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Abstract
In this paper, a class of multi-input multi-output nonlinearly perturbed Markovian jump systems with partially unknown
transition rates is considered. We assume that this class of systems is characterized only by some structural properties such
as the system is strongly minimum phase, with a strict relative degree one set and positive definite high frequency gain
matrices. For this class of systems, a universal adaptive high gain controller, which is not based on estimation algorithms or
identification of parameters, is designed such that in the presence of certain nonlinear perturbations and external disturbances,
the convergence and the boundedness of the closed-loop system signals in the mean square sense are ensured. A vertical
take-off and landing (VTOL) helicopter example is provided to demonstrate the performance and effectiveness of the obtained
results.

Keywords Markovian jump systems · Universal adaptive stabilization · Robust control · Partially unknown transition rates

1 Introduction

In the past few decades, considerable attention has been
devoted to Markovian jump systems (MJSs), due to their
extensive applications in aerospace systems, manufacturing
systems, power systems and networked control systems, etc.
MJSs are systems made up of several subsystems or modes
that can switch between them at random. Modeling abrupt
phenomena such as random failures, component repairs, and
sudden environmental changes has been done using such sys-
tems [1–5]. As a result, control researchers have devoted
themselves to studying topics such as stability, stabilization,
passivity analysis, sliding mode control and filtering prob-
lems (see, for instance, [6–13]).

ManyMJSs results have been obtained so far based on the
assumption that the transition rates (TRs) are fully known. In
practice, however, we cannot always be sure that wewill have
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complete information on the TRs, which means that incom-
plete TRs are common [6], and this is because obtaining
adequate samples of the transitions may be time consuming
or costly. Therefore, it is critical to investigate more general
MJSs with partial information on transition probabilities.

On another research front line, significant improvement
has beenmade in the field of high-gain adaptive control with-
out identification for deterministic systems (see, for instance
[14–18]). The primary issue under consideration is the con-
struction of nonlinear measurement feedback controllers of
simple structure, which are able to stabilize all systems in
a specified class. The two distinguishing features of the
approach of high-gain adaptive control without identification
compared to other adaptive control approaches (see [15]) are:
first, no attempt is made to identify systems dynamics (i.e.,
despite its efficiency in controlling the system, the controller
remains totally ignorant of it) and second, the considered
class of systems is not described by a specification of system
parameters or state dimension but by a characterization of
the system structure (e.g., minimum phase, known relative
degree, known sign of the high frequency gain matrix).

The first attempt to solve the problem of high-gain adap-
tive stabilization for MJSs was done in [10]. The authors in
[10] have shown that the simple time varying output feed-
back u(t) = −k(t)y(t), adapted by k̇(t) = E

{‖y(t)‖2}
is a universal adaptive stabilizer in the sense that when-
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ever it is applied to any multivariable MJLS with partially
unknown TRs and satisfying the properties: strongly min-
imum phase, strict relative degree one set and positive
definite high frequency gain matrices, the closed-loop non-
linear system obtained will have the properties: finite escape
time does not occur, all states are bounded and in par-
ticular, the state x(t) satisfies:

∫∞
0 E

{‖x(t)‖2}dt < ∞,
sup0≤t<∞ E

{‖x(t)‖2} < ∞ and limt→∞ E
{‖x(t)‖2} = 0.

However, the problem of robustness of the universal adaptive
controller with respect to nonlinear perturbations and exter-
nal disturbances has not yet been investigated for this class
of systems, which motivates this work. Furthermore, Many
relevant studies have been conducted on vertical take-off and
landing (VTOL) helicopters, which are capable of taking-off,
landing within limited field, and stable hovering over target
region (see, for instance, [19–21]). It is known that VTOL
systems are characterized by strong nonlinearities compared
to fixed wing designs. Also, due to their lightweight structure
they are relatively sensitive to atmospheric disturbances (e.g.,
wind gusts) (see, [22])which exist inevitably and can become
strong especially in the case of the rapid flight maneuver.
Thus, they should be considered in describing the system
dynamics in the form of input disturbances and so the design
of a robust stabilizing controller becomes an interesting prob-
lem for such practical systems.

The main contributions of the present paper are: first, to
show that the high-gain universal adaptive controller pre-
sented in [10] is robust in the sense that the control objectives
(bounded signals and convergence of the state of the system)
are still met if the controller is applied to any MJS subjected
to certain disturbances and satisfying the structural assump-
tions (strict relative degree one set, strongly minimum phase
and positive definite high-frequency gain matrices). It will
be shown that the designed stabilizer can cope with non-
linear time-varying perturbations, provided they are linearly
bounded. Also, some arbitrary additive input disturbances
d(·) which are bounded and square integrable are tolerated.
And, second, to show that the desired closed-loop objectives
are achieved by our control strategy for a VTOL helicopter
systemand that the effect of the perturbations and the external
disturbances can be eliminated.

The rest of this paper is organized as follows:We describe
our system and give some preliminaries in Sect. 2. In Sect. 3
some structural properties characterizing the considered class
of perturbed systems are discussed. The design of a universal
adaptive stabilizer for the class of strongly minimum phase
nonlinearly perturbed MJSs is studied in Sect. 4 such that
the effect of the perturbations is eliminated and the control
objectives are guaranteed. A practical example which shows
the applicability and the feasibility of our methods is given
in Sect. 5. Finally, concluding remarks and future research
directions are presented in Sect. 6.

2 Preliminaries

Fix the complete probability space (�,F ,P) and consider
the m-input m-output MJS subjected to perturbations of the
form:

⎧
⎪⎨

⎪⎩

ẋ(t) = A(rt )x(t) + B(rt )[u(t) + g(x(t), t) + d(t)],
y(t) = C(rt )x(t),

x(0) = x0, r0 ∈ ϒ,

(1)

where x(t) ∈ R
n , u(t) ∈ R

m and y(t) ∈ R
m denote the

state vector, control input and measured output, respectively.
{rt , t ≥ 0} is a time-homogeneousMarkov process with right
continuous trajectories which takes values in a finite space
ϒ = {1, 2, ..., N } and has the following mode transition
probabilities:

P{rt+h = j/rt = i} =
{

πi j h + o(h), i �= j,

1 + πi i h + o(h), i = j,

where h > 0, limh−→0
o(h)
h = 0 and πi j ≥ 0 (i, j ∈ ϒ, j �=

i) denotes the TR from mode i at time t to mode j at time
t + h with πi i = −∑N

j=1, j �=i πi j for each i ∈ ϒ . Hence, the
TR matrix � is given by: � = {πi j }N×N .

