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Abstract
The dynamics of brushless DC motor (BLDCM) is studied in detail from the viscous damping coefficient, a mechanical
parameter. While this parameter intervenes in determining the dissipativity of the system; it shows the high complexity of the
brushless DC motor. The pitchfork bifurcation is revealed. The Hopf bifurcation is identified twice in the road towards and
from chaotic dynamics regions. Rigorous methods such as the center manifold theorem and the normal form theory confirm
Hopf bifurcation. The different theoretical scenarios and motor parameters are also illustrated. Real positive parameters of the
coefficient are only considered to keep the physical meaning from the analysis. With some special conditions around Hopf
bifurcation, the transient chaotic behaviors of the BLDCM are detected. Bifurcation diagrams and Lyapunov exponents are
used to support the theoretical findings.
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1 Introduction

Various electromechanical systems such as dynamo [1],
driven double pendulum [2], driven triple pendulum [3],
inverted pendulum [4], beam coupled with an oscillator [5],
and electromechanical transducer [6] have attracted focus
due to their interesting dynamics. However, the brushless
DCmotor (BLDCM) has been of themost studied electrome-
chanical systems. Especially relating to chaos theory, Hemati
studied the equilibria and dynamic characteristics (chaos) of
a class of motors from their compact form [7]. Similar to
the BLDCMmodel, the synchronous reluctance motor drive
(SynRM) model exhibited Hopf bifurcation via one of its
input [8].
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Hemati has non-dimensionalized theBLDCM[9]. Inmost
studies, the BLDCM model has been non-dimensionalized
[10] since it possesses many parameters. While the aim was
to make the analysis easier, the richness of the dynamics was
hidden. As a result, the BLDCM has been often compared to
the Lorenz system [9]. In real life, this comparison has not
been useful due to bifurcation in the real system design.

For reference, the BLDCMor the general permanentmag-
net synchronous motor (PMSM) has also been studied in
terms of control with linear control feedback [11], global
control [12], dynamic surface control [13].

Furthermore, for synchronization, single-variable cou-
pling [14], various coupling terms and linearization of
error dynamics [15], the backstepping design, and the Ger-
schgorin’s theorem method [16] were used.

The bifurcation analysis for these models of BLDCM,
including both fractional-order [17] and integer-order [18,
19] have been conducted; however, the methods like Lya-
punov exponents or bifurcation diagram are non-rigorous.

Besides the self-excited chaos, the hidden chaos was
investigated. The hidden chaos was first reported in the orig-
inal BLDCM [20, 21] and then in the modified model of
PMSM.

The hidden chaos has proven dangerous in multistability
in the BLDCM as investigated by Faradja and Qi [21] and
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adopted for plasma system study by Yang et al. [22] and
unmanned aerial vehicles by Bi et al. [23].

Besides traditional bifurcation techniques, other mecha-
nisms to explain dynamics in the BLDCMwere investigated,
like energy-based methods using Casimir functions and
Kolmogorov systems [24], using generalized Hamiltonian
functions explained the onset of different dynamical behav-
iors such as sink, limit cycle, chaos [25].

While traditional bifurcation studies use non-
dimensionalized models and energy-based methods refer
more to force and energy, the studies on the dynamics of
BLDCM, however, are still lacking some insight. Studies
of the effects of individual parameters of BLDCM have not
been conducted in general. A few exceptional studies exist.
Gao systematically studied the permanent-magnet sizing
effect [26], compared in that study with the motor torque
constant with the same dimension as the permanent magnet
flux. Recently, Faradja and Qi considered the bifurcation
with the direct-axis voltage as the bifurcation parameter
[27]. The BLDCM possesses design parameters such as the
viscous damping coefficient (Table 1).

To the best of our knowledge, bifurcation of the BLDCM
with the viscous damping parameter has not been analyzed.
It should be considered that the non-dimensionalization has
introduced other problems. For example, it is impossible to
obtain chaos with a real motor with the chosen parameters
because some real parameters will be abnormally negative,
as illustrated by Li et al. [10] and Singh et al. [28].

