one proposed in [14],
its transfer function is given by:

C(s) �
(
1.1030 +

0.0141

s1.1741
+ 18.1322s1.2893

)
(28)

Figure 10 shows the frequency responses of the open-
loop system controlled with (27) and (28) compared with
desired system response. It is clear that the two open-loop
systems satisfy the dynamics requirements and also have
a flat phase around the gain crossover frequency ωc �
0.01 rad/s which gives a robustness property to the two
controlled systems. This robustness to gain variations is
shown in Fig. 11 where the two controllers satisfy the
iso-damping property for a large band of gain variations.
However, it is clear that the proposed controller is more
robust than the controller proposed in [14] as it is shown

Table 2 Different controllers
obtained from different process
data

Parameters Cp (s) Cin1 (s) Cin2 (s) Cpn (s)

kc 0.8517 0.8563 0.8518 0.8621

T i 0.2763 0.2726 0.2723 0.2719

Td 0.4454 0.4364 0.4379 0.4373

Λ 1.2310 1.2400 1.2400 1.2400

μ 1.3020 1.3000 1.3000 1.3300
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Fig. 12 Step responses of Gp2 with the two controllers (27) and (28)
with the plant static gain equals to 18

in Fig. 12 where the gain value equals 18; in addition,
the proposed method is easily implemented and does not
need the use of a complicated optimization algorithm as in
[14].

From Fig. 11, we can easily see that the closed-
loop system behaves as the desired system given by (26)
despite the presence of time delay in the plant trans-
fer function. This is the consequence of the overlap-
ping between the open-loop and the desired system in
the frequency range around the gain crossover frequency
ωc.

4 Fractional PID controller design
for automatic voltage regulator system

In this section, the proposed tuning method is applied
to tune the automatic voltage regulator (AVR) of a syn-
chronous generator. The AVR has an important role in
power generation systems where it grantees to main-
tain the output voltage of an alternator at a desired
value in the presence of disturbance and load change.
Figure 13 shows the block diagram of the AVR sys-
tem.

The parameters of theAVR transfer functions components
of are summarized in Table 3.

Most of existing research works in the literature as in
[33–36] use the following parameters:

T a � 0.1; T e � 0.4; Tg � 1; T s � 0.01; ka � 10; ke
� 1; kg � 1; ks � 1; where the closed-loop system without
controller is stable and the controller adjusts its performance.
These parameters will be referred to as standard parameters
in the following development.

In recent research work [37], authors use the parameters
nominal values given by:

Ta � 0.06; Te � 0.7; Tg � 1.5; Ts � 0.0305; ka � 25;
ke � 5.5; kg � 0.85; ks � 1; where the closed loop without
controller is unstable and it will be very difficult to optimize
the controller using optimization algorithms.

Our study is divided into two parts:

• Design, with the proposed technique, a controller for
standard parameters values and compare the closed-loop
performances with those obtained in [33–36].

• Design a second controller for nominal parameters val-
ues and compare the closed-loop performances with those
obtained in [37]. In this case, the plant’s model is used
instead of input/output signals.

In order to reduce the sensitivity to the noisemeasurement,
the fractional-order derivative is implemented in series with
a low pass filter given by 1/ (1 + 0.001 s).

Remark: As the AVR is a regulator and as the
power generation systems always works in con-
stant terminal voltage, the iso-damping property will
not be taken into consideration for the PIλDμ con-
troller design. The same tuning algorithm will be
used, except that the desired transfer function will be
changed.

123



2132 N. Fergani

Fig. 13 Block diagram of AVR
system
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Table 3 AVR system’s parameters

Component Gain limit Time constant limit

Amplifier 10 ≤ ka ≤ 40 0.02 ≤ T a ≤ 0.1

Exciter 1 ≤ ke ≤ 10 0.4 ≤ T e ≤ 1

Generator 0.7 ≤ kg ≤ 1 1 ≤ Tg ≤ 2

Sensor ks � 1 0.001 ≤ T s ≤ 0.06

4.1 Controller design for standard parameters
values

The PIλDμ controller, tuned by the proposed method, is
designed for the AVR system of Fig. 13 where the plant’s
parameters are considered at its standard values and the
closed-loop performance is compared with four different
controllers proposed in [33–36].

As the AVR system is high-order system (fourth order),
the proposed tuning method is applied using an appropriate
desired closed-loop transfer function.