The external disturbance vector d(t) ∈ R
m is an unknown

bounded function which is assumed to be square-integrable,
i.e.,

∫ ∞

0
‖d(t)‖2dt < d̂,

where d̂ is an unknown positive constant. The nonlinear
perturbation g(x, t) ∈ R

m is assumed to be locally Lipschitz
function for each fixed t ∈ R, and t 	→ g(x, t) is measurable
for each fixed x . In addition, this nonlinear function satisfies
the following condition:

‖g(x, t)‖ ≤ ĝ‖x‖,

where ĝ is an unknown constant. For each possible value rt =
i , i ∈ ϒ , the system matrices of the i th mode are denoted by
Ai , Bi and Ci , which are real valued constant matrices with
appropriate dimensions. These matrices and the state space
dimension n ∈ N need not to be known precisely.

In this paper, the TR matrix � is assumed to be partially
unknown. This means that some elements in this matrix are
unknown. Furthermore, we assume that a lower bound πl for
the unknown diagonal elements of� is known. For example,
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if N = 4, the TR matrix � can be considered as:

⎡

⎢⎢
⎣

π11 π̂12 π̂13 π14

π̂21 π22 π23 π̂24

π̂31 π32 π̂33 π34

π41 π̂42 π̂43 π̂44

⎤

⎥⎥
⎦ ,

where each unknown element is labeled with a hat “·̂”. For
the sake of notational clarity, we denote the set ϒ = ϒ i

K ∪
ϒ i
UK (∀i ∈ ϒ), with ϒ i

K � { j : πi j is known} and ϒ i
UK �

{ j : πi j is unknown}. Also, the notation π i
K �

∑
j∈ϒ i

K
πi j

is used. The following definition is necessary in this paper.

Definition 1 [1] The stochastic system (1) with u(t) ≡ 0 is
said to be stochastically stable, if for any initial condition
x0 ∈ R

n and r0 ∈ ϒ , the following holds:

∫ ∞

0
E
{‖x(t)‖2}dt < ∞.

3 Properties of the system class

The concepts of the relative degree set, (stochastically stable)
zero dynamics and switched Byrnes-Isidori forms [23] play a
key role in this paper. These concepts will be introduced and
discussed in this section. The definition of the strict relative
degree one set for the MJS (1) is given. Then, for this set
of relative degrees and based on a change of coordinates,
an equivalent MJS described by a set of switched Byrnes-
Isidori forms is obtained. This new system will allow us to
characterize the zero dynamics of system (1).

Definition 2 The perturbedMJS (1) is said to have strict rela-
tive degree one set, if the system corresponding to eachmode
i ∈ ϒ is with a strict relative degree one. i.e.,

det(Ci Bi ) �= 0, ∀i ∈ ϒ.

Ci Bi is the high frequency gain matrix corresponding to the
mode i ∈ ϒ .

Remark 1 Note that Definition 2 can be regarded as a gen-
eralization of the definition of the strict relative degree one
present in the deterministic case for time invariant linear sys-
tems (see, for example, [16]).

Assume from now on that system (1) has strict relative
degree one set. In the following lemma, a state space trans-
formation is used to produce a representation convenient for
the analysis in this paper. Indeed, if det(Ci Bi ) �= 0,∀i ∈ ϒ ,
then, we can decompose the state space, for each i ∈ ϒ , into
the direct sum: Rn = ImBi ⊕ kerCi , (see [14]) which leads
to the following state space description of the MJS (1).

Lemma 1 Consider the perturbed MJS (1) and suppose that
det(Ci Bi ) �= 0,∀i ∈ ϒ . ∀i ∈ ϒ , let:

{
Si ∈ R

n×(n−m), such that ImSi = kerCi ,

Ri �
(
S�
i Si

)−1
S�
i

[
In − Bi (Ci Bi )−1 Ci

]
.

Then, ∀i ∈ ϒ , Ti �
[
C�
i R�

i

]�
, has the inverse T−1

i =[
Bi (Ci Bi )−1 Si

]
, and when rt = i , the following state space

transformation

ζ (i)(t) = Ti x(t) =
[
Ci x(t)
Ri x(t)

]
(2)

takes (1) into the form

{
ζ̇ (i)(t) = Ãiζ

(i)(t) + B̃i [u(t) + g(x(t), t) + d(t)],
y(t) = C̃iζ

(i)(t),
(3)

where

Ãi = Ti Ai T
−1
i =

[
A1i A2i

A3i A4i

]
, B̃i = Ti Bi =

[
Ci Bi
0

]

C̃i = CiT
−1
i = [

Im 0
]
,

A1i � Ci Ai Bi (Ci Bi )−1 ∈ R
m×m, A2i � Ci Ai Si ∈

R
m×(n−m), A3i � Ri Ai Bi (Ci Bi )−1 ∈ R

(n−m)×m, A4i �
Ri Ai Si ∈ R

(n−m)×(n−m).

Remark 2 Note that the set of the nonsingular matrices Ti ,
∀i ∈ ϒ in Lemma 1 is constructed by following the same
line as for linear time-invariant deterministic systems, which
leads to a set of Byrnes-Isidori forms for the N -modes of
system (1) (see [15,23]).

Remark 3 By using the following notation:

y(t) = C(rt )x(t) = y(rt )(t),

we can write, when rt = i :

ζ (i)(t) =
[
y(i)(t)
η(i)(t)

]
,

with η(i)(t) � Ri x(t) ∈ R
n−m . Hence, Lemma 1 shows

that the MJSs in (1) are transferred to the following switched
Byrnes–Isidori forms:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ(rt )(t) = A1(rt )y(rt )(t) + A2(rt )η(rt )(t)

+C(rt )B(rt )[u(t) + g(x(t), t) + d(t)],
η̇(rt )(t) = A3(rt )y(rt )(t) + A4(rt )η(rt )(t),

y(r0)(0) = C(r0)x0, η(r0)(0) = R(r0)x0.

(4)
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Remark 4 ∀i, j ∈ ϒ we have :

ζ ( j) = Tj x = Tj T
−1
i ζ (i),

then, for every i, j ∈ ϒ , it follows that

{
y( j) = C j Bi (Ci Bi )−1 y(i) + C j Siη(i),

η( j) = R j Bi (Ci Bi )−1 y(i) + R j Siη(i).
(5)

The second equation in (4) represents the internal dynam-
ics of system (1). If y(·) is equal to zero, then these dynamics
are called zero dynamics. The latter are therefore described
by the zero output system:

η̇(rt )(t) = A4(rt )η
(rt )(t). (6)

In the following, we shall provide a characterization of the
zero dynamics basedon two important conceptswhich are the
minimum phase and the strongly minimum phase properties.

