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Abstract
In this work, a fractional-order S–Ic–I–R epidemic model with carriers has been proposed where we have also studied the
dynamics of the carrier model in the presence of treatment and vaccination. We have studied the local and global stability
of the model with different criteria. The existence and uniqueness criterion along with positivity and boundedness of the
solutions have also been established. An optimal control problem has been formulated and studied by the help of Pontryagin
principle. Finally, we have performed numerical simulation and studied the impacts of carriers in the transmission dynamics.
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1 Introduction

Today, quantitative problems in the field of epidemiology
have been considered one of the most important topics in
Mathematical Biology. Carriers play an significant role in
the transmission of infectious disease like typhoid, hepatitis
B, Epstein-Barr virus and so on. Carriers are able to transmit
their illness without exhibiting any symptom. Mainly there
are two type of carriers:

1. Genetic carriers
2. Infectious disease carriers

Genetic carriers carry the disease on their children’s genes
[1,2].

We have focused our study on infectious disease carri-
ers who are asymptomatic, unwary of their conditions and
hence they are able to spread the disease. Consider the case
of typhoid which produces long term asymptomatic carriers
by the bacteria Salmonella Typhi or Salmonella Paratyphi :

(1) Globally approximately 12 million cases have been
found where typhoid fever occurred.

(2) In India, typhoid is a significant issue.
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(3) In a multicentric study, about 495 per 100,000 children
were affected by typhoid.

(4) World Health Organization (WHO) recommends the
planned use of typhoid vaccines for controlling endemic
disease.

Although in most of the cases only high risk populations
are vaccinated and so the unvaccinated carriers excrete the
typhoid bacteria continuously into their faeces and act as a
persistent reservoir of infection [3].

Another example of infectious disease that causes long
term asymptomatic carriage isHepatitis B. It is a liver disease
occurred due toHepatitis B virus (HBV).MostHBV-affected
people completely recover and develop a long term immunity
to the virus. However, nearly 5–10% of adults will develop
chronicalHBV infection and 15–30%will grow liver disease.
Control of Hepatitis B infection is one of the challenging sit-
uations due to the existence of large pool of chronic carriers
responsible for transmitting this disease [2]. Inspired by the
classic work of Kermack and McKendrick [4], compartmen-
talmodels for epidemic spreading (e.g. SIR, SIS, SEIR, SEIS,
SEIRS) have been recurrently used over the years by relying
on systems of ordinary differential equations [5–8].

Fractional calculus can be considered as the generaliza-
tion of integer order [9,10]. In systematic study it has been
observed that integer order model is a special case of frac-
tional order model where solution of fractional order system
must converge to the solution of integer order system as
the order approaches to one [11]. There are many fields
where fractional order systems are more suitable than inte-
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ger order systems. Phenomena, which are connected with
memory property and affected by hereditary property, can-
not be expressed by integer order system [12]. It is observed
that the data collected from real life phenomena fit better
with fractional order system [13]. Diethelm has compared
the numerical solutions of fractional order system and integer
order system and concluded that the fractional order system
gives more relevant interpretation than integer order sys-
tem [14]. There are many systems [13,15–23] which have
been studied recently in fractional order framework. In epi-
demiology, Ebola virus model has been studied in Caputo
differential equation system in 2015 [24].

Optimal control problem in fractional order system was
first noticed in Agarwal’s work in 2004 [25]. In 2018, frac-
tional order optimal control for HIV/AIDS has been studied
significantly by Kheiri et al. [26] and FOCP (fractional opti-
mal control problem) on enzyme kineticmodel was proposed
and analyzed numerically by Basir et al. [27]. Recently,
FOCP on pathogen model in case of environmental stressors
has been studied by Tugba et al. [28]. We have also recently
studied a FOCP on synthetic drugs transmission [20].

Motivated by the previous works and considering the
advantages of fractional derivative, we are able to construct a
deterministic fractional order model for the disease transmis-
sion with carrier. As per the literature, until now no one has
yet considered transmission dynamics of epidemic model
with carrier with treatment and vaccination. The previous
works on carrier were done in ordinary differential equations
but we have formulated our model in Caputo fractional order
framework. We have also studied the dynamics of the car-
rier model in the presence of treatment and vaccination. The
controlled vaccination may be more useful and brings some
interesting facts about the possible eradication of disease.

In this work, we have presented a fractional order S-Ic-I -
R compartmental model using Caputo fractional differential
equations. In the beginning, it is shown that the solution of
the proposed system is unique and bounded. We have also
discussed the feasible condition of the solutions of the sys-
tem.Transfer dynamics has also been discussed by the help of
reproductionnumber in the next section.Local andglobal sta-
bility of equilibrium points (both disease free and endemic)
have been analyzed systematically. Then we have presented
our system as optimal control problem with suitable control
variables and derived optimal conditions. Finally, numerical
simulations have been performed followed by some conclu-
sions of the whole work.