The paper’s main finding is that the bifurcation con-
tribution of the damping coefficient in the overall system
dynamics is highly complex, even in a real context. Both
non-rigorous and rigorous methods are used.

The paper is organized as follows. The model of the
BLDCM is described in Sect. 2. The bifurcation analysis
exposing the pitchfork and Hopf bifurcation are detailed in
Sect. 3. Section 4 deals with the illustration of the different
scenarios of bifurcation. The paper is concluded in Sect. 5.

2 Model description of BLDCM

The non-salient-pole (or smooth air gap) BLDCM model in
the rotating frame (d-q) obtained after a Park transformation
comprises differential equations for three state variables [9]
is expressed as follows:

diq
dt

� (−Riq − nLωid − nktω + vq
)
/L,

did
dt

� (−Rid + nLωiq + vd
)
/L,

dω

dt
� (

nkt iq − bω − TL
)
/J , (1)

Table 1 Categorization of literature on dynamics of PMSM/BLDCM

Category of papers Sub-
classification/remarks

References of papers

Chaos and
Dynamics from
non-
dimensionalized
models

Reduce the design
complexity

[7, 9]

Control and
synchronization of
BLDC/PMSM

Control (linear and
nonlinear
methods, local and
global approach

[11–13]

Synchronization [14–16]

Bifurcation analysis With non-rigorous
methods

[7, 9, 10, 17–19]

Hidden chaos in
BLDCM/PMSM

Transient hidden
chaos in the
normal
BLDCM/PMSM
model

[20, 21]

Input excited via
feedback in a
problematic
modified
BLDCM/PMSM
model

[28]

Dynamics with
energy based
methods

Using Casimir
energy function
from Kolmorogov
systems

[24]

Using Hamiltonian
function

[25]

Dynamics with
singular parameter

Electromechanical
parameter: motor
torque constant

[26]

Electrical input:
Direct axis voltage

[27]

Mechanical design
parameter:
damping
coefficient

This paper

where iq the quadrature-axis current, id the direct-axis cur-
rent,ω rotor velocity; t is the elapsed time; for the parameters,
R is the winding resistance matrix with L � 3

2 La , La the
self-inductance of the winding, n the number of permanent-

magnet pole pairs, kt �
√
3
/
2ke, ke the coefficient of motor

torque, J the moment of inertia, b the damping coefficient;
for the input variables, vq and vd are the voltages across the
quadrature axis and direct axis, respectively, and TL the exter-
nal torque. This model describes a smooth air-gap machine
where the variation of reluctance in the air gap Lg is zero.

The following assumptions are made: vq � 0 and TL � 0.
The divergence of the BLDCM model is ∇V � −(

2R
/
L + b

/
J
)
, so the system is dissipative when all param-

eters have sound meanings under the condition ∇V < 0.
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Hence, the volume in phase space shrinks exponentially to
zero. Also, the energy of the system will become nulled with
the absence of inputs. The existence of the damping coeffi-
cient in the gradient shows the importance of this parameter.

3 Bifurcation analysis with damping
coefficient

We now consider the viscous damping coefficient as the
bifurcation parameter. The equilibrium number changes with
parametric conditions under the stated assumptions.With the
assumptions stated above, the equilibria are obtained. Set-
tingthen the three equilibria are

− Riq − nLωid − nktω � 0,

− Rid + nLωiq + vd � 0, and nkt iq − bω � 0,

(2)

E1 �
[
0,

vd

R
, 0

]
,

E2,3 �
[
± 1

n2kt L

√
�, −bR + k2t n

2

kt Ln2
, ± 1

nbL

√
�

]

where

� � −bR2(b − bp
)
and bp � −

(
k2t n

2R + ktvd Ln
2
)/

R2.

Therefore, the BLDCM undergoes pitchfork bifurcation
when the damping coefficient takes the value

bp � −
(
k2t n

2R + ktvd Ln
2
)/

R2. (3)

At this value, the number of equilibrium points changes
from three for b < bp to one for b > bp. The occurrence of
pitchfork bifurcation is thus observed. The first equilibrium
can be saddle-node or sink except when its stability cannot

be determined by eigenvalues rather by the center manifold
theorem. The equilibria are also found in [27].

