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Abstract
In this paper, bifurcation dynamics of periodic motions in the electromagnetically tuned Duffing oscillator are studied through
symmetric period-1 to asymmetric period-2 motions. On the bifurcation routes, there exist one branch of symmetric period-
1 motions and 4 branches of asymmetric period-1 motions, one branch of the four asymmetric period-1 motion branches
with asymmetric period-2 motion to chaos is obtained. The corresponding stability and bifurcations of periodic motions are
determined. The frequency-amplitude characteristics for bifurcation routes of such periodi-1 motions to chaos are presented.
Numerical illustrations are presented for complex symmetric period-1 motions, asymmetric period-1 to period-2 motions.
For low frequency, the complex period-1 motions are obtained, and for the high frequency, the simple period-1 motions
are observed. The asymmetric period-1 motions from the symmetric period-1 motion are obtained through the saddle-node
bifurcation, and the asymmetric period-2 motions from the asymmetric period-1 motions are obtained from the saddle-node
bifurcation. The study of periodic motions can help design the vibration reduction and energy harvesting system.

Keywords Electromagnetically tuned duffing oscillator · Periodic motions · Bifurcation routes · Frequency-amplitude
characteristics

1 Introduction

The tuned mass damper (TMD) [1] has been considered as
a classic dynamic vibration absorber, and it is one of the
most effective devices for energy dissipation and vibration
reduction [2] from the recent study. Thus, researchers have
introduced variousmethods to study the dynamical behaviors
of TMD and to optimize the parameters of such systems.

For the tunedmass damper, in 1981, Kaynia et al. [3] stud-
ied a one-degree-freedom probabilistic model with and with-
out TMD, and found was that the damping coefficient effects
most on the response ration. In 2005, Krenk [4] studied the
damping of a tuned mass damper through dynamic amplifi-
cation analysis. In 2009, Alexander and Schilder [5] used a
numerical method to study the periodic response of a nonlin-
ear tuned mass damper (NTMD) in a two degree-of-freedom
system. For energy harvesting, electromagnetic resonant
shunt damper has been used to convert mechanical energy
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to electrical energy [6]. In 2017, Luo et al. [7] proposed an
electromagnetic resonant shunt tuned mass damper inerter
for thewind induced vibration control and energy harvesting.

On the other hand, studies of periodicmotions in nonlinear
systems have a much longer history. In 1788, Lagrange [8]
used the method of averaging to study a three-body problem.
In 1899, Poincare [9] introduced the perturbation method to
determine the periodic motions of celestial bodies. In 1920,
van der Pol [10] applied the method of averaging for the
periodic motions of an oscillator circuit. In 1935, Krylov
and Bogoliubov [11] extended the method of averaging to
nonlinear vibration systems. In 1964, Hayashi [12] used
the perturbation methods, averaging method and harmonic
balance method to discuss nonlinear oscillations and subhar-
monic periodic motions were presented. In 1969, Barkham
and Soudack [13] extended the Krylov–Bogoliubov method
for the approximated solutions of a second-order nonlinear
autonomous differential equations. In 1987,Garcia-Margallo
and Bejarano [14] determined the approximated solutions of
nonlinear oscillations through a harmonic balancemethod. In
1990, Coppola andRand [15] presented the approximation of
limit cycles via the averaging method with elliptic functions.
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The traditional analytical methods cannot give accurate
solutions of periodic motions. The unstable periodic motions
are very difficult to be obtained. To resolve such issues, in
2012, Luo [16] proposed a generalized harmonic balance
method for accurate analytical solutions of periodic motions
and chaos (also see, Luo [17–19]). Luo and Huang [20]
applied such amethod to aDuffing oscillator and obtained the
accurate analytical solutions of periodic motions. However,
the generalized harmonic balance method is very difficult
to be applied for periodic motions in dynamical systems
with nonpolynomial vector fields. In 2015, Luo [21] devel-
oped a semi-analytical implicit mapping method for periodic
motions in nonlinear dynamic system. In 2016, Luo and Guo
[22] applied such a method for periodic motions in a peri-
odically forced pendulum. Luo and Xing [23] presented the
periodicmotions in a twin-well, Duffing oscillator with time-
delay displacement feedback and discussed the possibility of
infinite bifurcation trees in such a nonlinear oscillator. Luo
and Xu [24] applied such implicit mapping method for a
coupled van der Pol Duffing oscillator and found a series of
periodic motions. In 2019, Luo and Guo [25] determined the
periodic motions in a periodically forced and damped dou-
ble pendulum system using the implicit mapping method. In
2021, Guo and Luo [26] initially presented the symmetric
and asymmetric periodic motions in the electromagnetically
tuned Duffing oscillator.

However, the complex period-1 motions for such a system
were not discussed. Especially the complex periodic motions
in the low-frequency range cannot be obtained through the
traditional analysis. For the energy harvesting and vibration
reduction of an oscillator, dynamical behaviors for the low
excitation frequency play an important role. Such behav-
iors cannot easily be obtained by the traditional perturbation
methods. The bifurcation routes for symmetric period-1
motion to chaos were not determined analytically. Herein,
the complex periodic motion for low frequency range will
be discussed and the bifurcation routes of periodic motions
to chaos will be obtained. Frequency-amplitude analysis of
periodic motions on the bifurcation routes will be completed,
and stable period-1 and period-2motions in such an oscillator
will be illustrated for motion complexity illustrations.

2 Periodic motions

Consider an electromagnetically tuned Duffing oscillator
with a main mass ms , a linear spring ks , a nonlinear spring
ksn , and a damper ds , as shown in Fig. 1. There is an electro-
magnetic tuned mass damper with mass mt , a linear spring
kt , a nonlinear spring ktn , and a damper dt . An inerter b
is grounded on one side and connected to the tuned mass
damper on the other side with an electric circuit of resistance
R, inductance L , and capacitance C . An electromagnetic

Fig. 1 A schematic of an electromagnetically tuned Duffing oscillator

transducer is also grounded on one side and connected to
the tuned mass damper on the other side. kv and k f are the
voltage and force constants of the transducer.