2 Model formulation

We have formulated a fractional order compartmental model
along with vertical transmission of disease and carriers
[29,30]. Here S, Ic, I , R represent the respective size of

susceptible population, carrier population, symptomatically
infectious population and recovered population. A suscep-
tible individual can be infected through direct contact with
an infectious individual or carrier. It is assumed that newly
infected individuals can become carriers with proportion q
or show symptomswith proportion (1−q). It is also assumed
that the rate of transmission b for carrier is higher than the
rate φ of symptomatically infected individuals as they (car-
riers) are unwary of their situation and therefore continue
with their regular actions. Carriers are become symptomatic
at a rate α and we have considered that vertical transmis-
sion of disease occurs both in carrier stage (asymptomatic)
and infected (symptomatic) stages [31]. Infectious diseases,
such as HBV, may have a long incubation period. Here α can
be regarded as diagnosis rate. We also assume that a con-
stant influx η and δ1, δ2, δ3, δ4 denote the mortality rates of
S, Ic, I and recovered class R respectively. The parameters
are described briefly in Table 1.

C
t0D

ε
t S(t) = ηε−δ1

εS−S(bε Ic+φε I )−θεS, S(0) = S0>0,
C
t0D

ε
t Ic(t) = qS(bε Ic

+ φε I ) − (δ2
ε + αε)Ic + m1

ε Ic

+ m2
ε I , Ic(0) = Ic,0 > 0,

C
t0D

ε
t I (t) = (1 − q)S(bε Ic + φε I ) − (δ3

ε + ξε)I

+ αε Ic + m3
ε Ic + m4

ε I , I (0) = I0 > 0,
C
t0D

ε
t R(t) = ξε I + θεS − δ4

εR, R(0) = R0 > 0, (1)

where 0 < ε < 1, and C
t0D

ε
t stands for Caputo fractional

derivative, t0 ≥ 0 is the initial time. Equation system (1)
is dimensionally consistent as both sides have dimension
(t ime)−ε. Next, let us consider t0 = 0 and omit the super-
script ε to all parameters and redefine system (1) as follow:

C
0 D

ε
t S(t) = η − δ1S − S(bIc + φ I ) − θ S, S(0) = S0 > 0,

C
0 D

ε
t Ic(t) = qS(bIc + φ I ) − (δ2 + α)Ic

+ m1 Ic + m2 I , Ic(0) = Ic,0 > 0,
C
0 D

ε
t I (t) = (1 − q)S(bIc + φ I ) − (δ3 + ξ)I

+ α Ic + m3 Ic + m4 I , I (0) = I0 > 0,
C
0 D

ε
t R(t) = ξ I + θ S − δ4R, R(0) = R0 > 0 (2)

It is observed that the above model is different from tradi-
tional S–E–I–R models which incorporate disease latency.
It is also observed that disease carriage is distinct from dis-
ease latency, because population in carrier state are infectious
but those in the latent period are not infectious. In the case
when b = 0, then the class Ic becomes latent and system (2)
becomes a modified S–E–I–R system where new infections
can be latent or infectious. We have considered our system in
such a way that new infections to be either symptomatic or
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Table 1 Parameters in the
system (2) η Rate of influx of S

δ1 Natural death rate of susceptible class

δ4 Natural death rate of recovered class

δ2 Natural and disease related death rate of carrier class

δ3 Natural and disease related death rate of infectious class

b Transmission coefficient for the carrier compartment Ic
φ Transmission coefficient for the symptomatically infected

compartment I

α Rate at which carriers become symptomatic or rate of diagnosis

m1,2 Vertical transmission rate coefficients of new borne infected children
into carrier stage due to carrier class and infected class respectively

m3,4 Vertical transmission rate coefficients of new borne infected children
into infected compartment due to carrier class and infected class
respectively

ξ Rate of recovery

q Proportion of newly infected individual which is asymptomatic

θ Vaccination rate

asymptomatic with certain proportion. This model is mod-
ified and more general than the carrier model proposed by
Kemper et al. [32].

3 Preliminaries

Definition 1 [10,33] The Caputo fractional derivative with
order α > 0 for a function f ∈ Cn([t0,∞+), R) is denoted
and defined as:

C
t0D

α
t f (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

	(n − α)

∫ t

t0

f (n)(s)

(t − s)α−n+1 ds, α ∈ (n − 1, n)

dn

dtn
f (t), α = n ∈ N.

where 	(·) is the Gamma function, t ≥ t0 and n is a positive
integer. In particular, for α ∈ (0, 1):

C
t0D

α
t f (t) = 1

	(1 − α)

∫ t

t0

f
′
(s)

(t − s)α ds

Lemma 1 (Generalized Mean Value Theorem) [34] Let 0 <

ε ≤ 1, φ(t) ∈ C [a, b] and C
0 D

ε
t φ(t) is continuous in (a, b].