Definition 3 TheMJS (1) is said to be minimum phase, if the
zero output system (6) is stochastically stable.

Definition 4 [10] The MJS (1) with partially unknown TRs
is said to be strongly minimum phase, if for the zero output
system (6) there exists a set of matrices Pi = P�

i > 0, such
that ∀i ∈ ϒ

�i
1 < π i

K(C j Si )
�(C j Si ) −

∑

j∈ϒ i
K

πi j (C j Si )
�(C j Si ),

∀ j ∈ ϒ i
UK, i f i ∈ ϒ i

K,

(7)

�i
2 < π i

K(C j Si )
�(C j Si ) −

∑

j∈ϒ i
K

πi j (C j Si )
�(C j Si )

+πl(C j Si )
�(C j Si ),

∀ j ∈ ϒ i
UK, i f i ∈ ϒ i

UK,

(8)

where �i
1 � A�

4i Pi + Pi A4i + P i
K − π i

KS�
i R�

j Pj R j Si ,

�i
2 � A�

4i Pi + Pi A4i + P i
K + πl Pi − πl S�

i R�
j Pj R j Si −

π i
KS�

i R�
j Pj R j Si and P i

K �
∑

j∈ϒ i
K

πi j S�
i R�

j Pj R j Si .

Remark 5 It is to be noted that if the MJS (1) is strongly
minimum phase then it is minimum phase (see [10], Remark
3.5).

4 Universal adaptive controller design

In this section, we aim to show that the following adaptive
control law introduced in [10]:

u(t) = −k(t)y(t), k̇(t) = E
{‖y(t)‖2}, k(0) ∈ R (9)

is tolerant with respect to unknown nonlinear time-varying
perturbations, provided they are linearly bounded and
unknown additive input external disturbances which are
bounded and square integrable. Let us consider the class of
multi-input multi-output perturbed systems of the form of
(1) which satisfy the assumptions: strict relative degree one
set, strongly minimum phase and positive definite high fre-
quency gain matrices (i.e., Ci Bi + (Ci Bi )� > 0,∀i ∈ ϒ).
Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

ẋ(t) = A(rt )x(t) + B(rt )[u(t) + g(x(t), t) + d(t)]
y(t) = C(rt )x(t),

x(0) = x0, E
{‖x0‖2

}
< ∞, r0 ∈ ϒ,

(Ai , Bi ,Ci ) ∈ R
n×n × R

n×m × R
m×n .

� partially unknown with known lower bound πl

for the unknown diagonal elements.

Strict relative degree one set.

Strongly minimum phase. n arbitrary.

Ci Bi + (Ci Bi )� > 0,∀i ∈ ϒ.

(10)

We will show that the controller (9) is a universal adap-
tive stabilizer for the class (10). This means that whenever
it is applied to any system in this class, the resulting
closed-loop nonlinear systemhas the properties: finite escape
time does not occur, all states are bounded and in particu-
lar, the state x(t) satisfies the second moment properties:∫∞
0 E

{‖x(t)‖2}dt < ∞, sup0≤t<∞ E
{‖x(t)‖2} < ∞ and

limt→∞ E
{‖x(t)‖2} = 0.

Remark 6 It should be noted that in case the system has
only one mode (i.e., N = 1), the feedback strategy (9) is
reduced to the well-known universal adaptive stabilizer for
minimum phase linear deterministic systems of strict rel-
ative degree one, which is the Willems-Byrnes controller:
u(t) = −k(t)y(t), k̇(t) = ‖y(t)‖2 (see [25]).

The followingLemmawill be useful in proving the paper’s
main result.

Lemma 2 Suppose the nonlinear perturbed MJS with par-
tially unknown TRs

⎧
⎪⎨

⎪⎩

ẏ(rt )(t) = A1(rt )y(rt )(t) + A2(rt )η(rt )(t)

+C(rt )B(rt )[u(t) + g(x(t), t) + d(t)],
η̇(rt )(t) = A3(rt )y(rt )(t) + A4(rt )η(rt )(t)

(11)

is strongly minimum phase with Ci Bi + (Ci Bi )� > 0,∀i ∈
ϒ . Let k : [0, t ′) −→ R, t ′ ≤ ∞, be a piecewise continuous
function and suppose that there exists t∗ ∈ [0, t ′) and k∗ > 0
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such that k(t) ≥ k∗,∀t ≥ t∗. If feedback of the form u(t) =
−k(t)y(t) is applied to (11) and k∗ is sufficiently large, then
there exist λ1 > 0, λ2 > 0 and β > 0 such that the solution
of the closed-loop system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ(rt )(t) = [
A1(rt ) − k(t)C(rt )B(rt )

]
y(rt )(t)

+A2(rt )η(rt )(t) + C(rt )B(rt )g(x(t), t)

+C(rt )B(rt )d(t),

η̇(rt )(t) = A3(rt )y(rt )(t) + A4(rt )η(rt )(t)

(12)

satisfies

E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }

≤
[
λ1E

{∥∥∥∥

(
y(rt0 )

η(rt0 )

)∥∥∥∥

2 }
+ λ2

]
e−β(t−t0)

for all t ∈ [t0, t ′), t0 ∈ [0, t ′).

Proof Consider the following set of positive-definite Lya-
punov functions candidates defined by: V (y(i), η(i), i) =
1
2η

(i)� Piη(i) + 1
2 y

(i)� y(i), where Pi = P�
i , i ∈ ϒ are the

positive-definite solutions of the following inequalities:

�i
1 − π i

K(C j Si )
�(C j Si ) +

∑

j∈ϒ i
K

πi j (C j Si )
�(C j Si ) < 0,

∀ j ∈ ϒ i
UK, i f i ∈ ϒ i

K,

(13)

�i
2 − π i

K(C j Si )
�(C j Si ) +

∑

j∈ϒ i
K

πi j (C j Si )
�(C j Si )

−πl(C j Si )
�(C j Si ) < 0,

∀ j ∈ ϒ i
UK, i f i ∈ ϒ i

UK,

(14)

where �i
1 and �i

2 are defined as in Definition 4.
Let L denote the infinitesimal generator of (11) [24]. By

a straightforward calculation, one obtains

LV (y(i), η(i), i)

= y(i)� A1i y
(i) + y(i)�[A2i + A�

3i Pi ]η(i)

− 1

2
k(t)y(i)�[Ci Bi + (Ci Bi )

�]y(i)

+ 1

2
η(i)�[A�

4i Pi + Pi A4i ]η(i) + y(i)�Ci Bi g(x, t)

+ y(i)�Ci Bid(t) + y(i)��1i y
(i)

+ y(i)��2iη
(i) + 1

2
η(i)��3iη

(i),

where �1i � 1
2

∑N
j=1 πi j Ei j , �2i �

∑N
j=1 πi j Fi j and

�3i �
∑N

j=1 πi j Gi j . Ei j , Fi j and Gi j are given as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ei j = E�
i j � (Ci Bi )−�B�

i C
�
j C j Bi (Ci Bi )−1

+(Ci Bi )−�B�
i R�

j Pj R j Bi (Ci Bi )−1,

Fi j � (Ci Bi )−�B�
i C

�
j C j Si + (Ci Bi )−�B�

i R�
j Pj R j Si ,

Gi j = G�
i j � S�

i C
�
j C j Si + S�

i R�
j Pj R j Si .

