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Abstract
Vibration depreciates positioning accuracy and productivity of flexible manipulators and make their modeling and/or con-
trolling a very demanding task. In this paper, an Adaptive Model Predictive Control (AMPC) algorithm is detailed to actively
damp a nonlinear one-link flexible manipulator while tracking its rigid body position. The derived controller involves in-loop
linearization of the plant, around the actual state and control signal, to adapt the required model over the prediction horizon.
The robustness of the proposed control strategy is improved using Super-Twisting Integral Sliding Mode Control (STISMC).
The proposed controller compensates for the assumed matched uncertainties and external disturbances affecting the nominal
plant, so the robustness is guaranteed. The effectiveness of the active vibration control is appraised via numerical simulation
carried out using Matlab/Simulink.

Keywords Active vibration control ·Adaptivemodel predictive control · In-loop linearization ·One-link flexible manipulator ·
Super-twisting integral sliding mode control

1 Introduction

Flexible manipulators, providing high productivity and
energy efficiency, are regularly advantaged than their rigid
analogs. Allowing high speed maneuvering and low energy
consumption, they are systematically introduced in innova-
tive industrial applications [1]. However, either their mod-
eling approaches or control strategies, that have been the
subject of numerous research papers [2], are far from those
used for traditional heavy and rigid structures [3].

A flexible manipulator position tracking must consider its
elastic nature, so highly accurate and computational power
effective dynamic models are compulsory while deriving
a high-precision driving algorithm [4, 5]. The rigid body
motion is well modeled using the energetic approaches such
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as the Lagrange formulation and the Newton–Euler formula-
tion [1, 2, 6], but errors are inducedwhen the potential energy,
stored as a deflection at the robot’s links, joints or drives, is
neglected [3].When considering their flexible nature, reliable
flexiblemanipulatorsmodels result, very often, in continuous
partial differential equationswith infinite degrees of freedom,
so they obligate very high memory usage and inconvenient
computational effort. Hence, discretized models are more
suitable and are far more employed. Reducing the system
degrees of freedom to a finite number is usually achievable
via FiniteElementMethod (FEM)orAssumedModeMethod
(AMM) [4]. When the assumed modes method is used, the
number of modes to be considered should be reduced to sim-
plify the model simulation, yet the disregarding of higher
modes should be wisely sustained to reach the targeted pre-
cision [7].

Many research papers have been focusing on flexible
manipulator control, and numerous strategies have been
used. Essentially, there are two main categories of con-
trol schemes when dealing with flexible manipulator active
vibration control: feedforward and feedback control. The
first idea focuses on the control input filtering/adaptation
to anticipate the vibration while tracking the reference
rigid body position. Examples of these techniques are the
input shaping technique [8, 9] and the trajectory planning
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[10]. Relatively to this approach, one immediate drawback
to mention is the lack of robustness. The feedback con-
trol strategies, on the other hand, depend on the system
states/outputs to control the vibration in a closed loop frame-
work. Some of these control strategies are based on the linear
quadratic regulator [11], adaptive control [12], state decou-
pling and/or sliding-mode control [13, 14] and fuzzy logic
control [15]. As the control signal is a closed loop state-
based function, a state observer is very often necessary to
this end, and many strategies have been used to dress this
issue such as sliding mode observers/differentiators [16–18]
and extended/unscented Kalman filtering [19, 20].

In this paper, a robust Adaptive Model-based Predictive
Controller (AMPC) based on an auxiliary Super-Twisting
Integral Sliding Mode Control (STISMC) is proposed. The
main objective of the control strategy is to actively damp the
flexiblemanipulator with a feasible control signal in the pres-
ence of bounded and matched uncertainties and/or external
disturbance. The nominal plant model is derived in Sect. 2.
It is a very accurate, yet a nonlinear one. The equations
of motion are explicitly deduced using the Hamilton prin-
ciple, and the elastic displacement is approximated using the
assumed modes method. The modeling process allows for
several modes of vibration contribution, yet we restrict the
proposedmodel to the first andmore significant first one. The
underactuated system is formulated in the state space form
to simplify the controller description. In the third section,
the AMPC algorithm is briefly summarized. State variables
required for the behavior prediction are supposed to be avail-
able through adequate sensors, so the observer formulation
is beyond the scope of this paper. In Sect. 4, the proposed
STISMC is introduced, the sliding surface is defined, and the
control algorithm is summarized. In Sect. 5, the simulation
results are illustrated to assess the controller performances.
Different prediction horizons are examined to provide the
best possible tuning, and several indicators are then evalu-
ated to appraise the results. Concluding remarks are given in
the last section.