Then we have

φ(x) = φ(a) + 1

	(ε)
(x − a)ε. C0 D

ε
t φ(ζ )

where 0 ≤ ζ ≤ x, ∀x ∈ (a, b] .

Remark If C
0 D

ε
t φ(t) ≥ 0

(
C
0 D

ε
t φ(t) ≤ 0

)
, t ∈ (a, b) then

φ(t) is a non-decreasing (non-increasing) function for t ∈
[a, b].

Definition 2 [9] One parametric and two parametric Mittag-
Leffler functions are described as follows:

Eε(z) =
∞∑

j=0

z j

	(ε j + 1)
and Eε1,ε2(z)

=
∞∑

j=0

z j

	(ε1 j + ε2)
, where ε, ε1, ε2 ∈ R+.

Theorem 1 [35] Let α > 0, n − 1 < α < n, n ∈ N.
Assume f (t) is continuously differentiable functions up to
order (n − 1) on [t0,∞) and nth derivative of f (t) exists
with exponential order. If Ct0D

α
t f (t) is piecewise continuous

on [t0,∞), then

L
{
C
t0D

α
t f (t)

}
= sαF(s) −

n−1∑

j=0

sα− j−1 f j (t0),

where F(s) = L { f (t)} denotes the Laplace transform of
f (t).

Theorem 2 [36]LetCbe the complex plane. For anyα1, α2 ∈
R+ and B ∈ C

n×n, then

L
{
tα2−1Eα1,α2(Bt

α1)
}

= sα1−α2

(sα1 − B)
,

for R(s) > ‖B‖ 1
α1 , where R(s) represents the real part

of the complex number s, and Eα1,α2 is the Mittag-Leffler
function.
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Theorem 3 [10]Consider the following fractional-order sys-
tem:

C
t0D

α
t X(t) = �(X) , Xt0

= (x1t0 , x
2
t0 , . . . , x

n
t0), x

i
t0 > 0, i = 1, 2, . . . , n

with 0 < α ≤ 1, X(t) = (x1(t), x2(t), . . . , xn(t)) and
�(X) : [t0,∞) → R

n×n . The equilibrium points of this
system are evaluated by solving the following system of
equations: �(X) = 0. These equilibrium points are locally
asymptotically stable if and only if each eigenvalue λi of the

Jacobian matrix J (X) = ∂(�1,�2, . . . , �n)

∂(x1, x2, . . . , xn)
calculated at

the equilibrium points satisfy |arg(λi )| > απ
2 .

3.1 Equilibria of system (2)

The equilibria of system (2) can be obtained by solving the
system:

η − δ1S
∗ − S∗(bI ∗

c + φ I ∗) − θ S∗ = 0

qS∗(bI ∗
c + φ I ∗) − (δ2 + α)I ∗

c + m1 I
∗
C

+ m2 I
∗ = 0

(1 − q)S∗(bI ∗
c + φ I ∗) − (δ3 + ξ)I ∗ + α I ∗

c

+ m3 I
∗
C + m4 I

∗ = 0

ξ I ∗ + θ S∗ − δ4R
∗ = 0 (3)

System (3) has two types of equilibrium points:

1. Disease-free equilibrium E0(S0, 0, 0, R0)

2. Endemic equilibrium E1(S∗, I ∗
c , I ∗, R∗)

where

S0 = η

θ + δ1
, R0 = θη

δ4(θ + δ1)

and

S∗ = (δ2 + α − m1)(δ3 + ξ − m4) − m2(m3 + α)

b(1 − q)m2 − bq(m4−δ3 − ξ) + φq(m3 + α) − φ(1 − q)(m1−δ2 − α)

I ∗
c = {η − S∗(δ1 + θ)}

[
(1 − q)m2 − q(m3 − δ3 − ξ)

(m1 − δ2 − α)(m4 − δ3 − ξ) − m2(m3 + α)

]

I ∗ = {η − S∗(δ1 + θ)}
[

q(m3 + α) − (1 − q)(m1 − δ2 − α)

(m1 − δ2 − α)(m4 − δ3 − ξ) − m2(m3 + α)

]

R∗ = ξ I ∗ + θ S∗

δ4
(4)

For E1 to exist in feasible region R
4+, it is necessary and

sufficient that

• (m1 − δ2 − α)(m4 − δ3 − ξ) − m2(m3 + α) > 0
• (1 − q)m2 − (m3 − δ3 − ξ) ≥ 0
• q(m3 + α) − (1 − q)(m1 − δ2 − α) ≥ 0

or

• (m1 − δ2 − α)(m4 − δ3 − ξ) − m2(m3 + α) < 0
• (1 − q)m2 − (m3 − δ3 − ξ) ≤ 0
• q(m3 + α) − (1 − q)(m1 − δ2 − α) ≤ 0

3.2 Existence and uniqueness

Lemma 2 [37] Consider the system

C
t0D

ε
t x(t) = f (t, x), t0 > 0 (5)

with initial condition x(t0) = xt0 , where ε ∈ (0, 1], f :
[t0,∞) × � → Rn,� ∈ Rn, if local Lipschitz condition
is satisfied by f (t, x) with respect to x, then there exists a
solution of (5) on [t0,∞) × � which is unique.