(15)

We have

y(i)� A1i y
(i) + y(i)�[A2i + A�

3i Pi ]η(i) + y(i)��1i y
(i)

+ y(i)��2iη
(i)

≤
(
‖A1i‖ + ‖A2i‖ + ‖A�

3i Pi‖+‖�1i‖ + ‖�2i‖
)

× ‖y(i)‖2

+
√
2√
α1

×
(
‖A1i‖ + ‖A2i‖ + ‖A�

3i Pi‖+‖�1i‖ + ‖�2i‖
)

× ‖y(i)‖
√

α1√
2

‖η(i)‖,

where α1 > 0 is to be specified later.
Denote

Hi � ‖A1i‖ + ‖A2i‖ + ‖A�
3i Pi‖+‖�1i‖ + ‖�2i‖,

then

y(i)� A1i y
(i) + y(i)�[A2i + A�

3i Pi ]η(i) + y(i)��1i y
(i)

+ y(i)��2iη
(i)

≤ Hi‖y(i)‖2 + 2

α1
H2
i ‖y(i)‖2 + α1

2
‖η(i)‖2.

Also we have

y(i)�Ci Bid(t) ≤ ‖Ci Bi‖‖d(t)‖‖y(i)‖
≤ ‖Ci Bi‖2‖d(t)‖2 + ‖y(i)‖2,

and for ν > 0 we have

y(i)�Ci Bi g(x, t)

≤ ‖Ci Bi‖‖g(x, t)‖‖y(i)‖
≤ ‖Ci Bi‖ĝ‖x‖‖y(i)‖
≤ ‖Ci Bi‖2 ĝ2 1

ν2
‖x‖2 + ν2‖y(i)‖2

≤ ‖Ci Bi‖2 ĝ2 1

ν2
‖T−1

i ‖2
(
‖y(i)‖2 + ‖η(i)‖2

)
+ν2‖y(i)‖2

≤
( 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2
)
‖y(i)‖2

+
( 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2.
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Hence

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(α1

2
+ 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2

+ ‖Ci Bi‖2‖d(t)‖2 + 1

2
η(i)�[A�

4i Pi + Pi A4i + �3i ]η(i).

Now, in order to show that: A�
4i Pi + Pi A4i + �3i < 0,

∀i ∈ ϒ , we consider two possible cases: i ∈ ϒ i
K and i ∈

ϒ i
UK, respectively, that is, the diagonal element is known or

unknown.
Case 1: i ∈ ϒ i

K. In this case, we have

�3i =
N∑

j=1

πi j Gi j =
∑

j∈ϒ i
K

πi j Gi j +
∑

j∈ϒ i
UK

π̂i j Gi j

=
∑

j∈ϒ i
K

πi j Gi j − π i
K

∑

j∈ϒ i
UK

π̂i j

−π i
K
Gi j .

Since

0 ≤ π̂i j

−π i
K

≤ 1,
∑

j∈ϒ i
UK

π̂i j

−π i
K

= 1,

it follows that

A�
4i Pi + Pi A4i + �3i

=
∑

j∈ϒ i
UK

π̂i j

−π i
K

[
A�
4i Pi + Pi A4i +

∑

j∈ϒ i
K

πi j Gi j − π i
KGi j

]
.

It is easily seen that A�
4i Pi + Pi A4i + �3i < 0 is equivalent

to

A�
4i Pi + Pi A4i +

∑

j∈ϒ i
K

πi j Gi j − π i
KGi j < 0, ∀ j ∈ ϒ i

UK.

By the condition (13), it follows that A�
4i Pi + Pi A4i +�3i <

0. This yields that

1

2
η(i)�[A�

4i Pi + Pi A4i + �3i ]η(i) ≤ −α1‖η(i)‖2

where α1 � − 1
2 maxi∈ϒ

{
λmax (A�

4i Pi + Pi A4i + �3i )
}
.

Hence, ∀i ∈ ϒ i
K:

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(α1

2
− α1 + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2

+ ‖Ci Bi‖2‖d(t)‖2

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(

− α1

2
+ 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2

+ ‖Ci Bi‖2‖d(t)‖2.

Case 2: i ∈ ϒ i
UK, that is, the diagonal element is unknown.

In this case, we have

�3i =
N∑

j=1

πi j Gi j =
∑

j∈ϒ i
K

πi j Gi j +π̂i i Pi +
∑

j∈ϒ i
UK, j �=i

π̂i j Gi j

=
∑

j∈ϒ i
K

πi j Gi j + π̂i i Pi + (−π̂i i − π i
K)

×
∑

j∈ϒ i
UK, j �=i

π̂i j

−π̂i i − π i
K
Gi j ,

and due to the fact that

0 ≤ π̂i j

−π̂i i − π i
K

≤ 1,
∑

j∈ϒ i
UK, j �=i

π̂i j

−π̂i i − π i
K

= 1,

we can write

A�
4i Pi + Pi A4i + �3i

=
∑

j∈ϒ i
UK, j �=i

π̂i j

−π̂i i − π i
K

[
A�
4i Pi + Pi A4i

+
∑

j∈ϒ i
K

πi j Gi j − π i
KGi j + π̂i i Pi − π̂i i Gi j

]
.

Thus, A�
4i Pi + Pi A4i + �3i < 0 is equivalent to

A�
4i Pi +Pi A4i +

∑

j∈ϒ i
K

πi j Gi j −π i
KGi j +π̂i i Pi −π̂i i Gi j < 0

∀ j ∈ ϒ i
UK, j �= i . (16)
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By the similar arguments to Case 2 in the proof of Theorem
1 in [6] one obtains that (16) is equivalent to

A�
4i Pi + Pi A4i +

∑

j∈ϒ i
K

πi j Gi j −π i
KGi j +πl Pi −πlGi j < 0,

∀ j ∈ ϒ i
UK.

