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Abstract
This paper presents aLinearQuadraticRegulator (LQR) control strategy for a non-linear 3-DOFhelicopter system.Theoptimal
tracking approach yields robustness to both structured (parameter variation) and unstructured (disturbance) uncertainties.
First, the 3-DOF helicopter system is linearized around an operating point and its state-space model is derived. Then, the
LQR controller is designed. Numerical results show the controller’s robustness and high performance under uncertainties. In
comparison with other existing control strategies, the control approach proposed in this paper is a lot more simple, hence its
comparison with the PID controller, an equally simple control strategy. To better evaluate the execution and the performance
of the LQR control strategy, two quantitative tracking performance metrics are presented; (i) the integral of the tracking errors,
and (ii) the integral of the control signals of the system. Comparative results show the prevalence of the proposed strategy, as
it achieves the highest tracking accuracy with the lowest control exertion.

Keywords Linear quadratic regulator (LQR) · Three degree-of-freedom (3-DOF) · Uncertainties · Pitch · Roll · Yaw ·
Proportional integral derivative (PID) · Proportional integral (PI)

1 Introduction

Helicopters and other aerial vehicles have been of signifi-
cant research interest over the past few decades due to their
multi-disciplinary applications. Their commercial demand
has expanded globally because of their flexible nature to
reach remote destinations [1]. Therefore, it is essential that
the helicopter is equipped with a robust controller to deal
with unprecedented circumstances like natural and human
induced disturbances, changes in mass, friction, parame-
ter variation [2]. The helicopter control dynamics primarily
involve the control of the roll, yaw, and pitch, which is very
similar to the airplanes with two rotors [3]. However, due to
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the distinctive skeletal structure of the helicopter, the three
control parameters are strongly coupled with each other. The
primary difference between a conventional helicopter and
a 3-DOF helicopter lies in the number of rotors used [4].
While a conventional helicopter uses a single rotor, a 3-DOF
helicopter is equipped to handle two rotors which makes it
more fault resistant [2]. Nevertheless, the main challenge
lies in stabilizing the 3-DOF helicopter because of its highly
non-linear nature, open-loop dynamics, and structured and
unstructured uncertainties which the helicopter might face.

Numerous control techniques like robust, classical, and
adaptive control techniques have been proposed for the con-
trol of a 3-DOF helicopter [5]. Techniques like back-stepping
and input-output linearization are some of the well known
classical methods as they are relatively easy to deal with, but
sheer linearization does not assure stability under all operat-
ing circumstances, and they can also be victims to parameter
fluctuations [6]. They also have system dynamics that are
prone to modification because of the presence of uncertain-
ties, and so, solely relying on classical methods does not
guarantee the best results [7]. Hence, there is a need to resort
to an alternative approach of control to keep up with the
highly sophisticated design requirements. An adaptive con-
trol system technique is used in [8], in which the translation
dynamics of a 3-DOF helicopter are presented. Using the
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Fig. 1 3-DOF Helicopter

state-dependent Riccati equation, a model reference adap-
tive control for a 3-DOFhelicopter ismentioned in [9]. Based
on the adaptive genetic algorithm in [8], frequency-domain
system identifications are used for aerial vehicles.

In [10], a continuous differentiator-based adaptive second-
order control strategy that integrates twisting controllers with
a continuous differentiator is proposed to control the 3-DOF
helicopter. The control strategy mentioned in [4] controls
the attitude of the helicopter using the Linear Quadratic
Regulator (LQR) method. Here, feedback linearization is
achieved, and the controller is incorporated to take into
account unpredictable events. Using integral action, track-
ing error is minimized in [11], in which an adaptive LQR is
developed and provides a solution for the unknown faults in
the system. In [12], a non-linear control of a second-order
auxiliary system is implemented to filter the error signals
while estimating some disturbances and uncertainties. To
track the trajectory of small helicopters in [3], a robust con-
trol algorithm is implemented. This control method does not
rely on the system’s model parameters. In [13], a control
strategy involving an adaptive back-stepping tracker for a
6-DOF helicopter is implemented where the controller jux-
taposes the proposed parameters with the online parameters.
A similar control technique for a 3-DOF helicopter involving
back-stepping is mentioned in [14], where the controller is
equipped with the ability to approximate model uncertain-
ties and accelerate the performance of the model. In [15], to
deal with non-linear actuator faults and other uncertainties,
an adaptive neural-fault controller is proposed.