To study the existence and uniqueness of system (2), let us
consider the region � × [t0, γ ], where � = {(S, Ic, I , R) ∈
R
4 : max(|S| , |Ic| , |I | , |R|) ≤ M} and γ < +∞. Denote

X = (S, Ic, I , R) and X = (S̄, Īc, Ī , R̄). Consider a map-
ping L(X) = (L1(X), L2(X), L3(X), L4(X)), where

L1(X) = η − δ1S − S(bIc + φ I ) − θ S

L2(X) = qS(bIc + φ I ) + (m1 Ic + m2 I )

− (δ2 + α)Ic

L3(X) = (1 − q)S(bIc + φ I ) − (δ3 + ξ)I

+α Ic + (m3 Ic + m4 I )

L4(X) = ξ I + θ S − δ4R

For any X , X ∈ �:

∥
∥L(X) − L(X)

∥
∥ = ∣

∣L1(X) − L1(X)
∣
∣

+ ∣
∣L2(X) − L2(X)

∣
∣

+ ∣
∣L3(X)−L3(X)

∣
∣+ ∣

∣L4(X)−L4(X)
∣
∣

= |η − δ1S − S(bIc + φ I )

−θ S − η + δ1 S̄ + S̄(bĪc + φ Ī ) + θ S̄
∣
∣

+ |qS(bIc + φ I ) − (δ2 + α)Ic

+ (m1 Ic + m2 I ) − q S̄(bĪc

+φ Ī ) + (δ2 + α) Īc − (m1 Īc + m2 Ī )|
+ ∣
∣(1 − q)S(bIc + φ I ) − (δ3 + ξ)I

+α Ic + (m3 IC + m4 I )

− (1 − q)S̄(bĪc + φ Ī )

+ (δ3 + ξ) Ī − α Īc − (m3 ĪC + m4 Ī )
∣
∣

+ ∣
∣ξ I + θ S − δ4R − ξ Ī + θ S̄ − δ4 R̄

∣
∣
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≤ (δ1 + 2θ)
∣
∣S − S̄

∣
∣

+ 2b
∣
∣SIc − S̄ Īc

∣
∣+ 2φ

∣
∣SI − S̄ Ī

∣
∣

+ (δ2+2α)
∣
∣Ic− Īc

∣
∣+(δ3+2ξ)

∣
∣I− Ī

∣
∣

+ δ4
∣
∣R − R̄

∣
∣ ≤ (δ1 + 2θ)

∣
∣S − S̄

∣
∣+ 2b

∣
∣SIc − S̄ Ic + S̄ Ic − S̄ Īc

∣
∣

+ 2φ
∣
∣SI − S̄ I + S̄ I − S̄ Ī

∣
∣

+ (m1+m3)
∣
∣Ic− Īc

∣
∣+(m2+m4)

∣
∣I− Ī

∣
∣

+ (δ2+2α)
∣
∣Ic− Īc

∣
∣+(δ3+2ξ)

∣
∣I − Ī

∣
∣

+ δ4
∣
∣R − R̄

∣
∣ ≤ (δ1 + 2θ)

∣
∣S − S̄

∣
∣+ 2b |Ic|

∣
∣S − S̄

∣
∣

+ 2b
∣
∣S̄
∣
∣
∣
∣Ic − Īc

∣
∣+ 2φ |I | ∣∣S − S̄

∣
∣

+ 2φ
∣
∣S̄
∣
∣
∣
∣I − Ī

∣
∣

+ (δ2 + 2α + m1 + m3)
∣
∣Ic − Īc

∣
∣

+ (δ3 + 2ξ + m2 + m4)
∣
∣I − Ī

∣
∣+ δ4

∣
∣R − R̄

∣
∣ ≤ F1

∣
∣S − S̄

∣
∣+ F2

∣
∣Ic − Īc

∣
∣

+ F3
∣
∣I − Ī

∣
∣+ F4

∣
∣R − R̄

∣
∣

≤ F
∥
∥X − X

∥
∥ ,where F

= max{F1, F2, F3, F4},

and

F1 = δ1 + 2θ + 2φM + 2bM

F2 = 2bM + δ2 + 2α + m1 + m3

F3 = 2φM + δ3 + 2ξ + m2 + m4

F4 = δ4

Hence L(X) satisfies Lipschitz’s condition with respect to
X . Therefore, Lemma 2 confirms that there exists a unique
solution X(t) of system (2) with initial condition X(0) =
(S0, Ic,0, I0, R0). The following theorem is the consequence
of this result.