From(14), itmaybe concluded that A�
4i Pi+Pi A4i+�3i < 0.

Thus, ∀i ∈ ϒ i
UK:

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(

− α1

2
+ 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2

+ ‖Ci Bi‖2‖d(t)‖2.

Consequently, by combining the results in case 1 and case 2,
we get ∀i ∈ ϒ :

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(

− α1

2
+ 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2
)
‖η(i)‖2

+ ‖Ci Bi‖2‖d(t)‖2.

Denote α2 � maxi∈ϒ {‖Ci Bi‖2} and α3 � maxi∈ϒ {‖Ci Bi‖2
‖T−1

i ‖2}, then we have

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i)

+
(

− α1

2
+ α3ĝ2

ν2

)
‖η(i)‖2 + α2‖d(t)‖2,

and since

Ci Bi + (Ci Bi )
� > 0,∀i ∈ ϒ,

we get

−1

2
y(i)�(Ci Bi + (Ci Bi )

�)y(i) ≤ −α4‖y(i)‖2,

where α4 � 1
2 mini∈ϒ λmin

(
Ci Bi + (Ci Bi )�

)
. Now, for ν

sufficiently large so that

ᾱ � α1

2
− α3ĝ2

ν2
> 0,

and by choosing k∗ > 0 sufficiently large so that

k(t) ≥ k∗ � 1

α4
max
i∈ϒ

(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2

+ ν2 + 1
)

+ ᾱ

α4
, ∀t ∈ [t∗, t ′).

Then, ∀t ∈ [t∗, t ′) we have

LV (y(i), η(i), i)

≤ − (k(t)α4 − Hi − 2

α1
H2
i − 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2

− ν2 − 1)‖y(i)‖2 − ᾱ‖η(i)‖2 + α2‖d(t)‖2
≤ − ᾱ‖y(i)‖2 − ᾱ‖η(i)‖2 + α2‖d(t)‖2

≤ − ᾱ
(
‖y(i)‖2 + ‖η(i)‖2

)
+ α2‖d(t)‖2.

Moreover, we have

V (y(i), η(i), i)

= 1

2
y(i)� y(i) + 1

2
η(i)� Piη

(i)

≤ 1

2

(
‖y(i)‖2 + ‖Pi‖‖η(i)‖2

)

≤ 1

2
max{1, ‖Pi‖} ×

(
‖y(i)‖2 + ‖η(i)‖2

)

≤ 1

2
max
i∈ϒ

{1, ‖Pi‖} ×
(
‖y(i)‖2 + ‖η(i)‖2

)
.

Then

−
(
‖y(i)‖2 + ‖η(i)‖2

)

≤ − 2

maxi∈ϒ {1, ‖Pi‖} × V (y(i), η(i), i).

Accordingly

LV (y(i), η(i), i) ≤ −ᾱ
(
‖y(i)‖2 + ‖η(i)‖2

)
+ α2‖d(t)‖2

≤ −βV (y(i), η(i), i) + α2‖d(t)‖2,

where β � 2ᾱ
maxi∈ϒ {1,‖Pi‖} .

Now, byDynkin’s formula [26], we have∀t ∈ [t0, t ′), t0 ≥ t∗

E
{
V (y(rt ), η(rt ), rt )

}
− E

{
V (y(rt0 ), η(rt0 ), rt0)

}

= E
{ ∫ t

t0
LV (y(rs ), η(rs ), rs)ds

}
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≤ −β

∫ t

t0
E
{
V (y(rs ), η(rs ), rs)

}
ds + α2

∫ t

t0
‖d(s)‖2ds

≤ −β

∫ t

t0
E
{
V (y(rs ), η(rs ), rs)

}
ds + d̂α2.

Applying the Gronwall-Bellman lemma, we obtain

E
{
V (y(rt ), η(rt ), rt )

}

≤
(
d̂α2 + E

{
V (y(rt0 ), η(rt0 ), rt0)

})
e−β(t−t0),

∀t ∈ [t0, t ′), t0 ≥ t∗,

and since

E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }

= E
{
‖y(rt )‖2 + ‖η(rt )‖2

}
≤ 1

α5
E
{
V (y(rt ), η(rt ), rt )

}

with

α5 � 1

2
min
i∈ϒ

{1, λmin(Pi )}

and

d̂α2 + E
{
V (y(rt0 ), η(rt0 ), rt0)

}

≤ d̂α2 + α6E
{
‖y(rt0 )‖2 + ‖η(rt0 )‖2

}

≤ d̂α2 + α6E

{∥∥∥∥

(
y(rt0 )

η(rt0 )

)∥∥∥∥

2 }

with

α6 � maxi∈ϒ {1, λmax (Pi )},

it may be concluded that

E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }

≤
[
λ1E

{∥∥∥∥

(
y(rt0 )

η(rt0 )

)∥∥∥∥

2 }
+ λ2

]
e−β(t−t0),

for all t ∈ [t0, t ′), t0 ≥ 0, where λ1 = α6
α5

> 0, λ2 = d̂α2
α5

> 0
and β > 0. This completes the proof. ��

Now, consider any perturbed MJS in the class (10) and
suppose that it is subject to the adaptive feedback controller
(9). Then, the resulting nonlinear perturbed closed-loopMJS

is given by:

⎧
⎪⎨

⎪⎩

ẋ(t) = [A(rt ) − k(t)B(rt )C(rt )]x(t) + B(rt )g(x(t), t)

+B(rt )d(t), x0 ∈ R
n, r0 ∈ ϒ,

k̇(t) = E
{‖C(rt )x(t)‖2

}
, k(0) ∈ R.

(17)

Since the right hand side of (17) is locally Lipschitz in
x(·) and k(·) and measurable in t , it follows from the theory
of stochastic differential equations (see [27]) that the initial
value problem (17) has a solution (x(·), k(·)) : [0, ω) −→
R
n+1 on a maximal interval of existence [0, ω) for some

ω ∈ (0,∞], and this solution is unique.

Theorem 1 Let (x(·), k(·)) : [0, ω) −→ R
n+1 be the maxi-

mal solution of the initial value problem (17). Then

(i) ω = ∞ almost surely.
(ii) limt→∞ k(t) ∈ R exists.
(iii)

∫∞
0 E

{‖x(t)‖2}dt < ∞, sup0≤t<∞ E
{‖x(t)‖2} < ∞

and limt→∞ E
{‖x(t)‖2} = 0.