From the physical laws, the electromagnetically tuned
Duffing oscillator is described by

ms ẍs + ds ẋs − dt (ẋt − ẋs) + ks xs + ksnx
3
s

− kt (xt − xs) − ktn(xt − xs)
3 � F sin(�t),

(mt + b)ẍt + dt (ẋt − ẋs) + kt (xt − xs) + ktn(xt − xs)
3

+ k f I � 0,

− kv ẋt + RI + L İ +
1

C

∫
I dt � 0. (1)

For convenience, the physical quantities become mathe-
matical quantity and variables herein. Assume

x1 � xs , x2 � xt , x3 � I , m1 � ms ,m2 � mt

k1 � ks , k2 � ksn , k3 � kt , k4 � ktn ,

k5 � kv � k f , d1 � ds , d2 � dt .

(2)

Equation (1) becomes

ẋ1 � y1,

ẋ2 � y2,

ẋ3 � y3,

ẏ1 � 1
m1

[−d1y1 + d2(y2 − y1) − k1x1 − k2x
3
1

+ k3(x2 − x1) + k4(x2 − x1)
3 + F sin�t],

ẏ2 � 1
m2+b

[−d2(y2 − y1) − k3(x2 − x1)

− k4(x2 − x1)
3 − k5x3],

ẏ3 � 1
LC (k5C ẏ2 − RCy3 − x3). (3)

For a period-mmotion discretized into (mN + 1) nodes
during m-periods, consider a mapping Pkfor a time interval
of t ∈ (tk−1, tk) as
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Pk : (xk−1, yk−1) → (xk , yk),

(k � 1, 2, . . . ,mN )
(4)

where xk � (x1, k , x2, k , x3, k)T and yk � (y1, k , y2, k , y3, k)T

For the period-m motion, the total mapping is defined as
P � PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1 with

P : (x0, y0) → (xmN , ymN ), i.e.,

(xmN , ymN ) � P(x0, y0).
(5)

A set of discrete points (x∗
k , y

∗
k ), (k � 1, 2, · · · , mN ) on

the period-m motion is obtained by

(x∗
k , y

∗
k ) � Pk(x∗

k−1, y
∗
k−1), i.e.,

gk(x∗
k−1, y

∗
k−1, x

∗
k , y

∗
k ,p) � 0,

}
(k � 1, 2, · · · ,mN ),

(x∗
0, y

∗
0) � (x∗

mN , y∗
mN )

(6)

where gk � (g1, k , g2, k , . . . , g6, k)T..
The corresponding algebraic equations are

g1,k � x1,k − x1,k−1 − h
2 (y1,k + y1,k−1),

g2,k � x2,k − x2,k−1 − h
2 (y2,k + y2,k−1),

g3,k � x3,k − x3,k−1 − h
2 (y3,k + y3,k−1),

g4,k � y1,k − y1,k−1 − h
m1

{− 1
2d1(y1,k + y1,k−1)

+ d2[ 12 (y2,k + y2,k−1) − 1
2 (y1,k + y1,k−1)]

− 1
2k1(x1,k + x1,k−1)

− k2[ 12 (x1,k + x1,k−1)]
3 + F sin�(tk−1 + h

2 )

+ k3[ 12 (x2,k + x2,k−1) − 1
2 (x1,k + x1,k−1)]

+ k4[ 12 (x2,k + x2,k−1) − 1
2 (x1,k + x1,k−1)]

3},
g5,k � y2,k − y2,k−1 − h

m2+b
{−d2[ 12 (y2,k + y2,k−1)

− 1
2 (y1,k + y1,k−1)] − 1

2k5(x3,k + x3,k−1)

− k3[ 12 (x2,k + x2,k−1) − 1
2 (x1,k + x1,k−1)]

− k4[ 12 (x2,k + x2,k) − 1
2 (x1,k + x1,k−1)]

3},
g6,k � y3,k − y3,k−1 − h

LC [ 12k5C(y2,k − y2,k−1)

− 1
2 RC(y3,k + y3,k−1) − 1

2 (x3,k + x3,k−1)]. (7)

For zk � (xk , yk)T, from the mapping structure in Eq. (6),
the variational equation is

�zmN � DP�z0 � DPmN · DPmN−1 · · · DPk · · · DP1�z0
(8)

and

�zk � DPk�zk−1(k � 1, 2, · · · ,mN ) (9)

where

DPk �
[

∂zk
∂zk−1

]
(z∗k ,z∗k−1)

� −
[
∂gk
∂zk

]−1

·
[

∂gk
∂zk−1

]
(z∗k ,z∗k−1)

; (10)

which is from the variational equation of mapping Pk , i.e.,

∂gk
∂zk−1

∣∣∣(z∗k ,z∗k−1)
+

∂gk
∂zk

∣∣∣(z∗k ,z∗k−1)
∂zk

∂zk−1

∣∣∣(z∗k ,z∗k−1)
� 0. (11)

The components of DPk matrix are listed in Appendix.
The eigenvalue of DP matrix is computed by

|DP − λI6×6| � 0. (12)

The stability and bifurcation conditions for periodic motions
are given as follows.

(i) If |λi | < 1 ( i � 1, 2, · · · , 6), the approximate periodic
solution is stable.

(ii) If |λi | > 1 ( i ∈ {1, 2, · · · , 6}), the approximate peri-
odic solution is unstable.

(iii) The boundaries between stable and unstable periodic
motionswith higher order singularity give bifurcations.

The bifurcation conditions of periodic motion are pre-
sented as follows.

(i) If λi � 1 and |λ j | < 1( i , j ∈ {1, 2, · · · , 6}, j �� i),
the saddle-node bifurcation (SN) occurs.

(ii) If λi � −1 and |λ j | < 1( i , j ∈ {1, 2, · · · , 6}, j �� i),
the period-doubling bifurcation (PD) occurs.

(iii) If |λi , j |� 1 with λi � λ j and |λl | < 1 ( i , j , l ∈ {1,
2, · · · , 6}, j , i �� l), the Neimark bifurcation (NB)
occurs.

3 Bifurcation routes of period-1motion
to chaos

Consider a set of parameters for theDuffing oscillator system
as

m1 � 8.46,m2 � 0.66, k1 � 7.12, k2 � 1,

k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2,

L � 1.17, R � 0.1,C � 1.02, b � 0.33, F � 200.