2 The One-link flexible manipulator dynamic
model

Thedynamicmodel of theflexible one-linkmanipulator, used
for simulation and control algorithm assessment, is detailed
in this section. The manipulator, illustrated in Fig. 1, is
assumed to be an Euler–Bernoulli clamped-free beam acting
on the horizontal plane. The clamped end is rigidly attached
to the shaft of an electric servomotor, and the dynamic is
fully described by the angular position θ (t), the elastic dis-
placement w(x , t) and the transverse section rotation ψ(x ,
t).

Fig. 1 Flexible manipulator geometry and coordinates

According to the Euler–Bernoulli theory, the shear defor-
mation of the beam is neglected [6], and:

ψ(r , t) � ∂w(r , t)

∂r
(1)

Hamilton’s principle [6] is used to derive the system equa-
tions:

∫ t f

t0
(δT − δP + δW )dt � 0 (2)

T and P are, respectively, the kinetic and potential energies
of the system, while W is the work done by external forces.
The position (xM , yM ) of a point at a distance r from the
motor shaft, with coordinates (x , y) before deformation, is
described in the inertial system (X , Y ) by (3).

{
xM � rcos(θ(t)) − w(r , t)sin(θ(t)) − rsin(θ(t) + ψ(r , t))
yM � rsin(θ(t)) + w(r , t)cos(θ(t)) − rcos(θ(t) + ψ(r , t))

(3)

Let IH be themotor and hub total inertia, the kinetic energy
of the system is then [21]:

(4)

T � 1

2
IH θ̇2 +

1

2

∫ L

0
ρA

[(
r θ̇ + V̇

)2
+

(
V θ̇

)2]
dr

+
1

2

∫ L

0
ρ I

(
θ̇ + ψ̇

)2
dr

where ρ, A and I are respectively the mass density of the
beam, its cross-section area and its moment of inertia.

According to the Euler–Bernoulli assumption, and
neglecting the gravity effect, the potential energy of the flex-
ible manipulator is only due to its bending rigidity E I . It is
given by [6]:
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P � 1

2

∫ L

0
E I

(
∂2w(r , t)

∂r2

)2

dr (5)

If themechanical torque applied by the servomotor is τ(t),
then the work done by external forces is:

δW � τδθ (6)

The elastic displacement w(t) is approximated using the
assumed modes method:

w(r , t) �
N∑
i�1

qi (t)ϕi (r) � q(t)ϕ(r) (7)

where qi (t) and ϕi (r) are the i th modal coordinate and its
respective mode of vibration. N is the number of assumed
modes that we restrict in this study to the first dominant one.

The Hamilton’s principle results on the following equa-
tions:

(8)

(
E I

∫ L

0

∂4ϕ (r )

∂r4
dr

)
q (t)

+ ρA
L2

2
θ̈ (t) +

((
ρA

∫ L

0
ϕ (r ) dr

)

−
(

ρ I
∫ L

0

∂2ϕ (r )

∂r2
dr

))
q̈ (t)

−
((

ρA
∫ L

0
ϕ (r ) dr

)
q (t)

)
θ̇ (t)

2 � 0

And

((
ρA

∫ L

0
rϕ(r)dr

)
+

(
ρ I

∫ L

0

∂ϕ(r)

∂r
dr

))
q̈(t)

+

[(
ρA

∫ L

0
ϕ2(r)dr

)
q(t)2

]
θ̈ (t)