In other words, the controller (9) is a universal adaptive
stabilizer for the class of multivariable perturbed MJSs (10).

Proof By the transformations in Lemma 1, the closed-loop
system (17) may be expressed in the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(rt )(t) = [
A1(rt ) − k(t)C(rt )B(rt )

]
y(rt )(t)

+A2(rt )η(rt )(t)) + C(rt )B(rt )g(x(t), t)

+C(rt )B(rt )d(t),

η̇(rt )(t) = A3(rt )y(rt )(t) + A4(rt )η(rt )(t),

k̇(t) = E
{‖y(t)‖2},

y(r0)(0) ∈ R
m, η(r0)(0) ∈ R

n−m, k(0) ∈ R.

(18)

Step 1: we show that k(·) is bounded on [0, ω), ω ≤ ∞.
i.e., sup0≤t<ω|k(t)| < ∞.
By contradiction, we suppose that k(·) is unbounded on
[0, ω). Since k̇(t) = E

{‖y(t)‖2} ≥ 0, it follows that k(·)
is a non-decreasing piecewise continuous function on [0, ω).
In addition, since it is unbounded, thismeans that the assump-
tions on k(·) in Lemma 2 are met. Hence, we have

E
{‖y(t)‖2}

≤ E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }

≤
[
λ1E

{∥∥∥∥

(
y(r0)

η(r0)

)∥∥∥∥

2 }
+ λ2

]
e−βt , ∀t ∈ [0, ω) (19)
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for some λ1, λ2 and β > 0. Furthermore, the adaptation law
implies that

k(t) =
∫ t

0
E
{‖y(s)‖2}ds + k(0), t ∈ [0, ω). (20)

From the inequality (19), it is easily seen that (20) contradicts
the assumption that k(·) is unbounded on [0, ω). Hence, k(·)
is bounded on [0, ω).

Step 2: we show that the solution (x(·), k(·)) is global. i.e.,
ω = ∞ almost surely.
By contradiction, assume that there exists some ω > 0
such that limt→ω sup‖x(t)‖ = ∞. Since k(t) and d(t)
are bounded, and g(x(t), t) is linearly bounded, we can
easily show that the first equation in system (17) satis-
fies a linear growth condition, which implies (see [26])
that sup0≤t≤ω E

{‖x(t)‖p
}

< ∞,∀p > 0. Therefore,
x(t) doesn’t have a finite escape time which contradicts
limt→ω sup‖x(t)‖ = ∞ and hence assertion (1) follows by
the maximality of the solution on [0, ω).

Step 3: we show that limt→∞ k(t) exists and is finite.
By putting ω = ∞ in Step 1, it follows by the same argu-
ments as in Step 1 that sup0≤t<∞|k(t)| < ∞. Besides, due
to the fact that k(t) is non-decreasing, we know that the limit
limt→∞ k(t) exists and is finite. This proves (1).

Step 4: we prove that limt→∞ E
{‖η(rt )(t)‖2} = 0.

Considering that system (17) (without the adaptation law) is
stronglyminimumphase (whichyields that the homogeneous
system η̇(rt )(t) = A4(rt )η(rt )(t) is stochastically stable, see
Remark 5), and the fact that from (1) and the adaptation law,
we have

∫∞
0 E

{‖y(t)‖2}dt < ∞, we can apply Theorem
3.27 in [4] to the second equation of system (18) to obtain:
limt→∞ E

{‖η(rt )(t)‖2} = 0 and
∫∞
0 E

{‖η(rt )(t)‖2}dt <

∞.
Step 5: we prove that limt→∞ E

{‖x(t)‖2} = 0.
We’ll start by demonstrating that E

{‖x(t)‖2} is bounded
on [0,∞). In order to achieve this, let us consider system
(18) without the adaptation law. The same set of Lyapunov
functions candidates and the same techniques as in the proof
of Lemma 2 may be used to get the following:

LV (y(i), η(i), i)

≤
(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2 + ν2 + 1
)
‖y(i)‖2

− 1

2
k(t)y(i)�

[
Ci Bi + (Ci Bi )

�]y(i) − ᾱ‖η(i)‖2

+ α2‖d(t)‖2.

Now, without loss of generality, assume that k(0) > 0. Then,
by the monotonicity of k(·) we have

LV (y(i), η(i), i)

≤ −(k(t)α4 − Hi − 2

α1
H2
i − 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2

− ν2 − 1)‖y(i)‖2 − ᾱ‖η(i)‖2 + α2‖d(t)‖2
≤ −(k(t)α4 − α7)‖y(i)‖2 − ᾱ‖η(i)‖2 + α2‖d(t)‖2,

where α7 � maxi∈ϒ

(
Hi + 2

α1
H2
i + 1

ν2
‖Ci Bi‖2 ĝ2‖T−1

i ‖2+
ν2 + 1

)
.

By using the Dynkin formula and the Fubini theorem, we get

E
{
V (y(rt ), η(rt ), rt )

}
− E

{
V (y(r0), η(r0), r0)

}

= E
{ ∫ t

0
LV (y(rs ), η(rs ), rs)ds

}

≤ E
{ ∫ t

0

(
− (k(s)α4 − α7)‖y(rs )‖2 − ᾱ‖η(rs )‖2

+ α2‖d(s)‖2
)
ds
}

≤ −α4E
{ ∫ t

0
k(s)‖y(rs )‖2ds

}
+ α7E

{ ∫ t

0
‖y(rs )‖2ds

}

− ᾱE
{ ∫ t

0
‖η(rs )‖2ds

}
+ α2

∫ t

0
‖d(s)‖2ds

≤ −α4

∫ t

0
k(s)E

{‖y(rs )‖2}ds + α7

∫ t

0
E
{‖y(rs )‖2}ds

− ᾱ

∫ t

0
E
{‖η(rs )‖2}ds + α2

∫ t

0
‖d(s)‖2ds.

Due to the fact that k(t)E
{‖y(rt )(t)‖2} = k(t)k̇(t) =

1
2

d
dt

(
k2(t)

)
, we obtain the following

E
{
V (y(rt ), η(rt ), rt )

}
− E

{
V (y(r0), η(r0), r0)

}

≤ −1

2
α4

(
k2(t) − k2(0)

)
+ α7

∫ t

0
E
{‖y(rs )‖2}ds

− ᾱ

∫ t

0
E
{‖η(rs )‖2}ds + α2

∫ t

0
‖d(s)‖2ds.