(13)
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Fig. 2 A global view of discrete nodes of periodic motions (mod
(k, N ) � 0) varying with excitation frequency (� ∈ (0, 10)):
i displacement x1, mod (k, N ); ii velocity y1, mod (k, N ), iii displacement
x2, mod (k, N ), iv velocity y2, mod (k, N ), v current x3, mod (k, N ); vi current

change y3, mod (k, N ). (m1 � 8.46, m2 � 0.66, k1 � 7.12, k2 � 1,
k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17,
R � 0.1, C � 1.02, b � 0.33, F � 200

The periodic nodes xi , mod (k, N ) and yi , mod (k, N ) (i � 1,
2, 3 and mod(k, N ) � 0) varying with excitation frequency
in an electromagnetically tuned Duffing oscillator are pre-

sented. The stable and unstable periodic motions are colored
in solid and dash curves, respectively. The acronym ‘SN’ is
for saddle-node bifurcation, ‘S’ is for symmetric motion and
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Fig. 3 A zoomed view of discrete nodes of periodic motions (mod(k,
N ) � 0) varying with excitation frequency (zoom-1, � ∈ (0.15, 0.30)
): i displacement x1, mod (k, N ); ii velocity y1, mod (k, N ), iii displacement
x2, mod (k, N ), iv velocity y2, mod (k, N ), v current x3, mod (k, N ); vi current

change y3, mod (k, N ). (m1 � 8.46, m2 � 0.66, k1 � 7.12, k2 � 1,
k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17,
R � 0.1, C � 1.02, b � 0.33, F � 200)

‘A’ is for asymmetric motion. The global views for periodic
motions in the frequency range of � ∈ (0, 10) are pre-
sented in Fig. 2. Period-1 motions for the frequency range
of � > 10 are with simple bifurcation trees. Displacement

and velocity nodes for the Duffing oscillator are presented
in Fig. 2(i) and (ii). Displacement and velocity nodes for the
tuned mass damper oscillator are presented in Fig. 2(iii) and
(iv). The turned damper oscillator possess larger vibration
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Fig. 4 A zoomed view of discrete nodes of periodic motions (mod(k,
N ) � 0) varyingwith excitation frequency (zoom-2,� ∈ (0.73, 0.76)):
i displacement x1, mod (k, N ); ii velocity y1, mod (k, N ), iii displacement
x2, mod (k, N ), iv velocity y2, mod (k, N ), v current x3, mod (k, N ); vi current

change y3, mod (k, N ). (m1 � 8.46, m2 � 0.66, k1 � 7.12, k2 � 1,
k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17,
R � 0.1, C � 1.02, b � 0.33, F � 200)

motions than the Duffing oscillator. The current and current
change rate are presented in Fig. 2(v) and (vi). The large
stable asymmetric period-1 motion occurs at � ≈ 7.75,

and the large unstable symmetric period-1 motion occurs
at � ≈ 8.5. For the low frequency, the motions amplitude
should be smaller, but the periodic motions become more
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complex, and the period-1 motion to chaos occurs in the low
frequency range. Thus, the zoomed version will be presented
in Figs. 3 and 4 partially without abundant illustrations.

The main branch of periodic motions is for symmetric
period-1motions in interval� ∈ (0, 10.0), as shown inFig. 2.
There are four branches of asymmetric period-1 motions in
frequency intervals of � ∈ (0.655, 0.743), � ∈ (0.796,
0.821), � ∈ (0.774, 0.82) and � ∈ (0.998, 7.676). There
is also one branch for asymmetric period-2 motions in fre-
quency interval � ∈ (0.554, 0.737). Two zoomed views
of discrete nodes in the frequency intervals of � ∈ (0.15,
0.30) and � ∈ (0.73, 0.76) are shown in Figs. 3 and 4.
The acronyms ‘NB’ is for Neimark bifurcation and acronyms
‘PD’ is for period-doubling bifurcation. The stable and unsta-
ble period-1 motions are clearly presented for low frequency
range, and the corresponding bifurcation points are labelled.
In Fig. 3, the period-1 motion for the low frequency is pre-
sented. In Fig. 4, the bifurcation routes of symmetric period-1
motion to period-2 motions are presented. The saddle-node
bifurcation is a symmetry break for the symmetric to asym-
metric period-1 motion. The period-doubling bifurcation is
observed for the asymmetric period-1 to period-2 motion.
The period-doubling bifurcation of the period-2 motion is
for the asymmetric period-4 motion, and the Neimark bifur-
cation of the symmetric period-1 motion is observed for
the quasi-periodic motions. The detailed bifurcation points
for symmetric period-1 to period-2 motions are tabulated in
Table 1.

4 Frequency-amplitude characteristics

From the semi-analytical prediction, discrete nodes of peri-
odic motions are obtained through the implicit mapping.
Then these discrete nodes are used for discrete Fourier
analysis. Consider the node point of period-m motions as
xk � (x1, k , x2, k , x3, k)T for k � 0, 1, 2, · · · , mN . The
approximate expression for a period-mmotion is determined
by the finite Fourier series as

x(t) � a0 +
mN∑
k�1

bk/m cos(k�t) + ck/m sin(k�t). (14)

where

a0 � (a1,0, a2,0, a3,0)
T,

bk/m � (b1,k/m , b2,k/m , b3,k/m)
T,

ck/m � (c1,k/m , c2,k/m , c3,k/m)
T. (15)

The coefficients a0, bk/mand ck/mare achieved by

a0 � 1

mN

mN−1∑
j�0

x j ,

bk/m � 2

mN

mN−1∑
j�0

x j cos(k
2π j

mN
),

ck/m � 2

mN

mN−1∑
j�0

x j sin(k
2π j

mN
),

(k � 1, 2, . . .mN/2). (16)

Then harmonic amplitudes and phases for a period-1 motion
can be expressed by

Ai ,k/m �
√
(bi ,k/m)2 + (ci ,k/m)2,

ϕi ,k/m � arctan
ci ,k/m
bi ,k/m

(i � 1, 2, 3). (17)

Based on the Fourier series expression of the period-m
motions, the frequency-amplitude characteristics of period-1
and period-2 motion can be obtained.

For the periodic motions, we have

x1 � a1,0 +
∞∑
k�1

A1,k cos(k�t + ϕ1,k),

x2 � a2,0 +
∞∑
k�1

A2,k cos(k�t + ϕ2,k),

x3 � a3,0 +
∞∑
k�1

A3,k cos(k�t + ϕ3,k).

(18)

The derivatives of the displacements (x1, x2, x3) with the
respect to time gives

y2 � ẋ2 � −
∞∑
k�1

(k�)A2,k sin(k�t + ϕ2,k),

ẏ2 � ẍ2 � −
∞∑
k�1

(k�)2A2,k cos(k�t + ϕ2,k);

y3 � ẋ3 � −
∞∑
k�1

(k�)A3,k sin(k�t + ϕ3,k),

ẏ3 � ẍ3 � −
∞∑
k�1

(k�)2A3,k cos(k�t + ϕ3,k).