Theorem 4 There exists a unique solution X(t) ∈ � of
system (2) for all t ≥ 0 with initial condition X0 where
X(0) = (S0, Ic,0, I0, R0) ∈ �.

3.3 Non-negativity and boundedness

In this section we have established the criterion for fea-
sibility of the solution of system (2). Suppose R+ stands
for the set of all non-negative real numbers and 	+ ={
(S, Ic, I , R) ∈ R4+

}
represents the first quadrant.

Theorem 5 The solutions X(t) = (S, Ic, I , R) of system (2)
remain in 	+ if X(0) = (S0, Ic,0, I0, R0) ∈ 	+.

Proof

C
t0D

ε
t S(t)

∣
∣
S(t)=0 = η > 0 (6a)

C
0 D

ε
t Ic(t)

∣
∣
Ic(t)=0 = qSφ I + m2 I (6b)

C
0 D

ε
t I (t)

∣
∣
I (t)=0 = (1 − q)SbIc + (m3 + α)Ic (6c)

C
0 D

ε
t R(t)

∣
∣
R(t)=0 = ξ I + θ S (6d)

From (6a), we have

C
t0D

ε
t S(t)|S(t)=0 = η > 0.

Using remark of Lemma 1 we can say S(t) is non-decreasing
at the neighbourhood of time t = t∗(> 0) where S(t∗) = 0
and S(t) cannot cross the axis S(t) = 0. Hence, S(t) ≥ 0
for all t ≥ 0. Now, we claim that the solution Ic(t) starts
from 	+ and remains non-negative. If not, then there exists
a τc < ∞, 0 ≤ t < τc such that

⎧
⎨

⎩

Ic(t) > 0, for 0 ≤ t < τc,

Ic(τc) = 0,
Ic(τ+

c ) < 0.

If I (τc) ≥ 0, then from (6b) we have C
0 D

ε
t Ic(t)

∣
∣
Ic(τc)=0 =

qSφ I (τc)+m2 I (τc) ≥ 0. From the remark of Lemma 1 it is
evident that Ic(t) is non-decreasing (remark of Lemma 1) at
the neighbourhood of t = τc and which concludes Ic(τ+

c ) =
0. Hence, we arrive at a contradiction.
If I (τc) < 0, then there exist a τ such that 0 < τ < τc.

⎧
⎨

⎩

I (t) > 0, for 0 ≤ t < τ,

I (τ ) = 0,
I (τ+) < 0.

From (6c) it is clear that

C
0 D

ε
t I (t)

∣
∣
I (τ )=0 ≥ 0

which implies I (τ+) ≮ 0 and it opposes our assumption.
Therefore, we have Ic(t) ≥ 0,∀t ∈ [0,∞). Again from
(6c) we have C

0 D
ε
t I (t)

∣
∣
I (t)=0 ≥ 0, which means I (t) is non-

decreasing (remark of Lemma 1) in the neighbourhood of
time t = t∗∗(> 0) where I (t∗∗) = 0 and I (t) cannot cross
the axis I (t) = 0. Hence I (t) ≥ 0 for all t ≥ 0. Sim-
ilarly from equation (6d) it is clear that R(t) ≥ 0 for all
t ≥ 0. Hence, we can say that on each hyperplane, bounding
the non-negative octant, the vector field points into 	+ with
initial non negative conditions. Therefore, 	+ is positively
invariant region. ��
Theorem 6 (Boundedness). Solutions X(t) = (S, Ic, I , R)

of system (2) are uniformly bounded.

Proof From first equation of (2), it has been noted that

C
0 D

ε
t S(t) ≤ η − δ1S − θ S
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Taking Laplace transforms on both sides, we have

sεL {S(t)} − sε−1S(0) + (δ1 + θ)L {S(t)} ≤ η

s
,

where L {.}is the Laplace transform operator

⇒ L {S(t)} ≤ η
sε−(1+ε)

sε + (δ1 + θ)
+ S(0)

sε−1

sε + (δ1 + θ)

Taking inverse Laplace transforms (using Theorem 2):

S(t) ≤ S(0)Eε,1(−(δ1 + θ)tε) + ηtεEε,ε+1(−(δ1 + θ)tε)
(7)

Let, N (t) = S(t) + Ic(t) + I (t) + R(t) represents the total
population, then

C
0 D

ε
t N (t) = C

0 D
ε
t S(t) +C

0 Dε
t Ic(t) +C

0 Dε
t Ic(t) +C

0 Dε
t R(t)

= η − (δ1S(t) + δ2 Ic(t) + δ3 I (t) + δ4R(t)