+

(
IH + ρA

L3

3
+ ρ I L

)
θ̈ (t)

+

(
IH + ρA

L3

3
+ ρ I L

)
θ̈ (t)

+ 2

[(
ρA

∫ L

0
ϕ2(r)dr

)
q(t)q̇(t)

]
θ̇ (t) � τ (t) (9)

Rearranging those equations,we obtain the following gen-
eral form:

M(q)

(
θ̈

q̈

)
+ h

(
θ̇ , q, q̇

)
+ K

(
θ

q

)
� u(t) (10)

whereM(q) and K are respectively themass and the stiffness
matrices. The vector h(q, q̇) regroups the nonlinear centrifu-

gal and Coriolis terms, and u(t) � [ τ (t) 0 ]
T
is the vector of

external forces. Explicit matrices formulations are given in
the appendix.

To higher the accuracy of the model, the motor viscous
friction coefficient αm and the beam structural damping are
considered via a modal damping matrix Hd as [22]:

Hd �
[

αm 0
0 2ξm22ω

]
(11)

where ω is the first assumed mode natural frequency, and ξ

its respective modal damping coefficient. Coefficient m22 is
the corresponding element of the mass matrix M(q).

Considering the damping matrix, the mathematical model
of the system is then given by:

M(q)

(
θ̈

q̈

)
+ Hd

(
θ̇

q̇

)
+ h

(
θ̇ , q, q̇

)
+ K

(
θ

q

)
�

(
τ (t)
0

)

(12)

To accommodate the controller formulation, the system
equations are formulated in the state space form with the
state vector given by:

x �
[

θ q θ̇ q̇
]T

(13)

So, the model is finally given by:

ẋ � f (x) + g(x)τ (t) (14)

With:

f �

⎡
⎢⎢⎢⎣

θ̇

q̇1

−M(q)−1

(
Hd

(
θ̇

q̇

)
+ h

(
θ̇ , q, q̇

)
+ K

(
θ

q

))
⎤
⎥⎥⎥⎦

(15)

And:

g(x) �

⎡
⎢⎢⎢⎣

0
0

M(q)−1

[
1
0

]
⎤
⎥⎥⎥⎦ (16)

3 The adaptivemodel predictive controller
principle

For the MPC algorithm, several structures exist and have
proven to be profitable for numerous applications [23]. Its
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Fig. 2 Basic MPC principle

main concept as well as detailed design has been subject
of numerous textbooks and research papers, and the authors
may suggest [24] for interested readers.

The MPC algorithm based on a linear nominal model is
summarized in Fig. 2.

The control signal optimizer uses a nominal processmodel
to predict the future system outputs over a prediction horizon
of Np samples. Based on the references and actual outputs,
projected desired trajectories are designed, at each time step,
and compared to predicted outputs to calculate future errors.
The control signal optimizer then adjusts the next Nc sam-
ples of the control signal, so a cost function J formulated in
terms of future predicted errors and control signal changes,
is minimized. It is worth mentioning that when the process
model and state/control signal constraints are linear, and J is
quadratic, the control signal may be formulated offline in a
state feedback framework. The algorithm is then referred to
as linear time invariant MPC, and it results in a convex opti-
mization problem where a global optimum for the process
exists.

For a discrete, linear, time invariant system:

{
x(k + 1) � Ax(k) + Bu(k)

y(k) � Cx(k)
(17)

An augmented state vector is defined:

xa(k) �
(

�x(k)

0pty(k)

)
�

(
x(k + 1) − x(k)

0pty(k)

)
(18)

Then, Eqs. (17) and (18) are rearranged to obtain:

xa(k + 1) �
[

�x(k + 1)

0pty(k + 1)

]
(n+m)×1

(19)

�
[

A 0n×m

C A Im×m

]

(n+m)×(n+m)

[
�x (k)

0pty (k)

]
(n+m)×1

+

[
B

0ptCB

]
(n+m)×1

�u (k) � Aaxa (k) + Ba�u (k)