(19)

Submission of Eqs.(18) and (19) to the differential equation
of

ẏ3 � 1
LC (k5C ẏ2 − RCy3 − x3) (20)
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Table 1 Stability and
bifurcations of period-1 and
period-2 motions(m1 � 8.46,
m2 � 0.66, k1 � 7.12, k2 � 1,
k3 � 0.821, k4 � 0.1,
k5 � 0.15, d1 � 0.4, d2 � 0.2,
L � 1.17, R � 0.1, C � 1.02,
b � 0.33, F � 200)

Periodic motions Frequency range � Left Right Stability

P-1 (S) (0→10) (3.0158→10) SN – Stable

(3.0158→5.6213) SN SN Unstable

(2.4028→5.6213) SN SN Stable

(2.4028→8.53) SN USN Unstable

(0.9331→8.83) USN USN Unstable

(0.9331→1.4483) USN USN Unstable

(0.5685→1.4483) NB USN Unstable

(0.5614→0.5685) SN NB Stable

(0.5614→0.8970) SN SN Unstable

(0.8203→0.8970) SN SN Stable

(0.7495→0.8203) USN SN Unstable

(0.7495→0.8244) USN USN Unstable

(0.8213→0.8244) SN USN Unstable

(0.803→0.8213) NB SN Stable

(0.767→0.803) USN NB Unstable

(0.752→0.767) NB USN Unstable

(0.743→0.752) SN NB Stable

(0.5336→0.743) NB SN Unstable

(0.5329→0.5336) SN NB Stable

(0.5329→0.6154) SN USN Unstable

(0.5603→0.6154) USN USN Unstable

(0.5603→0.5647) USN USN Unstable

(0.398→0.5603) NB USN Unstable

(0.39→0.398) NB NB Stable

(0.389→0.39) USN NB Unstable

(0.389→0.3984) USN SN Unstable

(0.3973→0.3984) SN SN Stable

(0.3973→0.422739) SN SN Unstable

(0.422704→0.422739) NB SN Stable

(0.4167→0.422704) NB NB Unstable

(0.4163→0.4167) SN NB Stable

(0.4163→0.417084) SN SN Unstable

(0.417062→0.417084) NB SN Stable

(0.410089→0.417062) NB NB Unstable

(0.410043→0.410089) SN NB Stable

(0.410043→0.4228) SN SN Unstable

(0.3501→0.4228) SN SN Stable

(0.3501→0.3558) SN SN Unstable

(0.3455→0.3558) SN SN Stable

(0.3455→0.4092) SN USN Unstable

(0.3925→0.4092) NB USN Unstable

(0.386→0.3925) NB NB Stable

(0.316→0.386) NB NB Unstable

(0.3048→0.316) SN NB Stable

(0.3048→0.3069) SN SN Unstable

(0.3061→0.3069) NB SN Stable
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Table 1 continued
Periodic motions Frequency range � Left Right Stability

(0.3051→0.3061) USN NB Unstable

(0.3051→0.3086) USN USN Unstable

(0.302504→0.3086) NB USN Unstable

(0.302504→0.302474) NB SN Stable

(0.302474→0.3110) SN SN Unstable

(0.3080→0.3110) NB SN Stable

(0.3010→0.3080) NB NB Unstable

(0.2615→0.3010) SN NB Stable

(0.2615→0.2902) SN SN Unstable

(0.2886→0.2902) SN SN Stable

(0.2886→0.2930) SN SN Unstable

(0.2785→0.2930) NB SN Stable

(0.2680→0.2785) NB NB Unstable

(0.2636→0.2680) SN NB Stable

(0.2636→0.2677) SN SN Unstable

(0.2474→0.2677) SN SN Stable

(0.2474→0.2492) SN USN Unstable

(0.2408→0.2492) NB USN Unstable

(0.2315→0.2408) NB NB Stable

(0.2285→0.2315) NB NB Unstable

(0.2108→0.2285) SN NB Stable

(0.2108→0.2115) SN SN Unstable

(0.1839→0.2115) SN SN Stable

(0.1839→0.1850) SN SN Unstable

(0.1815→0.1850) SN SN Stable

(0.1815→0.1827) SN SN Unstable

(0.1621→0.1827) SN SN Stable

(0.1621→0.162147) SN USN Unstable

(0.1617→0.162147) NB USN Unstable

(0→0.1617) − NB Stable

P-1 (A) (0.6543→0.743) (0.6543→0.6718) USN USN Unstable

(0.6543→0.7377) USN PD Unstable

(0.7377→0.743) PD SN Stable

P-1 (A)(0.774→0.8204) (0.774→0.8204) SN SN Stable

P-1 (A) (0.7963→0.821365) (0.7963→0.8165) USN USN Unstable

(0.7963→0.821365) USN SN Unstable

(0.8213→0.821365) SN SN Stable

P-1 (A) (0.9977→7.6763) (1.1882→1.1951) USN USN Unstable

(1.1882→1.2114) USN USN Unstable

(0.9977→1.2114) USN USN Unstable

(0.9977→1.1297) USN SN Unstable

(1.1295→1.1297) NB SN Stable

(1.1044→1.1295) SN NB Unstable

(1.1044→1.106) SN NB Stable
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Table 1 continued
Periodic motions Frequency range � Left Right Stability

(1.106→1.167) NB USN Unstable

(1.036→1.167) USN USN Unstable

(1.036→1.063) USN NB Unstable

(1.063→1.14) NB NB Stable

(1.14→1.27) NB NB Unstable

(1.27→1.31) NB NB Stable

(1.31→1.4543) NB NB Unstable

(1.4543→1.4621) NB NB Stable

(1.4621→2.73) NB NB Unstable

(2.73→2.8713) NB SN Stable

(1.6477→2.8713) USN SN Unstable

(1.6477→1.91) USN NB Unstable

(1.91→2.08) NB NB Stable

(2.08→2.42) NB NB Unstable

(2.42→7.6763) NB SN Stable

(3.099→7.6763) USN SN Unstable

P-2 (A) (0.5543→0.7377) (0.7352→0.7377) PD SN Stable

(0.6383→0.7352) USN PD Unstable

(0.6383→0.6398) USN USN Unstable

(0.5833→0.6398) USN USN Unstable

(0.5833→0.6097) USN USN Unstable

(0.5543→0.6097) USN USN Unstable

(0.5543→0.6154) USN USN Unstable

(0.5887→0.6154) USN USN Unstable

(0.5887→0.6705) USN UPD Unstable

NB Neimark bifurcation, SN Saddle-node bifurcation, USN Saddle-unstable node bifurcation, PD Period-
doubling bifurcation. UPD Unstable period-doubling bifurcation. A Asymmetric periodic motion. S
Symmetric periodic motion

gives

−
∞∑
k�1

(k�)2A3,k cos(k�t + ϕ3,k)