Since we have

E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }
≤ 1

α5
E
{
V (y(rt ), η(rt ), rt )

}
,

it follows that

0 ≤ E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }
≤ 1

α5
E
{
V (y(r0), η(r0), r0)

}

− α4

2α5

(
k2(t) − k2(0)

)
+ α7

α5

∫ t

0
E
{‖y(rs )‖2}ds

− ᾱ

α5

∫ t

0
E
{‖η(rs )‖2}ds + α2

α5

∫ t

0
‖d(s)‖2ds.
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Now, letting t go to ∞ in the right hand side of the above
inequality, we get

0 ≤ E

{∥∥∥∥

(
y(rt )

η(rt )

)∥∥∥∥

2 }
≤ 1

α5
E
{
V (y(r0), η(r0), r0)

}

− α4

2α5

(
lim
t→∞ k2(t) − k2(0)

)
+ α7

α5

∫ ∞

0
E
{‖y(rs )‖2}ds

− ᾱ

α5

∫ ∞

0
E
{‖η(rs )‖2}ds + α2

α5

∫ ∞

0
‖d(s)‖2ds < ∞.

Therefore, E
{‖x(t)‖2} is bounded ∀t ∈ [0,∞).

Next, we will show that E
{‖x(t)‖2} is uniformly continuous

on [0,∞). Let us consider system (17)without the adaptation
law and let V (x(t), rt ) = ‖x(t)‖2. If L denotes the infinites-
imal generator of the Markov process (x(t), rt ), then for any
0 < s < t < ∞, we have by the Dynkin formula:

E
{
V (x(t), rt )

}
− E

{
V (x(s), rs)

}

= E
{ ∫ t

s
LV (x(τ ), rτ )dτ

}
,

The above equation implies that

E
{‖x(t)‖2} − E

{‖x(s)‖2}

= E
{ ∫ t

s
2x�(τ )

[(
A(rτ ) − k(τ )B(rτ )C(rτ )

)
x(τ )

+ B(rτ )g(x(τ ), τ ) + B(rτ )d(τ )
]
dτ

}
.

Using the Jensen inequality and the Fubini theorem, we
obtain
∣∣∣E

{‖x(t)‖2} − E
{‖x(s)‖2}

∣∣∣

=
∣∣∣E

{ ∫ t

s
2x�(τ )

[(
A(rτ ) − k(τ )B(rτ )C(rτ )

)
x(τ )

+ B(rτ )g(x(τ ), τ ) + B(rτ )d(τ )
]
dτ

}∣∣∣

≤ E
{ ∫ t

s

∣∣∣2x�(τ )
[(

A(rτ ) − k(τ )B(rτ )C(rτ )
)
x(τ )

+ B(rτ )g(x(τ ), τ ) + B(rτ )d(τ )
]∣∣∣dτ

}

≤ 2E
{ ∫ t

s
‖A(rτ ) − k(τ )B(rτ )C(rτ )‖ × ‖x(τ )‖2dτ

}

+ 2E
{ ∫ t

s
‖B(rτ )‖ĝ × ‖x(τ )‖2dτ

}

+ 2E
{ ∫ t

s
‖B(rτ )‖ × ‖d(τ )‖ × ‖x(τ )‖dτ

}

≤ 2E
{ ∫ t

s
‖A(rτ )‖ × ‖x(τ )‖2dτ

}
+ 2 sup

0≤τ<∞
|k(τ )|

× E
{ ∫ t

s
‖B(rτ )C(rτ )‖ × ‖x(τ )‖2dτ

}

+ 2E
{ ∫ t

s
‖B(rτ )‖ĝ × ‖x(τ )‖2dτ

}

+ 2E
{ ∫ t

s
‖B(rτ )‖ × ‖d(τ )‖ × ‖x(τ )‖dτ

}

≤ α8E
{ ∫ t

s
‖x(τ )‖2dτ

}
+ α9E

{ ∫ t

s
‖x(τ )‖dτ

}

≤ α8

∫ t

s
E
{‖x(τ )‖2}dτ + α9

∫ t

s
E
{‖x(τ )‖}dτ

≤
(
α8 sup

0≤τ<∞
E
{‖x(τ )‖2}

+ α9 sup
0≤τ<∞

E
{‖x(τ )‖}

)
(t − s),

where α8 and α9 are given by: α8 � 2maxi∈ϒ {‖Ai‖} +
2 sup0≤τ<∞|k(τ )| ×maxi∈ϒ {‖BiCi‖} + 2ĝmaxi∈ϒ {‖Bi‖},
and α9 � 2 sup0≤τ<∞‖d(τ )‖ × maxi∈ϒ {‖Bi‖}. Con-
sequently, the above calculation shows that E

{‖x(t)‖2}
is uniformly continuous on [0,∞). Now, since we have∫∞
0 E

{‖x(t)‖2}dt < ∞ and E
{‖x(t)‖2} is uniformly con-

tinuous on [0,∞), it yields by virtue of Barbalat’s lemma
(see [28], Lemma A.6) that limt→∞ E

{‖x(t)‖2} = 0. This
ends the proof of the theorem. ��
Remark 7 From the proof of Theorem 1, we can notice that
the high gain property of the considered adaptive controller
plays a key role in eliminating the effect of the consid-
ered uncertainties g(x(t), t). In addition, by the assumption
that d(t) is bounded and square integrable, the desired con-
trol objectives were successfully achieved. It now remains
to verify the effectiveness of the proposed techniques by a
numerical example. This will be done in the next section.

Remark 8 It should be noted that unlike some other control
methods, such as the sliding mode control ([9,29]) which
requires either knowledge or estimation of the unknown dis-
turbances’ upper bounds, the proposed approach removes
these requirements and reduces the control procedure.

5 Numerical example

In this section, we provide a practical example to show
the effectiveness of the proposed methods. YALMIP and
SeDuMi Matlab Toolboxes [30,31] are used to solve LMI
problems.

Example Consider the following VTOL helicopter model
with disturbances [13,32]:

{
ẋ(t) = A(rt )x(t) + B(rt )[u(t) + g(x(t), t) + d(t)],
y(t) = C(rt )x(t),

(21)
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where rt indicates the airspeed and the state variables x1, x2,
x3 and x4 are the horizontal velocity, the vertical velocity, the
pitch rate and the pitch angle, respectively. The parameters
A(rt ) and B(rt ) are given by:

A(rt ) =

⎡

⎢⎢
⎣

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 a32(rt ) −0.707 a34(rt )

0 0 1 0

⎤

⎥⎥
⎦ ,

B(rt ) =

⎡

⎢⎢
⎣

0.4422 0.1761
b21(rt ) −7.5922

−5.5200 4.4900
0 0

⎤

⎥⎥
⎦ .