Matrices Aa , Ba andCa define the augmented statemodel
and are used to optimize the control signal. For the prediction

of state and outputs over an optimization window of Np sam-
ples, let the future Nc control samples trajectory be denoted
as:

�U � [�u(k), �u(k + 1), ...�u(k + Nc − 1)]T (20)

With the setpoint vector defined in Eq. (21), the cost func-
tion that is to be minimized is given by Eq. (22):

Sp �
[
1 1 . . . 1

]
1×Np

r(k) � Spr(k) (21)

J � (
Sp − Yp

)T
Q

(
Sp − Yp

)
+ �UT R�U (22)

where Q and R are symmetric semidefinite weighting matri-
ces.

The control signal that minimizes the cost function is cal-
culated assuming that:

∂ J

∂�U
� 0 � −2φT Q(Sp − Fx(ki )) + 2(φTφ + R)�U

(23)

With:

F �
[
Ca Aa Ca A2

a Ca A3
a . . . Ca A

Np
a

]T
(24)

And

� �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ca Ba 0 0 . . . 0
Ca Aa Ba Ca Ba 0 . . . 0
Ca A2a Ba Ca Aa Ba Ca Ba . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Ca A
Np−1
a Ba Ca A

Np−2
a Ba Ca A

Np−3
a Ba . . . Ca A

Np−Nc
a Ba

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

Finally, at time sample k, the feedback incremental control
within the framework of predictive control is given by:

�u(k) �
[
[ 1 0 0 ... 0

]
1×Nc

(φTφ + R)−1φT QSp]r (k)

−
[
[ 1 0 0 ... 0

]
1×Nc

(φTφ + R)−1φT QF]x(ki )

� Krr (k) − Kx x (ki )

(26)
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When dealing with a nonlinear model, the AMPC algo-
rithm is a possible solution. The process model is linearized
at each time step around the actual state and control signal.
The problem is still a convex optimization one, except that
the process model is time-variant, reason why it should be
adapted iteratively.

4 Integral super twisting slidingmode
control

The nominal plant has been used for the AMPC predictions
in the earlier section, and an auxiliary integral sliding mode
controller is proposed, in this section, to tackle uncertainties
and external disturbance that may affect the flexible manipu-
lator. The integral slidingmode control (ISMC)maintains the
order of the compensated system’s dynamics and can be sys-
tematically combined to the AMPC algorithm. Nevertheless,
conventional ISMC always causes inadmissible chattering
over the control input, so a super twisting integral sliding
mode controller is suggested in this study.

The nominal model for the one-link flexible manipulator
is given by Eqs. (14), (15) and (16) derived in Sect. 2. Uncer-
tainties on the system parameters and external disturbance
are introduced in this section as follows:

(27)

ẋ � ( f (x) + � f (x)) + (g (x) + �g (x)) τ (t) + d (x ,

t) � ẋnom + � f (x) + �g (x) τ (t) + d (x , t)

where ẋnom is the nominal part of the system used for the
AMPC controller development. � f (x) and �g(x) are the
lumped uncertainties of the system, and d(x , t) is a bounded
external disturbance.

In this work, we assume that system uncertainties as well
as external disturbance are satisfying thematching condition,
so we may write:

� f (x) + �g(x)τ (t) + d(x , t) � g(x)v(x , u, t) (28)

We also assume that the upper bound of the equivalent
disturbance (vm � sup|v(t)|) is known.

The proposed control scheme aims to control the system
using both the AMPC control unom , based on the nominal
plant derived in the earlier section, while ensuring the robust-
ness of the control law using the ISMC control uI SM . The
control signal is then given by:

u � unom + uI SM (29)

The integral sliding surface is defined as [25]:

s � F

(
x − x0 −

∫ t

0
ẋnomdt

)
(30)

F is a design vector parameter such that Fg(x) is non
singular.