� −
∞∑
k�1

1
L k5(k�)2A2,k sin(k�t + ϕ2,k)

+
∞∑
k�1

R
L (k�)A3,k sin(k�t + ϕ2,k)

− 1
LC [a3,0 +

∞∑
k�1

A3,k cos(k�t + ϕ3,k)]. (21)

Thus,

a3,0 � 0. (22)

The frequency-amplitude characteristics of displacement
x1, displacement x2 and current x3 are obtained through
the finite Fourier series. Harmonic amplitudes of Ai , 0, and

Ai , k/2, (i � 1, 2, 3;k � 1, 2, · · · , 4, 6, 8, 157, 158) are
presented in Figs. 5–7 respectively, and the local zoomed
views are also presented. The stable and unstable periodic
motions are colored in solid and dash curves. The acronyms
‘S’ and ‘A’ are for the symmetric and asymmetric motions.
The acronyms ‘SN’, ‘NB’ and ‘PD’ are for saddle-node,
Neimark and period-doubling bifurcations, respectively.

The harmonic frequency-amplitude curves of displace-
ment x1 are shown in Fig. 5. The global view of the constant
term is presented in Fig. 5(i). The quantity level of the con-
stant term is about A1, 0 ∼ 1.6. A1, 0 ≈ 1.31 is at � ≈ 1.11.
The zoomed view of the constant term is given in Fig. 5(ii).
The frequency-amplitudes for the bifurcation of period-1 to
period-2 motion are clearly presented. For period-2 motion,
the harmonic amplitude of A1, 1/2 is presented in Fig. 5(iii).
For period-1 motion, A1, 1/2 � 0. The appearance of period-
2 motion is the saddle-node bifurcation, which is equivalent
to the period-doubling bifurcation of period-1 motion. The
primary harmonic amplitude versus excitation frequency is
presented in Fig. 5(iv). For the symmetric period-1 motion,
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Fig. 5 Frequency-amplitude characteristics of displacement x1: i,
ii A1, 0; iii A1, 1/2; iv–vi A1, 1; vii A1, 3/2; viii, ix A1, 2; x–xii A1, 3;
xiii–xiv A1, 4; xv A1, 157/2; xvi A1, 79; (m1 � 8.46, m2 � 0.66,

k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4,
d2 � 0.2, L � 1.17, R � 0.1, C � 1.02, b � 0.33, F � 200.)
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Fig. 5 continued
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(vii) (viii)

Fig. 6 Frequency-amplitude characteristics of displacement x2: i,
ii A2, 0; iii A2, 1/2; iv–vi A2, 1; vii A2, 3/2; viii, ix A2, 2; x–xii A2, 3;
xiii–xiv A2, 4; xv A2, 157/2; xvi A2, 79; (m1 � 8.46, m2 � 0.66,

k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4,
d2 � 0.2, L � 1.17, R � 0.1, C � 1.02, b � 0.33, F � 200)
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Fig. 6 continued
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Fig. 7 Frequency-amplitude characteristics of current x3: i A3, 1/2; ii–iv A3, 1; v A3, 3/2; vi–vii A3, 2; viii–x A3, 3; xi–xii A3, 4; xiii A3, 157/2; xiv A3, 79.
(m1 � 8.46,m2 � 0.66, k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17, R � 0.1, C � 1.02, b � 0.33,
F � 200)

the frequency-amplitude characteristics is alike the untuned
Duffing oscillator. However, in the range of the low fre-
quency, the corresponding primary harmonic amplitudes are
presented in Fig. 5(v) and (vi). The bifurcation tree from sym-
metric period-1 to asymmetric period-2 motion is presented
through the primary harmonic frequency-amplitude curves.
The harmonic amplitude of A1, 3/2 is presented In Fig. 5(vii)
for period-2 motion. The harmonic amplitude contribution

on the stable period-2 motion is quite small comparted to
the unstable period-2 motions. The quantity level of har-
monic amplitude A1, 1/2 is a little bit larger than A1, 3/2.
The harmonic amplitude A1, 2 for the asymmetric period-
1 and period-2 motions are presented in Fig. 5(viii) and (ix).
For the low-frequency range, the harmonic amplitudes are
enlarged for a better illustration, and the bifurcation trees
are clearly observed. The subharmonic frequency-amplitude

123



1376 C. Guo, A. C. J. Luo

Fig. 7 continued
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curves for A1, 3 are presented in Fig. 5(x)–(xii). For the
low frequency range, the correspondingharmonic amplitudes
A1, 3 are presented in Fig. 5(xi) and (xii). Compared to the pri-
mary harmonic amplitude, the quantity level of the harmonic
amplitude A1, 3 does not drop too much, which implies such
harmonic terms will significantly contribute on period-1 and
period-2 motions. The peak values of are A1, 1 ≈ 31.3 at
� ≈ 8.58 and A1, 3 ≈ 5.28 at � ≈ 0.76. The harmonic
amplitude A1, 4 for the asymmetric period-1 and period-2
motions are presented in Fig. 5(xiii) and (xiv). For the low-
frequency range, the quantity level of harmonic amplitude
A1, 4 are the same level as the high-frequency. The har-
monic amplitude contribution on the stable period-2 motion
is quite small comparted to the unstable period-2 motions.
The saddle-node bifurcation at � ≈ 1.15 has A1, 2 ≈ 4.26.
At � ≈ 7.68, there is a saddle-node bifurcation. For har-
monic term A1, 4, peak value is A1, 4 ≈ 1.14 at� ≈ 1.15. The
saddle-node bifurcation points � ≈ 7.68 still has another
peak with lower value. Without abundant illustrations, the
harmonic amplitude A1, 157/2 is presented in Fig. 5(xv) with
the quantity level of A1, 157/2 ∼ 10−12. The harmonic ampli-
tude A1, 79 is presented in Fig. 5 (xvi) for the low frequency
range from A1, 79 ∈ (10−14, 100). For � > 0.9, the quan-
tity level of harmonic amplitude A1, 79 is already less than
A2, 79 < 10−14.