The main challenge in designing a controller for a 3-DOF
helicopter is stabilizing the 3-DOF helicopter system as it
is non-linear and has unstable dynamics. The motion of a
3-DOF helicopter is dictated by the three axes of rotation
shown in Fig. 1. These axes, the roll, yaw, and pitch, are
non-linear and coupled, which complicates the controller
design. A 3-DOF helicopter system is an underactuated sys-
tem, as three degrees of freedom (yaw, roll, and pitch) are
present while there are only two controlling forces available.
Therefore, for optimal results and tracking, these three non-
linear parameters must be modeled as state-space equations,
and then necessary control techniques are executed on these
parameters. This paper aims at motion tracking for a 3-DOF
helicopter using the LQRcontrol technique in the presence of
both structured and unstructured uncertainties. The objective
is to ensure that the three parameters (roll, yaw, and pitch)
operate at their desired value and that in the event of uncer-
tainties, the LQR control strategy brings the three parameters
back to their original position. In this control system, once
the non-linear parameters are linearized, the PI controller-
based technique is employed. LQR control method has an
upper hand over the conventional control methods involving
PI or PID controllers.

An adaptive control strategy was implemented in coping
with structured and unstructured uncertainties in [16], and
in that paper, the derivative of the error, which is noisy and
thereby limits the system’s performance, is used in achieving
disturbance rejection. Authors in [17] addressed this short-
coming by using an advanced control method to cope with
unstructured uncertainties (like external disturbance). Nev-
ertheless, the strategy introduced in [17] contains a lot of
complexity and is almost overkill. Unlike [16], and [17], the
Linear Quadratic Regulator control strategy proposed in this
paper is an optimal tracking controller that achieves similar
performance to [17] but with muchmore simplicity. Not only
does this paper introduce a simple strategy, but it is also one
of the first attempts, to the best of the author’s knowledge,
to implement an LQR strategy in coping with a 3-DOF heli-
copter. An LQR strategy has been used to control 2-DOF
helicopters, but the work presented in this paper has nov-
elty in its use on the 3-DOF helicopter. This paper is divided
into the following sections: Sect. 2 explains the mathemat-
ical model and system dynamics on the 3-DOF helicopter,
and the equivalent state-space model is derived. Section 3
demonstrates the design of the LQR feedback controller,
which is integrated with a PI-based controller plant model.
The performance of the LQR controller under structured and
unstructured uncertainties is validated in Sect. 4, and finally,
Sect. 5 expresses the conclusion with remarks and sugges-
tions for future works.
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2 Operating principle of the 3-DOF
helicopter

2.1 Systemmodel

The 3-DOF helicopter shown in Fig. 1 is used as a benchmark
to validate the effectiveness of various control strategies.
This benchmark model has features like nonlinear model
dynamics, uncertain characteristics, and a dual-motor cross
coupling system, like a real 3-DOF helicopter [18]. The sys-
tem was designed by Quanser to provide researcher with a
platform to test different control strategies [19]. Such sys-
tem can also be used for other educational purposes, and
real applications of 3-DOF flight control dynamics [20]. At
the centre of gravity of the 3-DOF helicopter, we can define
a three-dimensional coordinate system of movement with
three axes. These axes are called roll (ε), pitch (θ ), and yaw
(ψ). The roll axis revolves around the longitudinal axis that
extends from the nose to the tail of the helicopter system.
A helicopter’s rolling motion is an up and down movement
of its wing tips [21]. The pitch axis is parallel to the plane
of the helicopter’s wings, and it extends from the left wing
tip to the right wing tip. A helicopter’s pitch motion is an up
and down movement of its nose or tail [21]. The yaw axis
is perpendicular to the plane of the helicopter’s wings and
directed towards the bottom of the aircraft. A helicopter’s
yawing motion is the movement of its nose or tail from side
to side [21]. The dynamics of the propeller motion of the 3-
DOF helicopter are highly non-linear and interlinked, which
makes the helicopter unstable [18].