Gd (s) � 1

((0.02 s)2 + 2 2.1 0.02 s + 1)3
. (29)

This high-order transfer function is proposed as reference
model for the controlled system with reasonable parameters
and control law signal.

By using the proposed tuningmethodwith an initial tuning
as the proportional gain equals to 1, the resulting proposed
FOPID is shown in the first column of Table 4. This table
summarizes the results of a comparative study of the pro-
posed controller with two PID controllers [33–36] and two
fractional PID controllers [35, 36] tuned using optimization
techniques.

The closed-loop characteristics shown in Table 5 are
divided into two parts:

• The first one shows the output step response characteris-
tics: overshoot, rise time, settling time and the maximum
of sensitivity functionMs.

• The second part gives the characteristics of the control
signal in terms of maximum values umax, root mean square
values uRMS and total variation which is given by fowling
equation:

T V �
∞∑
k�0

|u(k + 1) − u(k)| . (30)

The steady-state error achieved by controllers is equal to
zeros.

Figure (14) shows the time response of the AVR system
controlled by the controllers given in Table 5. At t � 0 a 1pu

change in the reference R(s) is applied in order to analyze
the set-point tracking and at t � 15 a step unit change in
the output disturbance is applied to analyze the disturbance
rejection.

It is clear from Fig. 14 that the proposed controller
achieves a reasonable time response compared with other
controllers with two main advantages:

• The generation of a reasonable control law due to the
choice of an appropriate desired closed-loop transfer func-
tion.

• Simple tuning procedure compared with other controllers
based on optimization algorithms with different choices of
fitness functions.

4.2 Controller designed for nominal values
of system parameters

By using the nominal AVR system parameters:

4.2.1 Ta � 0.06; Te � 0.7; Tg � 1.5; T s � 0.0305; ka � 25; ke
� 5.5; kg � 0.85; ks � 1;

The desired TF is given by:

Gd (s) � 1

(1 + 0.06 s)6
. (31)
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Table 4 Comparison of different
controllers for AVR system Proposed

controller
C1 (s)
[33]

C2 (s)
[35]

C3 (s)
[36]

C4 (s)
[34]

Controller
parameters

Kc 0.4345 0.6198 2.4676 2.9944 0.9649

T i 0.4595 0.4165 0.3020 0.8165 0.610

Td 0.2531 0.2127 0.4230 0.5206 0.3110

λ 0.9390 1 0.9700 1.1778 1

μ 0.8630 1 1.3800 1.3647 1

Closed-Loop
characteris-
tics

Mp % 2.8846 0.1167 0.9182 6.8069 10.6639

2.8846 8.7597 25.4738 34.366 10.3085

tr 0.2942 0.3050 0.0932 0.0764 0.1989

ts 0.2942 0.6117 0.3188 0.3039 0.4764

Ms 1.3234 1.1746 3.6055 0.4120 0.9311

umax 1.3234 3.9198 2.1706 6.5863 3.7122

uRMS 1.4343 1.3060 1.3547 1.4405 1.4492

TV – – – – –

10.1227 213.3098 8.7114 103 1.0467 104 311.9649

10.1226 12.00 12.00 12.00 12.00

0.2628 1.3636 48.0239 56.9760 1.9950

0.2760 0.3078 0.7255 0.7621 0.3526

32.2931 248.0053 1.0323 104 1.2233 104 364.8573

32.2929 36.7921 103.5607 108.5495 37.8660

Remark: The closed-loop characteristics presented with two values for each index, first line without saturation
and the second line with saturation in the control signal

Table 5 Comparison of the
proposed controller with
H∞-based controller of [37]

Case 1 Case 2 Case 3 Case 4 Case 5

Gain values

ka 25 40 40 10 10

ke 5.5 10 10 1 1

kg 0.85 1 1 0.7 0.7

ks 1 1 1 1 1

Time constant

T a 0.06 0.1 0.02 0.02 0.1

T e 0.7 1 0.4 0.4 1

Tg 1.5 2 1 1 2

T s 0.0305 0.06 0.001 0.001 0.06

Proposed controller

Mp% 3.8604 54.1431 21.35 0 0

ts (2%) 2.0669 3.3937 1.3212 27.0567 19.162

Tv (u(t)) 2.0810 2.3683 3.6517 2.9377 1.8337

uRMS 0.0217 0.0237 0.0249 0.0832 0.0889

H∞ controller K (s)