The harmonic frequency-amplitude curves for displace-
ment x2 are shown inFig. 6. The similar layout of illustrations
is given. The constant term for displacement x2 is presented
in Fig. 6(i) and the zoomed version for the low frequency
range is presented in Fig. 6(ii). The centers of periodic
motion off the corresponding local origins are different. The
harmonic amplitude of A2, 1/2 for period-2 motion is pre-
sented in Fig. 6(iii). The primary harmonic amplitude versus
excitation frequency is presented in Fig. 6(iv). The primary
harmonic amplitudes for the tuned mass damper are much
higher than the Duffing oscillator. However, for the low fre-
quency range, the harmonic frequency-amplitude curves for
the tunedmass damperwith theDuffingoscillators are kindof
similarity, and the quantity levels of the harmonic amplitudes
are almost same, as shown in Fig. 6(v) and (vi). The harmonic
amplitude of A2, 3/2 for the period-2 motion is presented in
Fig. 6(vii). Thequantity levels of harmonic amplitudes A2, 1/2

is almost same as A2, 3/2. The harmonic amplitude A2, 2 for
the asymmetric period-1 and period-2 motions are presented
in Fig. 6(viii) and (ix). The quantity level of the harmonic
amplitude A2, 2 is much higher than the harmonic amplitude
A1, 2. The harmonic frequency-amplitude curves for A2, 3 are
presented in Fig. 6(x)–(xii). For the low frequency range,
the corresponding harmonic amplitudes A2, 3 are presented
in Fig. 6(xi) and (xii), which are almost like the harmonic
amplitude A1, 3. Compared to the primary harmonic ampli-
tude, the quantity level of the harmonic amplitude A2, 3

drop dramatically for the high frequency range, but for the

low-frequency range, such harmonic terms will significantly
contribute on period-1 and period-2 motions compared to the
primary harmonic term. The peak values of are A2, 1 ≈ 71.8
at � ≈ 8.58 and A2, 3 ≈ 14.1 at � ≈ 0.76. The harmonic
amplitude A2, 4 for the asymmetric period-1 and period-2
motions are presented in Fig. 6(xiii) and (xiv). For the low-
frequency range, the quantity level of harmonic amplitude
A2, 4 are the same level as the high-frequency. The peak
value of A2, 2 ≈ 14.7 at � ≈ 2.87 is a saddle-node bifurca-
tion. Another peak exists at � ≈ 7.68. For the peak value,
A2, 4 ≈ 3.03 at � ≈ 0.81. Without abundant illustrations,
the harmonic amplitude A2, 157/2 is presented in Fig. 6(xv)
with the quantity level of A2, 157/2 ∼ 10−12. The harmonic
amplitude A2, 79 is presented in Fig. 6(xvi) for the low fre-
quency range from A2, 79 ∈ (10−14, 100). For � > 0.9, the
quantity level of harmonic amplitude A2, 79 is already less
than A2, 79 < 10−14.

The harmonic frequency-amplitude curves for current
x3 are shown in Fig. 7. Constant terms of x3 for all the
motions are zero,A3, 0 � 0. The harmonic amplitude of
A3, 1/2 for period-2 motion is presented in Fig. 7(i). The pri-
mary harmonic amplitude A3, 1 for the current is presented
in Fig. 7(ii). For the low frequency range, the harmonic
frequency-amplitude curves are zoomed inFig. 7(iii) and (iv).
The harmonic amplitude of A3, 3/2 for the period-2 motion
is presented in Fig. 7(v). The quantity levels of harmonic
amplitudes A3, 3/2 is much higher than A3, 1/2. The harmonic
amplitude A3, 2 for the asymmetric period-1 and period-2
motions are presented in Fig. 7(vi) and (vii). The harmonic
frequency-amplitude curves for the current A3, 3 are pre-
sented in Fig. 7(viii)-(x). For the low frequency range, the
corresponding harmonic amplitudes A3, 3 are presented in
Fig. 7(ix) and (x). Compared to the primary harmonic ampli-
tude, the quantity level of the harmonic amplitude A3, 3 drop
dramatically for the high frequency range, but for the low-
frequency range, the harmonic amplitude A3, 3 has the same
quantity level of the primary harmonic amplitude A3, 1. The
peak values of are A3, 1 ≈ 9.28 at� ≈ 8.58 and A3, 3 ≈ 2.46
at� ≈ 0.29. The harmonic amplitude A3, 4 for the asymmet-
ric period-1 and period-2 motions are presented in Fig. 7(xi)
and (xii). For the low-frequency range, the quantity level of
harmonic amplitude A3, 4 are little bit higher than the high-
frequency. The peak value of A3, 4 ≈ 0.42 at� ≈ 0.81 is also
a saddle-node bifurcation. The peak at � ≈ 7.68 is another
saddle-node bifurcation. The peak value of A3, 4 ≈ 0.42 at
� ≈ 0.81. Similarly, without abundant illustrations, the har-
monic amplitude A3, 157/2 is presented in Fig. 7(xiii) with
the quantity level of A3, 157/2 ∼ 10−13. The harmonic ampli-
tude A3, 79 is presented in Fig. 7(xiv) for the low frequency
range from A3, 79 ∈ (10−14, 10−3). For � > 0.9, the quan-
tity level of harmonic amplitude A3, 79 is already less than
A3, 79 < 10−14.
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5 Numerical illustrations

Numerical illustrations of stable symmetric period-1 to
period-2motions are carried out through a numerical integra-
tion method. The initial conditions of numerical illustrations
are obtained from the semi-analytical predictions. Phase tra-
jectories and harmonic amplitudes and harmonic phases of
the corresponding periodic motions are presented. In the
following plots, the circular symbols and solid curves are
for analytical and numerical results, respectively. The blue
symbol is for initial condition and labeled with acronyms
“I.C”. For asymmetric motions, the paired asymmetric peri-
odic motions are depicted in black and red curves.