Now, we have:

ṡ � F(ẋ − ẋnom)

� F

(
f (x) + g(x)(unom + uI SM ) + g(x)v(x , u, t) − f (x)

− g(x)unom

)
� F(g(x)uI SM + g(x)v(x , u, t)) (31)

The auxiliary sliding mode should start from the very
beginning without any reaching phase, and the conventional
ISM control is derived based on the k-reachability condition
given by sṡ < k|s| [26].

Let the ISM control signal be:

uI SM � −vm − (Fg(x))−1ksign(s) (32)

Then, using the Lyapunov candidate function V � 1
2 s

2,
we have:

dV

dt
� sṡ

� F(g(x)uI SM + g(x)v(x , u, t))s

� F

(
g(x)

(
−vm − (Fg(x))−1ksign(s)

)

+ g(x)v(x , u, t)

)
s

< F
(
g(x)

(
−vm − (Fg(x))−1ksign(s)

)
+ g(x)vm

)
s

� −k|s| (33)

The use of the sign function (sign(s))will cause the chat-
tering to be dominant in the control input given by (32). To
prevent this, we propose in this study the use of the super-
twisting algorithm [27] to ensure the robustness of the control
strategy, while eliminating the chattering. Hence,

{
uI SM � −λ

√|s|sign(s) + z
ż � −αsign(s)

(34)

And the modified control signal is finally given by:

{
uI SM � (−λ

√|s|sign(s) + z
)
(Fg(x))−1

ż � −αsign(s)
(35)
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Table 1 Numerical parameters of the system

The beam Mass density ρ � 2700Kg.m−3

Mass density per unit
length

ρA �
0.15Kg.m−1

Beam length L � 1m

Flexural rigidity E I � 1Nm2

Area moment of inertia I � 1.4510−11m4

The DC
Motor

Motor and hub inertia IH � 0.08 kg m2

Viscous friction coefficient αm �
0.95Nmrd−1s−1

5 Simulations results

The performance of the AMPC controller, regarding the
tracking of the flexiblemanipulator rigid body position (θ(t))
along with vibration (q(t)) minimizing, is first analyzed. The
nominal model is used for the optimization of the control sig-
nal over the prediction horizon. Then, the effectiveness of the
proposed ISMC to tackle the uncertainties affecting the sys-
tem while maintaining the control signal free of chattering is
assessed.

The explicit expression of different matrices used for the
systemmodeling are given in the appendix, andTable 1 shows
the beamand theDCmotor parameters used for the numerical
simulation.

The AMPC algorithm was implemented in Matlab envi-
ronment, and the model simplifying as well as the Jacobians
derivation was carried out using the Matlab Symbolic Math
Toolbox. Small time steps for numerical integration have

been required due to the nonlinearities of the nominal plant.
The step time has been set to 0.001s.

The AMPC controller effectiveness is stated for different
prediction horizons. The parameters for the controller tuning
are set as reported in Table 2, and the setpoints are set to
θre f � π/2rad and qre f � 0.

In Figs. 3, 4 and 5, are illustrated the angular position,
modal coordinate and control signal respectively, with pre-
dictions on the pair θ(t) and q(t) over different prediction
horizons.

Smaller prediction horizon results in an unsatisfactory
rigid body response. The angular position response has an
important overshoot, and a very large settling time. Thus, it
is inferred that, although a larger prediction horizon leads to a
larger calculation time, and may require sophisticated mate-
rial resources, it produces much better output responses.

In Table 3, a summary of output performances is outlined.
For the rigid body component θ(t), the overshoot d%and the
settling time for 5% tolerance band are inspected, while the
maximum absolute value and root mean squared error (cf.
Equation (35) with Ts the sampling time and NS the number
of samples) are appraised for the modal coordinate q(t). The
control signal incremental weighting matrix is a scalar set to
10.