For the other equilibria, the characteristic polynomial is
written as

P(λ) � λ3 +
2J R + bL

J L
λ2 +

−Jk2t Rn
2 − Jkt Ln2vd + LRb2

J L2b
λ

− 2k2t n
2R + 2ktvd Ln2 + 2bR2

J L2 (4)

The study of the stability of this characteristic polynomial
requires that

2J R + bL

J L
> 0, (5)

meaning that 2J R + bL > 0. Then we also have

−Jk2t Rn
2 − Jkt Ln2vd + LRb2

J L2b
> 0. (6)

And finally,

−2k2t n
2R + 2ktvd Ln2 + 2bR2

J L2 > 0. (7)

Based on these three conditions, we have

b < bP (8)

with

bp � −
(
k2t n

2R + ktvd Ln
2
)/

R2

The condition of Eq. (8) relates the stability of the sym-
metric equilibria to pitchfork bifurcation. This value bP is
the critical value for the occurrence of pitchfork bifurcation.
Inequalities (7) and (8) are necessary conditions for the sta-
bility of the symmetric equilibria.

The sufficient condition is drawn from the Routh-Hurwitz
table. If the characteristic polynomial in Eq. (4) is s3 + As2 +
Bs + C � 0, the sufficient condition is (AB − C)/A > 0.
Hence,

−2J 2k2t R
2n2−2vd J 2kt L Rn2+Jk2t L Rbn

2+vd J K L2bn2+4J LR2b2+L2Rb3

2J Lb(k2t Rn2+Lvdkt n2+bR2)
> 0. (9)

This inequality is essential. Considering the real case
scenariowith positive parameters, this inequality shows com-
plexity with the bifurcation using the mechanical parameter.
Pravin analyzed the possibility of obtaining real roots from
cubic equations [29].

For Hopf bifurcation, three conditions are needed: (1)
nonhyperbolicity, (2) transversality condition, and (3) non-
genericity.
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For the first condition of nonhyperbolicity, it is supposed
from Eq. (9) that there is an eigenvalue λ � θ j , then the
critical value is obtained from

−2J 2k2t R
2n2−2vd J 2kt L Rn2+Jk2t L Rbn

2+vd J K L2bn2+4J LR2b2+L2Rb3

2J Lb
(
k2t Rn2+Lvd kt n2+bR2

) � 0. (10)

Equation (10) possesses three roots:

bH0 � −bdc1
2

− bdc2
2bdc1

− 4J R

3L
− √

3

(
bdc2
2bdc1

− bdc1
2

)
j,

(11a)

bH1 � −bdc1
2

− bdc2
2bdc1

− 4J R

3L
+

√
3

(
bdc2
2bdc1

− bdc1
2

)
j,

(11b)

bH2 � bdc1 +
bdc2
bdc1

− 4J R

3L
, (11c)

with

bdc1 � 3

√√√√√

⎡

⎣

√(
bdc4 − 64J 3R3

27L3 + bdc3

)2

− b3dc2

⎤

⎦ + bdc4 − 64J 3R3

27L3 + bdc3,

bdc2 � 16J 2R2

9L2 − bdc5
R

, bdc3 � 2J 2k2t R
2n2 + 2Lvd J 2kt Rn2

2L2R
,

bdc4 � 2Jbdc5, bdc5 � J Rk2t Ln
2 + Jvdkt L2n2

3L2 .

The analysis of the stability with complex roots must con-
sider the real case scenario. The three roots in Eq. (11) are
real for specific conditions. According to Pravin [29], if the
numerator of the polynomial in Eq. (10) is written as

b3 + B2b
2 + B1b + B0,

then the three roots are real when the following conditions
are fulfilled
(
2B3

2 − 9B2B1 + 27B0

)2 ≤ 4
(
B2
2 − 3B1

)
, (12a)

(
B2
2 − 3B1

)
≥ 0. (12b)

For the first condition (12a), we obtain

108J 3k6t
L3 +

6372J 4k4t R
2n4

L4 − 13824J 5k2t R
4n2

L5

+
6372J 4k2t v

2
dn

4

L2 +
108J 3k3t v

3
dn

6

R3

+
324J 3k5t vdn

6

L2R
+
324J 3k4t v

2
dn

6

LR2 +
12744J 4k3t Rvdn4

L3

−13824J 5kt R3vdn2

L4 ≤ 0.