Mp% 15.0926 41.7160 5.8828 0 0.4929

ts 2% 3.1006 3.8316 0.5962 21.0872 13.7518

Tv (u(t)) 4.6176 3.9997 13.1321 6.3814 4.1549

uRMS 0.0300 0.0278 0.0568 0.0905 0.0952
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Fig. 14 Comparison of time
response of the five controllers
given in Table 4
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The controller obtained using the proposed tuningmethod
with the desired closed-loop transfer function is given by:

Cp(s) � 0.0425 +
0.0260

s0.9802
+ 0.0308 s0.7710 (32)

The proposed controller will be compared with the robust
Hω-based controller proposed in [37] where its transfer func-
tion is given as:

K (s) � 0.02883 s5 + 8156.28 s4 + 703621 s3 + 15750024.5 s2 + 48471744 s + 33417184.4

s6 + 222.7 s5 + 22584 s4 + 1372617 s3 + 53520000 s2 + 1263200000 s
(33)

Two controllers given by (32) and (33) are tested for
five different cases for plant’s parameters, where these cases
involve nominal, minimum and maximum values of uncer-
tain parameters.

Table 5 and Fig. 15 show comparison results of the two
controllers (32) and (33) for five different cases of AVR
system parameters where the two controllers satisfied a
steady-state error Ess � 0 and umax � 0.7450 with proposed
controller and umax � 0.7046 for (33) in all five cases.

Figure 15 shows the time response for set-point tracking
at t � 0 s and disturbance rejection at t � 5 s for the three
first cases and 15 s for the last two cases. The control signals

are also shown for two controllers (32) and (33) in the five
cases presented in Table 5.

It can be noted that the proposed controller satisfies good
performance and robustness as the robust controller (33).
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Fig. 15 Comparison of time
response of the two controllers
(32) red line and (33) blue line
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Fig. 16 The synchronous machine associated with the hydraulic turbine and governor (HTG) and excitation system (AVR) [38]

From these results, the proposed controller can be used in
different operating conditions, which shows its robustness to
the plant parameters variation.

4.3 Simulation of a real synchronous generator
connected to a 230 kV network

Figure 16 shows the simulation of synchronous generator
of 200 MVA, 13.8 kV [38]. The generator supplies the grid
with 150MVA and at t � 30.1 s a three phases short cir-
cuit fault is simulated on the transformer bus for 6 cycle.
After the fault is cleared, the terminal voltage output reach
its desired value as shown in Fig. 17 where three controllers
are compared namely: proposed controller, H∞ controller
and standard IEEE controller.

Figures 17 and 18 show the time response and controller
output for system described in Fig. 16 by the three com-
pared controller. Although the proposed controller and the
robust Hinf controller have not been designed exactly for the
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Fig. 17 The terminal voltage of the synchronous machine in 230 kV
networks

used model of generator in [38], their performances are of
goodquality comparedwith the conventional IEEEcontroller
which gives a saturated control law as shown in Fig. 18. The
good performances obtained when using the controllers (32)
and (33) are due to the robust design of H ∞ controller and
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Fig. 18 Excitation voltage of the synchronous machine in 230 kV net-
works

the appropriate choice of the desired transfer function (31)
in the proposed design methodology.

5 Conclusion

A novel fractional-order PID controller tuning method is
proposed, where the controller is synthesized such that the
closed-loop system behaves as Bode’s ideal loop transfer
function. The advantage of this tuning method is that it
does not need the plant’s model for controller design. In
addition, the five parameters of PIλDμ are semi-analytically
derived which makes the proposed technique very useful
for online implementation where the controller parameters
are calculated from the plant’s input–output data allowing
the improvement of existing control. The simulation results
have shown the efficiency of the proposed method for a class
of high-order and time delay systems and confirm that the
closed-loop systems with the proposed controller have the
iso-damping property. In addition, present work illustrates
that it can avoid difficulty to adjust the two parameters λ and
μwhere their values are known in the range [0 2] by the sim-
ple scanning of their discrete values and the control problem
is solved without limitation of the five DOF of the PIλDμ

controller.
The additional contribution of this work is that we can

use a delay-free-system as a desired closed-loop system for
controlling a time delay system unlike the work presented in
[24] that used the Bode’s ideal integrator with time delay as
reference open-loop model.

The application of the PIλDμ controller to theAVRsystem
shows the utility and efficiency of the proposed controller
design methodology.
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