We also let:

C1 =
[
2 0 −1 0
1 −1 0 0

]
, C2 =

[
0.5 0 −0.5 0
1 −0.5 0 0

]
,

C3 =
[−1 0 −2 −1
0 −2 0 1

]
.

The behavior of rt ismodeled as aMarkov chainwith three
states. The latter corresponds to three different airspeeds of
135 (nominal value), 60, and 170 knots. The values of param-
eters a32, a34, and b21 are given as follows:
For airspeed 135 knots: a32 = 0.3681, a34 = 1.4200 and
b21 = 3.5446.
For airspeed 60 knots: a32 = 0.0664, a34 = 0.1198 and
b21 = 0.9775.
For airspeed 170 knots: a32 = 0.5047, a34 = 2.5460 and
b21 = 5.1120.

The nonlinear perturbation g(x, t) and the disturbance
vector d(t) are assumed to be:

g(x, t) =
[
0.8 sin(20t)x2(t)
0.8 sin(20t)x4(t)

]
,

d(t) =
⎡

⎣
t

(
1 + t2

)

0.9 exp(−0.3t) sin(0.6t)

⎤

⎦ .

It can be easily verified that g(x, t) is linearly bounded and
d(t) is bounded and square integrable.

We choose a TR matrix with a lower bound πl = −6 for
π̂11 and π̂22:

� =
⎡

⎣
π̂11 3.8 π̂13

3.8 π̂22 π̂23

π̂31 π̂32 −2

⎤

⎦ .

Since we have

det(C1B1) = det

[
6.4044 −4.1378

−3.1024 7.7683

]
= 36.9142 �= 0,

det(C2B2) = det

[
2.9811 −2.1570

−0.0466 3.9722

]
= 11.7411 �= 0,

det(C3B3) = det

[
10.5978 −9.1561

−10.2240 15.1844

]
= 67.3093 �= 0,

it follows that the system has strict relative degree one set.
Hence, by Lemma 1, the following nonsingular matrices can
be used:

T1 =

⎡

⎢⎢
⎣

2.0000 0 −1.0000 0
1.0000 −1.0000 0 0
0.7042 0.0801 0.1079 0

0 0 0 1.0000

⎤

⎥⎥
⎦ ,

T2 =

⎡

⎢⎢
⎣

0.5000 0 −0.5000 0
1.0000 −0.5000 0 0
0.7989 0.0630 0.0752 0

0 0 0 1.0000

⎤

⎥⎥
⎦ ,

T3 =

⎡

⎢⎢
⎣

−1.0000 0 −2.0000 −1.0000
0 −2.0000 0 1.0000

−0.0000 −0.0000 −0.0000 0.5000
−0.5633 −0.0879 −0.1265 −0.5193

⎤

⎥⎥
⎦

to transform system (21) into the form:

⎧
⎪⎨

⎪⎩

ẏ(i)(t) = A1i y(i)(t) + A2iη
(i)(t)

+Ci Bi [u(t) + g(x(t), t) + d(t)],
η̇(i)(t) = A3i y(i)(t) + A4iη

(i)(t),

(22)

where for mode 1 we have:

A11 =
[−0.6365 0.3942
0.0899 −0.9582

]
, A21 =

[
1.0019 −2.3310
0.9851 3.5653

]
,

A31 =
[
0.0457 0.0094

−0.7843 0.1602

]
, A41 =

[−0.1589 −0.4897
2.0000 0

]
.

For mode 2;

A12 =
[−0.6874 0.0714
0.1183 −0.9356

]
, A22 =

[
0.2552 −0.2877
1.0211 1.5549

]
,
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A32 =
[
0.0563 0.0575

−1.8497 0.1259

]
, A42 =

[−0.1306 −0.6081
1.0000 0

]
.

And for mode 3;

A13 =
[−0.2433 0.4865
−0.5727 −1.0622

]
, A23 =

[−9.9819 0.7228
18.2960 1.1880

]
,

A33 =
[−0.2816 −0.0220
0.2487 0.0149

]
, A43 =

[
0.0000 0.5000
0.5779 −0.4481

]
.

By solving the LMI conditions in Definition 4, one can
obtain the following feasible solutions for P1, P2 and P3:

P1 =
[
830.3651 52.3610
52.3610 303.6662

]
, P2 =

[
769.7611 9.2626
9.2626 308.1242

]
,

P3 =
[
1.9005 1.1083
1.1083 1.0012

]
× 103.

This means that the system (21) is strongly minimum phase.
Also, it has positive definite high frequency gain matrices:

λ
(
C1B1 + (C1B1)

�) = {6.8052, 21.5402},

λ
(
C2B2 + (C2B2)

�) = {4.5372, 9.3694},

λ
(
C3B3 + (C3B3)

�) = {5.8667, 45.6977}.

where λ(A) denotes the spectrum of the matrix A. Conse-
quently, this perturbed system satisfies the three structural
assumptions and hence it belongs to the class (10).

Now, by using the adaptive controller (9), we obtain
the following simulation results: Fig. 1 shows the random
jumping modes and Fig. 2 describes the trajectory of x(t)
of the closed-loop system with the initial condition x0 =
[
0.5 1.4 −1.8 2.1

]�
. The trajectories of the adaptation gain

k(t) with initial condition k(0) = −1 and the control input
u(t) are illustrated, respectively, in Figs. 3 and 4. From Figs.
2 and 3, it is observed that a sufficiently large gain is found,
which makes the trajectories of the closed loop system con-
verge asymptotically to zero. Also, the bounded controller
gain k(·) asymptotically converges to a value smaller than
2.5. Thus, the desired closed-loop objectives are achieved
in the presence of the nonlinear perturbation g(x, t) and the
external disturbance d(t). This confirms the results of Theo-
rem 1.

Fig. 1 Markov switching signal (rt )
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Fig. 2 State responses of the closed-loop system
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Fig. 3 Gain evolution for u(t) = −k(t)y(t), k̇(t) = E{‖y(t)‖2}
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Fig. 4 Trajectories of the control input u(t)
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6 Conclusion and future work

This paper has investigated the universal adaptive stabiliza-
tion problem for a class ofMJSswith nonlinear perturbations
and external disturbances.The adaptive controller is designed
such that the effect of the perturbations can be eliminated
and the control objectives are guaranteed. Finally, a VTOL
helicopter example has been presented which shows the
effectiveness of the given methods. Future research will con-
centrate on the universal adaptive stabilization forMJSs with
a strict relative degree two set and the case where the high
frequency gain matrices are of unknown signs.
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