Themathematicalmodel for the system is developed using
Fig. 1 and the Euler-Lagrange equation. The forces acting on
the helicopter by the DC motor and the counter mass are
also considered. The mathematical model is given by the
following equations [16]:

Jε ε̈ = G cos ε + La cos θu1 (1a)

Jψψ̈ = La cos ε sin θu1 (1b)

Jθ θ̈ = Lhu2 (1c)

with,u1 = Ff +Fb,u2 = Ff −Fb ,G = g(MhLa−MwLw),
where, ε̈, θ̈ , and ψ̈ are the double derivatives of the roll, pitch
and yaw axes respectively, and,

Mh : mass of the helicopter

Mw : mass of the counterweight

La : length from the rotors to the center of mass

Lw : length from the tail to the center of mass

Lh : length between the rotors

g : gravitational constant
ε : roll angle of the helicopter

ψ : yaw angle of the helicopter

θ : pitch angle of the helicopter

u1 : control input vector
u2 : control input vector
Jε : moment of inertia about roll

Jψ : moment of inertia about yaw

Jθ : moment of inertia about pitch

Ff : front motor force

Fb : back motor force

Before we derive the state-spacemodel of the 3-DOF heli-
copter, let us introduce some properties of the helicopter
system [16]:

Property 1: The roll and axes are perpendicular to one
another.

Property 2: The three axes intersect at the same point;
this point is the origin of the global coordi-
nate frame.

Property 3: The helicopter frame and counterweight
mass are parallel to the pitch axis.

Property 4: The system’s centrifugal forces, joint fric-
tion, and air resistance are ignored.

Property 5: The thrust force is correlative to the motor
voltage, and thedynamics of themotors/propeller
are ignored.

It is important to note that the 3-DOF helicopter is under-
actuated. This means that the system has only two input
forces/actuators to control three degrees of freedom (roll (ε),
pitch (θ ), and yaw (ψ)) [22].

2.2 State spacemodel

The state-space model for the 3-DOF helicopter is derived
based on the following assumptions:

– The roll and yaw axis are orthogonal to each other
– The helicopter rectangular frame bed and the counter-
weight are in the same line with reference to the pitch
axis

– Air resistance, centrifugal forces, and joint friction are
neglected

– The thrust force generated is proportional to the DC
motor voltage, and the dynamics of the propeller is
neglected

The 3-DOFhelicopter has three parameters: the roll, yaw, and
pitch. These parameters are the state variables of the system
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which need to be controlled. There are also only two control
inputs available, and they are:

u1 = Ff + Fb, and, (2a)

u2 = Ff − Fb (2b)

Equations (1a), (1b), and (1c) are used in deriving the state-
space model of the 3-DOF helicopter. It is clear that Eq. 1a
is a non-linear equation so before proceeding with the state-
space derivation, Eq. 1a is linearized around an equilibrium
point. Since three variables must be controlled, two fictitious
inputs are intentionally introduced and they are denoted as:

v1 = u1 cos θ (3a)

v2 = u1 cos ε sin θ (3b)

which re-defines Eqs. (1a), (1b), and (1c) as,

Jε ε̈ = G cos ε + Lav1 (4a)

Jψψ̈ = Lav2 (4b)

Jθ θ̈ = Lhu2 (4c)

Equation (4a) is still non-linear and needs to be linearized
even further before the state-space model is derived.

Let us consider an equilibrium point ε0 around which the
equation would be linearized. Re-arranging Eq. (4a) gives,

ε̈ = 1

Jε
(Lav1 + G cos ε) = y = f (ε) (5a)

Applying Taylor series expansion on the above equation and
using first order expansion,

y = yε0 + dy

dε0
(ε − ε0) (6a)

Taking the partial derivative of Eq. (6a),

dy

dε
|ε=ε0 = G

Jε
(−sinε0) (ε0) (7a)

and using,

ε0 = π

2
,

the Taylor series expansion becomes,

y = G

Jε
cos

π

2
+

(
1

Jε
Lav1

)
−

(
Gε

Jε
sin

π

2

)
(8a)

which is reduced to,

ε̈ = y = −Gε

Jε
+

(
Lav1

Jε

)
(9a)

Now the system has three linear equations given by,

ε̈ = −Gε

Jε
+

(
Lav1

Jε

)
(10a)

ψ̈ = Lav2

Jψ
(10b)

θ̈ = Lhu2
Jθ

(10c)

The actual and desired position and velocity coordinates are
denoted as, x1, xd1 , x2, xd2 , x3, xd3 , x4, xd4 , x5, xd5 , x6, xd6 .