(13)

By solving the corresponding equation with respect to vd ,
we get

vd1 � −kt R

L
, (14a)

vd2 � −
R
(
59J R2 + 2k2t Ln

2 + 11
√
33J R2

)

2kt L2n2
, (14b)

vd3 � −
R
(
59J R2 + 2k2t Ln

2 − 11
√
33J R2

)

2kt L2n2
(14c)

The second condition (14b) implies that

16J 2R2

L2 − 3Jk2t n
2

L
− 3Jktvdn2

R
≥ 0, (15)

so that vd ≤ vd4 with

vd4 �
(
−3Lk2t Rn

2 + 16J R3
)/

3kt L
2n2. (16)

It is straightforward to observe that vd2 < vd1, vd3 >

vd1 and vd1 < vd4. Therefore the polynomial possesses
three roots when

vd ≤ vd2. (17)

When the number of pole pairs is extremely high,

vd4 � −kt R/L. (18)

We now test the second condition, i.e., the transversality
condition. We recall the characteristic polynomial again in
another format
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Fig. 1 Evolution of dynamical behaviors (Color figure online)

 (a) Time series of limit cycle (b) phase trajectory of limit cycle

Fig. 2 Limit cycle of Hopf bifurcation

P(λ) � λ3 +
2J LR + bL2

J L2 λ2

+
LRb2 − Jk2t Rn

2 − Jkt Ln2ktvd
J L2b

λ

− 2k2t n
2R + 2ktvd Ln2 + 2bR2

J L2 . (19)

The polynomial is thus derived for the damping coefficient
with the eigenvalue being a function of the same parameter,

3λ2dλ + 2
2J LR + bL2

J L2 λdλ

+
−Jk2t Rn

2 − Jkt Ln2ktvd + LRb2

J L2b
dλ

+
λ2

J
db − 2R2

J L2 db +
Rλ

J L
db

+
Jk2t Rn

2 + Jkt Ln2vd
J L2b2

λdb. (20)

Extracting the ratio of change of the eigenvalue with
respect to the bifurcation parameter, and using the conjugate
of the complex denominator yield
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(a) Time series of non-Shilnikov chaos (b) phase trajectory of non-Shilnikov chaos

Fig. 3 Non-Shilnikov self-excited chaos

(a) Time series of self-excited chaos (b) phase trajectory of self-excited chaos

Fig. 4 Shilnikov self-excited chaos

dλ

db
� −

(
− θ2

J − 2R2

J L2 +
Rθ j
J L + Jk2t Rn

2+Jkt Ln2vd
J L2b2

θ j
)(

−2θ2 − 22J LR+bL2

J L2 θ j
)

(
−2θ2 + 22J LR+bL2

J L2 θ j
)(

−2θ2 − 22J LR+bL2

J L2 θ j
) . (21)

The real part of the change of the eigenvalue becomes

Re

(
dλ

db

)
� 2J 2k2t R

2n2 + 2vd J 2kt L Rn2 + Jk2t L Rbn
2 + vd Jkt L2bn2 + J L3b2θ2 + 4J LR2b2 + L2Rb3

2θ2 + 2
(
2J LR+bL2

J L2

)2 . (22)
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(a) Time series of limit cycle (b) phase trajectory of limit cycle

Fig. 5 Limit cycle of Hopf bifurcation

 (a) Time series of self-excited chaos          (b) phase trajectory of self-excited chaos

Fig. 6 Non-Shilnikov self-excited chaos

The transversality condition is fulfilled when

Re

(
dλ

db

)
�� 0, (23)

which means

vd �� − J 2k2t Rn
2 + 2RJ Lb2 + L2b3

J 2kt Ln2
, (24a)

R �� 0, (24b)

R �� − J 2kt Ln2vd + L2b3

J 2k2t n2 + 2J Lb2
. (24c)

Remark 1 This value vd � vd2 from Eq. (14b) is signifi-
cant for two-dimensional bifurcation combining vd and b as

it determines the critical value beyondwhich there is noHopf
bifurcation. In fact, at this value bH1 � bH2, Hopf bifurca-
tion may exist without chaos. This value also has an impact
on transient chaos. It determines the critical value of transient
chaos.