RMSE(q(t)) �
√√√√ 1

Ns

Ns−1∑
k�0

(q(kTs))2 (35)

According to the results in Table 3, the prediction hori-
zon has a great impact on the rigid body position angular.
A smaller prediction horizon (e.g. Np � 100) leads to
undesirable overshoot (23.97%) and very slow dynamic

Fig. 3 Angular position θ(t) for
different prediction horizons

Table 2 AMPC tuning
parameters when only θ(t) is
predicted

Prediction horizon
(Number of samples)

Error weighting matrix Input increment weighting
matrix

Control horizon

Case 1 Np � 100
Q �

[
10 0

0 5000

]
R � 10 Nc � 2

Case 2 Np � 500

Case 3 Np � 2000
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Fig. 4 Modal coordinate q(t) for
different prediction horizons

Fig. 5 Nominal control signal for
different prediction horizons

Table 3 Summary of the output
performances for different
AMPC prediction horizons

Case Overshoot d% Settling time tr5% Max(|q(t)|) RMSE(q(t))

1 23.97 � 10s 0.0086 0.0580

2 9.54 4.1390s 0.0399 0.0139

3 0 2.2189s 0.0342 0.0081

Fig. 6 Optimal nominal control and disturbed control

(tr5% � 10s). However, the maximum absolute value of
the modal coordinate is clearly lowered (0.0086). The best
performance agreement is met when Np � 2000 and

Q �
[
10 0
0 5000

]
.This configuration results in a rigid body

dynamic with no overshoot, a settling time of 2.2189s, a
maximum absolute value of the modal coordinate equal to

0.0342 and the best modal coordinate RMSE that is equal to
0.0081.

To assess the effectiveness of the super twisting ISMC, a
sine wave disturbance has been added to the nominal control
signal:

v(t) � 0.4sin(2π t) (36)

For the controller, parameters α and λ has been set to 5
and 2 respectively. The vector parameter F has been set to[
0 0 1 1

]
.

In Fig. 6, are illustrated the nominal torque unom(t) and
the disturbed one unom(t)+ v(t). The nominal torque is opti-
mized via the AMPC controller for the best agreement of
performance found earlier.

As illustrated in Fig. 7, the super twisting integral sliding
mode control uI SM (t) is slightly the opposite of the bounded
disturbance and is quasi chattering free. Thus, the effect of
the equivalent disturbance on the system is tackled from the
very beginning, and the robustness of the optimal control law
is guaranteed. The perfectmatching of nominal and disturbed
angular position θ(t) and modal coordinate q(t), illustrated
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Fig. 7 ISMC control and equivalent disturbance

Fig. 8 Nominal and disturbed angular positions θ(t)

Fig. 9 Nominal and disturbed modal coordinates q(t)

in Figs. 8 and 9 respectively, demonstrates the effectiveness
of the proposed control scheme.

6 Conclusions

AdaptiveModel Predictive Control has been used to track the
rigid body position of a one-link flexible manipulator regard-
ing its residual vibrationminimizing. The control scheme has
been associated to a STISMC to guarantee its robustness in

the presence of bounded system uncertainties and/or external
disturbance.

The STISMC has demonstrated that the output of the sys-
tem subject to a time variable disturbance is the same as the
output of the nominal one. Furthermore, the control signal
provided by the controller is chattering free, so it is practical
for an experimental setup.

The control strategy offered the best performance trade-
off when the prediction horizon is of 2000 samples, and

the weighting matrix Q is

[
10 0
0 5000

]
. Simulation results

showed that the rigid body dynamic is with no overshoot and
that the settling time of (2.2189s) is very satisfying. Also,
the maximum absolute value of the modal coordinate has
been lowered to 0.0342 and the modal coordinate RMSE to
0.0081.

The illustration of the control torque, required for the best
performance agreement, made clear its possible implementa-
tion in an experimental context if compared to other control
strategies commonly used for active vibration control.
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Appendix: Numerical Values of Model
Matrices Used for Simulation

The Mass Matrix:

M(q) �
[
0.13 + 0.2783q2 0.1163
0.1162 0.2783

]
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The vector of nonlinear centrifugal and Coriolis terms:

h(q, q̇) �
[

0.5566 qq̇ θ̇

−0.2783 q θ̇2

]

The stiffness matrix

K (q) �
[
0 0
0 22.94

]
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