The desired velocity of the propeller is assumed to be zero,
so the error between the actual and the desired coordinates
is defined as:

e1 = x1 − xd1 (11a)

e2 = x2 − xd2 (11b)

e3 = x3 − xd3 (11c)

e4 = x4 − xd4 (11d)

e5 = x5 − xd5 (11e)

e6 = x6 − xd6 (11f)

To obtain minimum error,

x1 = xd1 (12)

The state variables are defined in terms of the error variables
as:

ė1 = e2 = ε̇ (13a)

ė2 = ε̈ = −Ge1
Jε

+
(
Lav1

Jε

)
(13b)

ė1 = e2 = ψ̇ (13c)

ψ̈ = Lav2

Jψ
(13d)

ė1 = e2 = θ̇ (13e)

θ̈ = Lhu2
Jθ

(13f)

The state equations in the matrix form is given as:

ẋ = Ax + Bu (14a)

y = Cx + Du (14b)
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Fig. 2 Block diagram of
optimal control tracking system
for a 3-DOF helicopter

Using Eqs. (13a), (13b), (13c), (13d), (13e), and (13f) the
state-space matrices are represented as:

⎡
⎢⎢⎢⎢⎢⎢⎣

ė1
ė2
ė3
ė4
ė5
ė6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
− G

Jε
0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 La

Jε
0

0 0 0
0 0 La

Jψ
0 0 0
Lh
Jθ

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣u2

v1
v2

⎤
⎦ (15a)

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

0 0 0
0 0 0
0 0 0
Lh
Jθ

0 0

⎤
⎥⎥⎦[

u2v1v2
]

(15b)

and matrices A and B are given as,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
− G

Jε
0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 La

Jε
0

0 0 0
0 0 La

Jψ
0 0 0
Lh
Jθ

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(16)

3 Optimal tracking controller

The Linear Quadratic Regulator is a widely used method
that gives optimally controlled feedback gains to enable the
stability, and high performance of systems [23]. The LQR
control technique employed to track the three state variables
is used to improve the system performance and obtain satis-
factory results. The feedbackgain K̃ consists of the difference
between the feedback gain K and the integral gain Ki and is
used to minimize the cost value of J , the performance index.
There are already pre-set values for roll, yaw, and pitch, and
the purpose of the LQR is to ensure that the actual values
remain close to the predefined values and the error obtained
is as minimum as possible. Essentially, the LQR algorithm is
an automated way of finding a suitable state-feedback con-
troller for the 3-DOF helicopter system [24]. The system’s
state-space equations can be written as,

ẋ(t) = Ax(t) + Bu(t) (17a)

y(t) = Cx(t) (17b)

where y(t) is,

y(t) =
⎡
⎣ ε(t)

ψ(t)
θ(t)

⎤
⎦ (18)

and the output matrix C is,

C =
⎡
⎣1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤
⎦ (19)

The reference signal is denoted as r(t), and the reference to
be tracked is given by,

y(t) = [
εd(t)ψd(t)θd(t)

]
(20)

Here the optimum input voltage is tracked so that given an
initial state x0 at t = 0, the output y(t) tracks the reference
values. The main goal is to reduce the error, and since the
state model is obtained in terms of the error variables, the
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augmented state and matrices are defined by,

ė(t) = Ãe(t) + B̃u∗(t), where, (21)

the augmented state and matrices are defined as:

Ã =
[

A6X6 06X3
−C3X6 03X3

]
9X9

(22)

B̃ =
[
B6X3

03X3

]
9X9

(23)

The augmented performance index J is defined,

J (ũ) = 1

2

∫ ∞

0

[
eT (t)Q̃e(t) + uT (t)R̃u(t)

]
dt, (24)

where Q̃ is a 9 × 9 positive definite matrix and R̃ is a 3 × 3
positive definite matrix. These two matrices are also called
the weighting matrices. The feedback gain matrix K̃ which
gives us u(t) to minimize the performance index is given by,

K̃ = R̃−1B̃T P̃, (25)

and P̃ is evaluated by,

ÃT P̃ + P̃Ã − P̃R̃−1B̃T P̃ + Q̃ = 0. (26)

Note that the feedback gain K̃ is composed of the state-
feedback gainK and the integral gainKi , i.e. K̃ = [K −Ki ].
The key steps to implementing the proposed optimal tracking
controller are summarized below.