By increasing or decreasing the value, the duration of tran-
sient chaos decreases. So it becomes the single point where
permanent chaos occurs. We have thus the single-value per-
manent chaos. Chaos occurs only at those parameter values in
the 2Dplane.At the values b � bH1 [Eq. (11b)] and b � bH2

[Eq. (11c)], the non-hyperbolicity condition is satisfied.
The third condition, i.e., non-genericity, of the Hopf bifur-

cation can be applied through the center manifold theorem
with the viscous damping coefficient. For these two posi-
tive points b � bH1 [Eq. (11b)] and b � bH2 [Eq. (11c)],
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Fig. 7. 3D family of limit cycles

              (a) Time series for an exception (b) Phase trajectory for an exception

Fig. 8 Special case for the parameters

we apply the center manifold theorem and the normal form
theory developed by Faradja and Qi [27] to obtain non-zero
first Lyapunov coefficients at both values.We have supercrit-
ical Hopf bifurcation at both points. Equilibria E2 and E3 are
stable, then unstable, then stable again before they disappear.

So the damping coefficient values exist for which the
eigenvalues produce the conditions for Hopf bifurcation.

Although the motor is an electromechanical device, we
easily notice that the occurrence of Hopf bifurcation is con-
ditioned by a special relationship between two electrical
parameters. Equation (24) also shows the combined impact
of the mechanical ratio b/J and the electrical damping ratio
R/L .

4 Illustration and discussion

We now illustrate the bifurcation with the damping coeffi-
cient as the bifurcation parameter. Given the parameters

kt � 0.031 N · m/A, n � 4, L � 14.25 × 10−3 H,

R � 0.9 �, J � 4.7 × 10−5 kgm2,

when vd � −27 V we have bH1 � 0.007758974260878
and bH2 � 0.014528633351044 while bH0 �
−0.034161291822448. For these two positive points bH1

and bH2 in Eq. (11), we apply the center manifold theorem
and normal form theory and obtain non-zero first Lyapunov
coefficients at both values. We have supercritical Hopf bifur-
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Fig. 9 Another special case

cation at both points. Equilibria E2 and E3 are stable, then
unstable, then stable again before they disappear. In Fig. 1a,
the equilibrium E1 is unstable (in cyan color) and stable (in
black). Then equilibrium E2 is unstable (in red) and stable (in
magenta). And finally, equilibrium E3 is unstable (in blue)
and stable (in green color).

Chaos exists only between the two critical values bH1

[Eq. (11b)] and bH2 [Eq. (11c)] as shown as Fig. 1a, b, where
(L1, L2, L3) � (+, 0,−). Both symmetric equilibria are sad-
dle fulfilling the Shilnikov condition. Beyond that region, the
symmetric equilibria are still saddle, but they do not satisfy
the Shilnikov theorem.

We illustrate below thedifferent scenariowith the different
critical values.

4.1 Case of the first bifurcation point

The system has the first Hopf bifurcation at bH1 [Eq. (11b)].
Around the equilibria E2 and E3, the limit cycle is observed,
as illustrated in Fig. 2. Far from E2 and E3, it has the non-
Shilnikov self-excited chaos (Fig. 3).

4.2 Case between two Hopf bifurcation points

Then, consider the value between bH1 and bH2. We observe
the Shilnikov self-excited chaos even when starting from the
symmetrical equilibria, as shown in Fig. 4. The trajectory
starts almost as stable, then starts oscillating almost peri-
odically and then ends chaotic, which is the opposite for
scenarios with transient chaos.