In Fig. 8, Two stable symmetric period-1 motions are pre-
sented for � ≈ 5.0 and � ≈ 0.83. The trajectories for two
oscillators and the circuit of symmetric period-1 motion at
� ≈ 5.0 are shown in Fig. 8 (i)–(iii). The initial conditions
are (x10, y10) ≈ (−0.0149, −4.9287), (x20, y20) ≈ (0.0434,
0.1721), and (x30, y30) ≈ (5.83 × 10−3, 0.022). Such a
symmetric periodic motion is very simple. The trajectories
of symmetric period-1 motion for the two sub-oscillators and
the circuit at � ≈ 0.83 are presented in Fig. 8 (iv)–(vi). The
initial conditions are (x10, y10) ≈ (−0.8896, 1.7029), (x20,
y20) ≈ (−1.3020, −21.5140) and (x30, y30) ≈ (1.9807,
−6.2005). The symmetric period-1 motion becomes more
complex compared to the high frequency. The numerical and
analytical results match very well.

From the semi-analytical solutions, phase trajectories and
harmonic amplitude spectrums of stable periodic motions
for symmetric period-1 to asymmetric period-2 motions are
presented in Fig. 9–11 for � ≈ 0.75, 0.74, 0.737.

In Fig. 9, phase trajectories and harmonic amplitude spec-
trums of a stable symmetric period-1 motion at � ≈ 0.75
are presented. The initial condition is (x1, y1) ≈ (−3.722,
6.324), (x2, y2) ≈ (−14.887, 23.162) and (x3, y3) ≈
(−13945, 1.910). The phase trajectory has one small cycle on
the left and right sides with a large cycle. The trajectory sym-
metry is clearly observed, and the two same small cycles are
asymmetric. The even harmonic terms are all zero for sym-
metricmotions. For theDuffing oscillator, themain harmonic
amplitudes of displacement x1 are A1, 1 ≈ 4.3801, A1, 3 ≈
4.6846, A1, 5 ≈ 1.3695, A1, 7 ≈ 0.6622, A1, 9 ≈ 0.1337,
A1, 11 ≈ 0.1278, A1, 13 ≈ 0.0409 and A1, k ∈ (10−14, 10−4)
for k � 27, 28, · · · , 79 with A1, 79 ∼ 10−14. For The tuned
mass damper, themain harmonic amplitudes of displacement
x2 are A2, 1 ≈ 5.3583, A2, 3 ≈ 11.2622, A2, 5 ≈ 3.8725,
A2, 7 ≈ 0.4840, A2, 9 ≈ 0.0708, A2, 11 ≈ 0.2866, A2, 13 ≈
0.2191 and A2, k ∈ (10−14, 10−4) for k � 35, 36, 37, · · · ,
79 with A2, 79 ∼ 10−14. For the circuit, the main harmonic
amplitudes of the current x3 are A3, 1 ≈ 1.3664, A3, 3 ≈
1.7285, A3, 5 ≈ 0.5278, A3, 7 ≈ 0.0640 and A3, k ∈ (10−14,

10−4) for k � 29, 30, · · · , 79 with A3, 79 ∼ 10−14. Such a
symmetric period-1 motion need 39 terms to keep the accu-
racy of ε ≈ 10−14.

From the bifurcation analysis, � < �cr ≈ 0.743, the
symmetric period-1 motion becomes asymmetric period-1
motions. Thus, phase trajectories and harmonic amplitude
spectrums of the paired asymmetric stable period-1 motion
are presented in Fig. 10 for � ≈ 0.74 through black and
red curves. The initial conditions of the paired asymmetric
period-1 motions are (xb10, y

b
10) ≈ (−1.328, 6.112), (xb20,

yb20) ≈ (−11.485, 19.964), (xb30, y
b
30) ≈ (−1.452, 1.321)

and (xr10, y
r
10) ≈ (−2.770, 4.046), (xr20, y

r
20) ≈ (−9.458,

29.966), (xr30, y
r
30) ≈ (−1.190, 2.716). The symmetry of the

two paired asymmetric period-1 motions is clearly observed.
The small cycles on the right and left side are different. For
the Duffing oscillator, the constant terms are with ab1, 0 �
−ar1, 0 ≈ 0.2668, the main harmonic amplitudes of displace-
ment x1 are A1, 1 ≈ 5.3177, A1, 2 ≈ 0.1614, A1, 3 ≈ 3.3982,
A1, 4 ≈ 0.4642, A1, 5 ≈ 1.5411, A1, 6 ≈ 0.0447, A1, 7 ≈
0.3889 and A1, k ∈ (10−14, 10−1) for k � 8, 9, · · · , 80 with
A1, 80 ∼ 10−14. For the tuned mass damper, the constant
terms satisfy aB

2, 0 � −aR
2, 0 ≈ 0.1437, the main harmonic

amplitudes of displacement x2 are A2, 1 ≈ 6.1996, A2, 2 ≈
0.5160, A2, 3 ≈ 9.4792, A2, 4 ≈ 1.8232, A2, 5 ≈ 2.8184,
A2, 6 ≈ 0.4664, A2, 7 ≈ 0.2322, A2, 8 ≈ 0.0762 and A2, k ∈
(10−14, 10−2) for k � 9, 10, · · · , 80 with A2, 80 ∼ 10−14.
For current x3, the constant terms are aB

3, 0 � −aR
3, 0 � 0.

The main harmonic amplitudes are A3, 1 ≈ 1.4647, A3, 2 ≈
0.1067, A3, 3 ≈ 1.4626, A3, 4 ≈ 0.2583, A3, 5 ≈ 0.3848,
A3, 6 ≈ 0.0624, A3, 7 ≈ 0.0307 and A3, k ∈ (10−14, 10−4)
for k � 8, 9, · · · , 80 with A2, 80 ∼ 10−14. For asymmetric
period-1motion, the harmonic amplitudes for even harmonic
terms are non-zero., which cause the asymmetry of the paired
asymmetric period-1 motions.