Step 1: Define the reference (pitch, roll and yaw angles)
signal r(t).

Step 2: Implement themodel parameters of the 3-DOF heli-
copter system in determining thematricesA,B, and
C

Step 3: Calculate the augmented matrices Ã and B̃ for
Eq. (21)

Step 4: Define the weighting matrices Q̃ and R̃,

Step 5: Solve the optimal feedback gain matrix K̃ using
Eqs. (25) and (26)

Step 6: Separate the optimal feedback gain matrix K̃ from
K and Ki

Step 7: Run the optimal tracking control system shown in
Fig. 2.

The simplicity of the algorithms and key steps listed above
reiterates our claim that the LQR control strategy is simpler
than other control strategies proposed for the 3-DOF heli-
copter system.

Table 1 Physical parameters of the helicopter

Parameter Helicopter Unit

Mass of helicopter (Mh) 1.42 kg

Mass of counterweight (Mw) 1.87 kg

Arm length (La) 0.66 m

Arm length for counterweight (Lw) 0.66 m

Distance between propellers (Lh) 0.17 m

Gravity (g) 9.81 ms2

Inertia on roll axis (ε) 1.0348 kgm2

Inertia on pitch axis (θ) 0.0451 kgm2

Inertia on yaw axis (ψ) 1.0348 kgm2

Table 2 Trajectory performance comparison

Tracking metric Proposed method PID controller

σe 0.06 0.24

σc 1.18 · 104 1.46 · 104

4 Results and discussion

In this section, various computer experiments are carried out
on the performance of the 3-DOF helicopter. Table 1 shows
the physical parameters of the helicopter. To better show how
robust theLQRcontroller is, the controller is implemented on
the 3-DOF helicopter system, and the results are simulated
in MATLAB/Simulink. The controller is put under several
tests to validate our claim that it performs optimally even
under structured and unstructured uncertainties. The desired
position reference trajectory, p(t), is a step response of a
first-order system with an initial value of 0 and a final value
of 1, for ε(t), θ(t), and ψ(t), where t ∈ [0, 50] [s].

The system’s response is analyzed under various oper-
ating conditions using the helicopter’s pitch, roll, and yaw
angles along with their respective tracking errors and control
signals v1, v2, and u2. The proposed LQR control strategy is
initially tested on the 3-DOF helicopter under a non-zero ini-
tial condition. For that, the initial position of the three axes is
set to 0.5 [rad]. Once the system is stabilized, the pitch, roll,
and yaw angle trajectories are subjected to a step change at
different times, i.e., 25 s, 15 s, and 20s, respectively. Finally,
the 3-DOF helicopter undergoes an external disturbance on
all angles at time 40s. In here, the goal is to assess the control
performance under three different operating conditions, i.e.,
non-zero initial condition, nominal case, and disturbance.
Results are shown in Fig. 3. As it can be seen, the first 10 s of
each graph in Fig. 3 shows the system under nonzero initial
conditions, and in Fig. 3a–c, the system’s transient response
starts at the nonzero initial condition values but still con-
verges to the desired reference trajectory. The controller also
maintains the stability of the system by bringing the control
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Fig. 3 Nonzero initial condition, nominal case, disturbances a roll; b yaw; c pitch; d tracking errors; and e control signals

signals back to their desire state and converging the track-
ing errors to zero even with nonzero initial conditions. These
show that with this controller, nonzero initial conditions have
little to no influence on the 3-DOF helicopter system. Then,
the system’s response under nominal conditions is shown
from 10s to 40s. From these results, we can see that the con-
troller’s tracking errors follow the reference trajectory, and

with each change in the trajectory path, the tracking errors
gradually converge to zero. The pitch, roll, and yaw angles
which have a step timeof 25s, 15 s, and20, s respectively, also
closely follow the desired trajectory path. In Fig. 3e, despite
the slight overshoot at 15 s, 20 s, and 25s, the controller still
maintains the system’s stability and brings the control signals
back to their desired state. Finally, the system’s ability to cope
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Fig. 4 PID controller: a roll; b yaw; c pitch; d tracking errors; and e control signals

with unexpected step disturbances of 1 [rad] is shown at time
40s. Again, the controller decays all errors to zero without
significant oscillation and significant overshoot (evident in
Fig. 3e). On each graph in Fig. 3, the system’s performance
under the presence of external disturbances is shown at time
40s. The pitch, yaw, and roll angles experience a slight over-
shoot and then converge to the desired trajectory path. The
control signals, u1, v2, and u2, also successfully converge

to zero, and the controller is able to maintain the system’s
stability.