4.3 Case for the second Hopf bifurcation point

At bH2 [Eq. (11c)] the BLDCM exhibits a limit cycle near
equilibria in Fig. 5 and non-Shilnikov self-excited chaos far
from the equilibria (Fig. 6). Coexistence of different dynam-
ical behaviors is experimented. The family of limit cycles to
illustrate theHopf bifurcation is also illustrated in 3D (Fig. 7).

4.4 Exceptional case when inductance andmoment
of inertia are equal

Exceptions for the condition of Hopf bifurcation are also
tested. For example, when J � L , the Hopf bifurcation does
not occur, as illustrated in Fig. 8. This case is fundamental
in the analogy relationship between electromechanical quan-
tities and mechanical quantities. Inductance and moment of
inertia are equivalent when electrical quantities are related to
mechanical rotational quantities.

4.5 Exceptional case when bifurcation parameter is
more than a certain margin

Illustratively in Fig. 9, when vd ≥ −kt R
/
L [Eq. (14a)], we

have the only equilibrium as predicted.

4.6 Case for a single bifurcation point

For the critical value conditions vd � vd2 [Eq. (14b)], the
BLDCMhas a point where there is only one bifurcation value
for the damping coefficient. Around the value, we find tran-
sient chaos, as is illustrated in Fig. 10, which depicts the
change in the transient time as there are slight changes around
the critical value vd � vd2.When vd � vd2,we observeHopf
bifurcation and coexistence of the limit cycle (Fig. 10e, f) and

123



1030 P. B. Faradja et al.

Fig. 10 Particular case vd � vd2
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Fig. 10 continued

Fig. 11 Evolutionary bifurcation diagram

chaos (Fig. 10g, h). There are so many dynamical behaviors
around this point because it is an exceptional point whereby
two Hopf bifurcation points are combined into a single bifur-
cation point.

From Eq. (3), by fixing vd , pitchfork bifurcation hap-
pens if b � bp when bp � −(

n2Lktvd + Rn2k2t
)/

R2.
Three equilibrium points exist when b < bp. With vd �
−50 V, bp � 0.4192 N · m/rad/s, bH1 � 0.005 N ·
m/rad/s and bH2 � 0.028 N · m/rad/s. There are also
two switching points, excepted to be homoclinic bifurcation
points, depicting switching between symmetric equilibria.

Moreover, comparatively bH1 and bH2 (Figs. 11 and 12a),
the evolutionary bifurcation diagram and the evolutionary
graph of the Lyapunov exponents are similar.

Figure 12b is the reduced range of the viscous damping
coefficients b values from Fig. 12a. There exist points bH1 �
0.005 N · m/rad/s and bH2 � 0.028 N · m/rad/s where the
maximum L1 � 0, the other two LEs are negative. This
condition gives rise to limit cycles. Chaos exists in the range
between bH1 � 0.005 N · m/rad/s and bH2 � 0.028 N ·
m/rad/s.

Comparing with the bifurcation with direct-axis v oltage,
it is evident that the bifurcation with the damping coefficient
givesmore complexity. The damping coefficient is very influ-
ential as it participates in the definition of the dissipativity of
the BLDCM model.

5 Conclusion

The BLDCM model was analyzed to focus on the viscous
damping coefficient,which is amechanical design parameter.
The impact of this parameter was first found in the dissipa-
tivity of the system. The pitchfork bifurcation was identified.
The onset of the Hopf bifurcation proved the impact of this
parameter on the complexity of the overall dynamics. This
type of bifurcation occurs twice with real positive param-
eters. The different scenarios for dynamical behaviors were
illustrated. The chaos, limit cycle and stability were checked.
Besides, transient features near the single Hopf bifurcation
point were observed. The observation is that when the param-
eter is closer to the unique Hopf point, the transient time
gets longer. Evolutionary bifurcationdiagrams andLyapunov
exponents support the theoretical results that were found
from rigorous methods.

This study also may suggest that parameters that define
dissipativity of a system can have a greater impact on the
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1032 P. B. Faradja et al.

       (a) Longer range of                                                 (b) Smaller range of b b

Fig. 12 Variation of Lyapunov exponents with the viscous damping coefficient

overall dynamics than a parameter that does not contribute
to the dissipativity.
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