For � < �cr ≈ 0.7377, the asymmetric period-2 motion
exists. In Fig. 11, phase trajectories and harmonic ampli-
tude spectrums of the paired asymmetric stable period-2
motions are presented for � ≈ 0.737. The initial conditions
of two paired asymmetric period-2 motions are (xb10, y

b
10) ≈

(−0.986, 6.332), (xb20, yb20) ≈ (−11.002, 18.122), (xb30,
yb30) ≈ (−1.401, 1.051) and (xr10, y

r
10) ≈ (−2.933, 3.934),

(xr20, yr20) ≈ (−8.364, 29.311), (xr30, yr30) ≈ (−1.049,
2.661). The phase trajectories of the asymmetric period-
2 motions double the trajectories of asymmetric period-1
motions. The skew symmetry of the two asymmetric period-2
motions is observed. For the Duffing oscillator, the constant
terms aB

1, 0 � −aR
1, 0 ≈ 0.3233, the main harmonic ampli-

tudes of displacement x1 for the asymmetric period-2 motion
are A1, 1/2 ≈ 0.0422, A1, 1 ≈ 5.4295, A1, 3/2 ≈ 1.112 ×
10−3, A1, 2 ≈ 0.2118, A1, 5/2 ≈ 0.0119, A1, 3 ≈ 3.2224,
A1, 7/2 ≈ 0.0171, A1, 4 ≈ 0.5704 and A1, k/2 ∈ (10−14,
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Fig. 8 Symmetric stable period-1 motions: i–iii phase trajectories (xi ,
yi ), (i � 1, 2, 3) at � ≈ 5.0 with initial conditions (x10, y10) ≈
(−0.0149, −4.9287), (x20, y20) ≈ (0.0434, 0.1721) and (x30, y30) ≈
(5.83× 10−3, 0.022); iv–vi phase trajectories (xi , yi ), (i � 1, 2, 3) at
� ≈ 0.83 with initial conditions (x10, y10) ≈ (−0.8896, 1.7029), (x20,

y20) ≈ (−1.3020, −21.5140) and (x30, y30) ≈ (1.9807, −6.2005).
(m1 � 8.46,m2 � 0.66, k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1,
k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17, R � 0.1, C � 1.02,
b � 0.33, F � 200)

10−4) for k � 9, 10, · · · , 160 with A1, 80 ∼ 10−14. For
the tuned mass damper, the constant term is with ab2, 0 �
−ar2, 0 ≈ 0.1437, the main harmonic amplitudes of displace-

ment x2 are A2, 1/2 ≈ 0.0371, A2, 1 ≈ 6.3313, A2, 3/2 ≈
0.0923, A2, 2 ≈ 0.6588, A2, 5/2 ≈ 0.0549, A2, 3 ≈ 9.2262,
A2, 7/2 ≈ 0.0913, A2, 4 ≈ 2.1362 and A2, k/2 ∈ (10−14, 100)
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Fig. 9 Symmetric stable period-1 motions at � ≈ 0.75: i–iii phase tra-
jectories (xi , yi ), (i � 1, 2, 3) with initial conditions (x10, y10) ≈
(−3.722, 6.324), (x20, y20) ≈ (−14.887, 23.162) and (x30, y30) ≈
(−13945, 1.910); iv–vi harmonic amplitudes spectrums Ai , k , (i � 1,

2, 3). (m1 � 8.46, m2 � 0.66, k1 � 7.12, k2 � 1, k3 � 0.821,
k4 � 0.1, k5 � 0.15, d1 � 0.4, d2 � 0.2, L � 1.17, R � 0.1,
C � 1.02, b � 0.33, F � 200)

for k � 9, 10, · · · , 160 with A2, 80 ∼ 10−14. For 60 har-
monic terms, an approximate solution has the accuracy of
A2, 30 ∼ 10−4. For current x3, the constant terms are zero,
i.e.,ab3, 0 � −ar3, 0 � 0. The main harmonic amplitudes are
A3, 1/2 ≈ 9.1805 × 10−4, A3, 1 ≈ 1.4627, A3, 3/2 ≈ 0.0365,
A3, 2 ≈ 0.1369, A3, 5/2 ≈ 9.3275 × 10−3, A3, 3 ≈ 1.4260,

A3, 7/2 ≈ 0.0134, A3, 4 ≈ 0.3029 and A3, k/2 ∈ (10−14,
10−1) for k � 8, 9, · · · , 160 with A1, 80 ∼ 10−14. With 48
harmonic terms, an approximate solution has the accuracy of
A3, 24 ∼ 10−4.
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Fig. 10 Asymmetric stable period-1 motions at � ≈ 0.74: i–iii phase
trajectories (xi , yi ), (i � 1, 2, 3) with initial conditions (xb10,
yb10) ≈ (−1.328, 6.112), (xb20, yb20) ≈ (−11.485, 19.964), (xb30,
yb30) ≈ (−1.452, 1.321) and (xr10, yr10) ≈ (−2.770, 4.046), (xr20,

yr20) ≈ (−9.458, 29.966), (xr30, y
r
30) ≈ (−1.190, 2.716); iv–vi har-

monic amplitudes spectrums Ai , k , (i � 1, 2, 3). (m1 � 8.46,
m2 � 0.66, k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1, k5 � 0.15,
d1 � 0.4, d2 � 0.2, L � 1.17, R � 0.1, C � 1.02, b � 0.33,
F � 200)

6 Conclusions

In this paper, bifurcation routes of periodic motions in
an electromagnetic tuned Duffing oscillator were studied
through the implicit mapping method. On the bifurcation
routes, there exist one branch of symmetric period-1 motions
and 4 branches of asymmetric period-1 motions, one branch

of the four asymmetric period-1 motion branches with
asymmetric period-2 motion to chaos was obtained. The
frequency-amplitude characteristics of symmetric period-1
to asymmetric period-2 motions were obtained through the
finite Fourier series analysis. The simple and complex peri-
odic motions were illustrated for different frequencies. The
symmetric period-1 to asymmetric period-2 motions on the
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Fig. 11 Asymmetric stable period-2 motions at � ≈ 0.737: i–iii phase
trajectories (xi , yi ), (i � 1, 2, 3) with initial conditions (xb10,
yb10) ≈ (−0.986, 6.331), (xb20, yb20) ≈ (−11.002, 18.122), (xb30,
yb30) ≈ (−1.401, 1.051) and (xr10, yr10) ≈ (−2.933, 3.934), (xr20,

yr20) ≈ (−8.364, 29.311),(xr30, y
r
30) ≈ (−1.049, 2.661); iv–vi har-

monic amplitudes spectrums Ai , k/2, (i � 1, 2, 3). (m1 � 8.46,
m2 � 0.66, k1 � 7.12, k2 � 1, k3 � 0.821, k4 � 0.1, k5 � 0.15,
d1 � 0.4, d2 � 0.2, L � 1.17, R � 0.1, C � 1.02, b � 0.33,
F � 200)

bifurcation treewere also illustrated from the semi-analytical
results. For low frequency, periodic motions need more har-
monic terms to give accurate approximate solutions. Peak
values of current also occur in the low frequency range,which
means higher energy harvesting and vibration reduction effi-
ciency.

Appendix

The components of DP matrix in Eq. (10) are given as fol-
lows.
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