+ (m1 + m3)IC (t) + (m2 + m4)I (t)

≤ η − δN (t),where δ = min{δ1, δ2, δ3, δ4}

Therefore,

C
0 D

ε
t N (t) + δN (t) ≤ η

Applying Laplace transformation, we have (using Theo-
rem 1):

sεF(s) − sε−1N (0) + δF(s) ≤ η

s
,

where F(s) = L {N (t)}
⇒ F(s) ≤ η

s−1

sε + δ
+ N (0)sε−1

sε + δ

= sε−1N (0)

sε + δ
+ ηsε−(1+ε)

(sε + δ)

Taking inverse Laplace transforms (using Theorem 2):

N (t) ≤ N (0)Eε,1(−δtε) + ηtεEε,ε+1(−δtε) (8)

From the properties of Mittag Leffler function [38], we have

Eα,β(z) = zEα,α+β(z) + 1

	(β)

Now, in this case

Eε,1(−δtε) = (−δtε)Eε,ε+1(−δtε) + 1

	(1)
(9)

From (7), (8) and (9), we get

N (t) ≤ �[Eε,1(−δtε) + δtεEε,ε+1(−δtε)] = �

	(1)
= �,

where � = max
{η

δ
, N (0)

}

Similarly,

S(t) ≤ �[Eε,1(−(δ1 + θ)tε) + (δ1 + θ)tεEε,ε+1(−(δ1 + θ)tε)]
= �

	(1)
= �,

where � = max
{

η
(δ1+θ)

, S(0)
}

Thus S(t), N (t) are bounded and hence the solutions
X(t) = (S(t), Ic(t), I (t), R(t)) are bounded uniformly in
� = {(S, Ic, I , R)|S + Ic + I + R ≤ �; S ≤ �} for
t ∈ [0,∞) ��

3.4 Reproduction number and local stability

The basic reproduction number is defined as the number
of new infective individuals produced by a single infective
individual during infectious period when contacted into sus-
ceptible compartment. Reproduction number R0 of system
(2) for ε = 1 can be computed by the next generation matrix
method [39].

Since the variable R of system (2) does not appear in first
three equations, in subsequent analysis we only consider the
following reduced system:

C
0 D

ε
t S(t) = η − δ1S − S(bIc + φ I ) − θ S, S(0) = S0 > 0,

C
0 D

ε
t Ic(t) = qS(bIc + φ I ) − (δ2 + α)Ic

+ m1 Ic + m2 I , Ic(0) = Ic,0 > 0,
C
0 D

ε
t I (t) = (1 − q)S(bIc + φ I ) − (δ3 + ξ)I

+ α Ic + m3 Ic + m4 I , I (0) = I0 > 0, (10)

Once the dynamics of (S, Ic, I ) are determined, those of
R can be determined by C

0 D
ε
t R(t) = ξ I + θ S − δ4R.

We consider E0 and E1 as (S0, 0, 0) and (S∗, I ∗
c , I ∗). Let

u = (IC , I , S)T , then system (10) can be written as:

C
0 D

ε
t u = ϒ(u) − V (u)

where

ϒ(u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q(bIc + φ I )S

(1 − q)(bIc + φ I )S

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

V (u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(m1 Ic + m2 I ) + (δ2 + α)Ic

−(m3 Ic + m4 I ) + (δ3 + ξ)I − α Ic

−η + (δ1 + θ)S + S(bIc + φ I )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Jacobian matrix of ϒ(u) and V (u) at disease free
equilibrium E0 are respectively.

Dϒ(E0) =

⎡

⎢
⎢
⎣

F 0

0 0

⎤

⎥
⎥
⎦

DV (E0) =

⎡

⎢
⎢
⎣

ν 0

0 0

⎤

⎥
⎥
⎦

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

qbη

δ1 + θ

qφη

δ1 + θ

(1 − q)bη

δ1 + θ

(1 − q)φη

δ1 + θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ν =

⎡

⎢
⎢
⎣

δ2 + α − m1 −m2

−α − m3 α3 + ξ − m4

⎤

⎥
⎥
⎦

Now, R0 is the largest eigenvalue of next generation matrix
Fν−1.

R0 = η

δ1 + θ
[

(1 − q){bm2 + φ(δ2 + α − m1)}
(δ2 + α − m1)(δ3 + ξ − m4) − m4(m3 + α)

]

The endemic equilibrium E1(S∗, I ∗
c , I ∗) of subsystem (10)

can be expressed as:

• S∗ = η

δ1 + θ

1

R0

• I∗ = η

(

1 − 1

R0

)[
q(m3 + α) − (1 − q)(m1 − δ2 − α)

(δ2 + α − m1)(δ3 + ξ − m4) − m4(m3 + α)

]

• I∗c = η

(

1 − 1

R0

)
(1 − q)m2 − (m3 + α)q

(δ2 + α − m1)(δ3 + ξ − m4) − m4(m3 + α)

So, R0 = η

δ1 + θ

1

S∗ and if R0 ≤ 1, there is only one

equilibrium point, say E0. When R0 > 1, the system has
both disease free equilibrium E0 and endemic equilibrium
E1.