Next, a PID controller is tested on the 3-DOF helicopter
system using the same operating conditions and the results
are compared against the results obtained from the proposed
LQR control strategy. The PID controller is used for com-
parison because it is a control solution that is as simple as
the proposed control strategy. The results of this comparison
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Fig. 5 Parameter variations: tracking errors with a halved parameters; b doubled parameters; and control signals with c halved parameters; d
doubled parameters

are shown in Fig. 4, and the results contain the performance
of the system under nonzero initial conditions [0 s to 5 s],
nominal scenario [5 s to 40s] and external disturbances [40 s
to 50s]. From these results, we see that the PID controller
has more oscillations and does not converge to zero as eas-
ily as the LQR controller. The PID controller operates under
the same circumstances as the proposed controller but takes
more time to decay the tracking errors to zero. The graphs
of the pitch, roll, and yaw angles for the PID controller also
have sudden unexpected oscillations in the nominal scenario
which are reflected in the tracking errors. Two performance
metrics are also introduced to adjudge the trajectory tracking
performance of the two controllers. The first metric, σe, is the
integral of the tracking error (the integral of the pitch, roll,
and yaw errors), and the second metric, σc, is the integral
of the control signals. The expression for these metrics are
shown below:

σe =
∫ t f

t0
(ε2 + ψ2 + θ2)dt (27)

σc =
∫ t f

t0
(v1

2 + v2
2 + u2

2)dt (28)

where t0 and t f are the initial and final time instants. The
numerical results obtained usingEqs. (27) and (28) are shown
in Table 2. The results show that the proposed control strat-
egy attains the lowest tracking index with the lowest control
effort. A low tracking index indicates high tracking accu-
racy, so it is safe to say the proposed strategy achieved the
highest tracking accuracy with the lowest control effort, thus
demonstrating its superiority over the PID controller.

To test the effects of parametric uncertainties on our con-
troller, the constant G is varied by a factor of 2 and then by
a factor of 0.5. The constant G = g(MhLa − MwLw), so
by keeping g, La, Lw constant and varying G, the mass of
the helicopter, Mh, and the mass of the counterweight, Mw,

are varied. Figure 5 shows the results of the tracking errors
and the control signals when these parameters are changed.
From the results, we can see that even with parameter varia-
tions, the controller maintains the stability of the system. The
tracking errors experience little to no change with the varia-
tion in parameter values, and the control signals experience
a slight change, but these signals successfully return to their
desired path. It is important to note that the control design
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is based on the system’s linearization around an operation
point. Henceforth, a proper selection of such operation point
is crucial to guarantee good performance. Future work envi-
sions an experimental analysis to investigate any limitation
such linearization might have on the physical system. Also,
a comparison against more advanced control strategies can
be carried out.

5 Conclusion

In this paper, an optimal tracking LQR control strategy is
proposed for a high-performance 3-DOF helicopter system.
The state-space model of the system and the mathematical
model of the LQR control strategy are calculated. Despite
the underactuated non-linear nature of the helicopter sys-
tem, a successful linearization of the system’ is achieved.
To test the robustness and effectiveness of the controller,
numerical experiments are carried out and simulated using
MATLAB/Simulink. External disturbances, parameter vari-
ation, non-zero initial conditions, e.t.c., are added to the
system, and in all these cases, the controller is successful
in maintaining the stability of the 3-DOF helicopter system.
The LQR control strategy is also compared to the PID control
strategy for the same 3-DOF helicopter system, and the LQR
controller displays superiority in performance and robustness
by achieving a higher tracking accuracy with a lower control
effort. Future work could focus on a comparative study of
other linear control strategies and their effects on a 3-DOF
helicopter.
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