To study the local stability of the system, we need to com-
pute Jacobian matrix at the equilibrium points E0, E1:

J {(S, Ic, I )} =

⎡

⎢
⎢
⎢
⎢
⎣

−δ1 − (bIc + φ I ) − θ −bS −φS

q(bIc + φ I ) qSb − δ2 − α + m1 qSφ + m2

(1 − q)(bIc + φ I ) (1 − q)bS + α + m3 (1 − q)φS − δ3 − ξ + m4

⎤

⎥
⎥
⎥
⎥
⎦

At E0 the Jacobian matrix is given by

J {(S0, 0, 0)} =

⎡

⎢
⎢
⎢
⎢
⎣

−δ1 − θ −bS0 −φS0

0 qS0b − δ2 − α + m1 qS0φ + m2

0 (1 − q)bS0 + α + m3 (1 − q)φS0 − δ3 − ξ + m4

⎤

⎥
⎥
⎥
⎥
⎦

where

S0 = η

θ + δ1

The eigenvalues of the system are λ1 = −δ1 − θ , λ2 =
qbη

θ + δ1
+ m1 − α − δ2, λ3 = (1 − q)φη

θ + δ1
+ m4 − ξ − δ3.

Therefore, |arg(λ1)| = π > επ
2 ; 0 < ε < 1. For the other

two eigenvalues, | arg(λ2)| = | arg(λ3)| = π > επ
2 , if the

following conditions hold:

1.
qbη

θ + δ1
+ m1 − α − δ2 < 0

2.
(1 − q)φη

θ + δ1
+ m4 − ξ − δ3 < 0

The disease free equilibrium is asymptotically stable if these
two conditions are fulfilled.

Jacobian matrix at E1(S∗, I ∗
c , I ∗) is given by

J (E1) =

⎡

⎢
⎢
⎢
⎢
⎣

−δ1 − (bI ∗
c + φ I ∗) − θ −bS∗ −φS∗

q(bI ∗
c + φ I ∗) qS∗b − δ2 − α + m1 qS∗φ + m2

(1 − q)(bI ∗
c + φ I ∗) (1 − q)bS∗ + α + m3 (1 − q)φS∗ − δ3 − ξ + m4

⎤

⎥
⎥
⎥
⎥
⎦

Characteristic equation of this matrix is: P(λ) ≡ λ3 +
a1λ2 + a2λ + a3 = 0, where

a1 = −(K1 + K5 + K3)

a2 = K1K5 + K1K9 + K5K9 − K2K4 − K3K7 − K6K8

a3 = −K1K5K9 + K1K6K8 + K2K4K9

−K2K6K7 − K3K4K8 + K3K7K5

and

K1 = −δ1 − (bI ∗
c + φ I ∗)

K2 = −bS∗

K3 = −φS∗

K4 = q(bI ∗
c + φ I ∗)
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K5 = qS∗b − δ2 − α + m1

K6 = qS∗φ + m2

K7 = (1 − q)(bI ∗
c + φ I ∗)

K8 = (1 − q)bS∗ + α + m3

K9 = (1 − q)φS∗ − δ3 − ξ + m4

So, λi , i = 1, 2, 3, can be found from this equation. Sup-
pose ∇(P) = 18a1a2a3 + (a1a2)2 − 4a21a3 − 4a22 − 27a23 ,
then by Routh-Harwitz conditions for fractional differential
equation, the endemic equilibrium point E1 is locally asymp-
totically stable if any of the following conditions holds good
[40]:

1. ∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3
2. ∇(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 and ε < 2

3
3. ∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and ε ∈ (0, 1)

The following theorems consequently derive from above dis-
cussions.

Theorem 7 The disease free equilibrium E0 of system (2) is

asymptotically stable if
qbη

θ + δ1
+ m1 − α − δ2 < 0 and

(1 − q)φη

θ + δ1
+ m4 − ξ − δ3 < 0 hold.

Theorem 8 The endemic equilibrium E1 of system (2) is
asymptotically stable if any of the following condition holds.

1. ∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3
2. ∇(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 and ε < 2

3
3. ∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and ε ∈ (0, 1),

where ∇(P) = 18a1a2a3 + (a1a2)2 − 4a21a3 − 4a22 − 27a23 ,

a1 = −(K1 + K5 + K3)

a2 = K1K5 + K1K9 + K5K9 − K2K4 − K3K7 − K6K8

a3 = −K1K5K9 + K1K6K8 + K2K4K9

−K2K6K7 − K3K4K8 + K3K7K5

and

K1 = −δ1 − (bI ∗
c + φ I ∗)

K2 = −bS∗

K3 = −φS∗

K4 = q(bI ∗
c + φ I ∗)

K5 = qS∗b − δ2 − α + m1

K6 = qS∗φ + m2

K7 = (1 − q)(bI ∗
c + φ I ∗)

K8 = (1 − q)bS∗ + α + m3

K9 = (1 − q)φS∗ − δ3 − ξ + m4

3.5 Global asymptotic stability

We need following useful Lemmas about Lyapunov direct
method related with global stability of the equilibrium points
in fractional order models.

Lemma 3 [37] Suppose u(t) ∈ R+be a continuous and dif-
ferentiable function. Then, for any moment of time t ≥ t0,
C
t0D

ε
t

[
u(t) − u∗ − u∗ ln u(t)

u∗
]

≤
(
1 − u∗

u(t)

)
C
t0D

ε
t u(t), u∗ ∈

R+,∀ε ∈ (0, 1).

Lemma 4 [41](UniformAsymptoticStabilityTheorem)Con-
sider the non-autonomous system

C
0 D

ε
t x(t) = f (t, x), x ∈ � ⊆ R

n (15)

Let x∗ be an equilibrium point of the system (x∗ ∈ � ⊆
R
n) and �(t, x(t)) : [0,∞) × � → R be a continuously

differentiable function such that

C
0 D

ε
t �(t, x(t)) ≤ −�3(x),

�1(x) ≤ �(t, x(t)) ≤ �2(x),∀ε ∈ (0, 1),∀x(t) ∈ �

where �i , i = 1, 2, 3, are continuous positive definite func-
tions on �. Then the equilibrium point x∗ of system (15) is
globally stable.

Theorem 9 If R0 ≤ 1, then the disease free equilibrium E0

of system (10) is globally asymptotically stable when

m1φ(α + m3) + αbm2 + αφ(δ2 + α) + m2m3b

≤ αφm1 + m4(m3 + α)b and m2 ≤ m4

Proof We have considered a positive definite function:

F = [b(δ3 + ξ − m4) + φ(α + m3)] Ic

+ [bm2 + φ(δ2 + α − m1)] I .

Clearly F ≥ 0 and F = 0 only at E0

(
η

θ + δ1
, 0, 0

)

.

Taking ε order Caputo derivative C
0 D

ε
t of F along the

solution of system (10), we have

C
0 Dε

t F = [b(δ3 + ξ − m4) + φ(α + m3)]
C
0 Dε

t Ic

+ [bm2 + φ(δ2 + α − m1)]
C
0 Dε

t I

= [b(δ3 + ξ − m4) + φ(α + m3)]

[qS(bIc + φ I ) − (δ2 + α)Ic + m1 Ic + m2 I ]
+ [bm2 + φ(δ2 + α − m1)]

[(1 − q)S(bIc + φ I ) − (δ3 + ξ)I + m3 Ic + m4 I + α Ic]
= [qb(δ3 + ξ − m4) + qφ(α + m3)]S(bIc + φ I ) + [(1 − q)bm2

+ (1 − q)φ(δ2 + α − m1)]S(bIc + φ I )

− (δ2 + α)b(δ3 + ξ − m4)(m1 Ic + m2 I )
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+ φ(α + m3)(m1 Ic + m2 I ) − (δ3 + ξ)

[bm2 + φ(δ2 + α − m1)](m3 Ic + m4 I )

+ α Ic[bm2 + φ(δ2 + α − m1)]
≤ [(δ2 + α − m1)(δ3 + ξ − m4) − m4(m3 + α)]
R0(bIc + φ I )

− (δ3 + ξ − m4)(δ2 + α − m1)(bIc + φ I )

+ b(δ3 + ξ − m4)m2 I + φ(α + m3)m1 Ic

+ φ(α + m3)m2 I + b(δ3 + ξ − m4)m2 I + φ(α + m3)m1 Ic

+ φ(α + m3)m2 I − (δ3 + ξ)bm2 I

+ bm2m3 Ic + αφ(δ2 + α − m1)Ic

= [(δ2 + α − m1)(δ3 + ξ − m4) − m4(m3 + α)]
(R0 − 1)(bIc + φ I )

+ Ic[m1φ(α + m3) + αbm2 + αφ(δ2 + α)

−αφm1 + bm2m3 − m4(m3 + α)b]
+ I [bm2(δ3 + ξ − m4) + φm2(α + m3)

−(δ3 + ξ)bm2 + bm2m4 − m4(m3 + α)φ]
= [(δ2 + α − m1)(δ3 + ξ − m4)

−m4(m3 + α)](R0 − 1)(bIc + φ I )

+ Ic[m1φ(α + m3) + αbm2 + αφ(δ2 + α)

−αφm1 + bm2m3 − m4(m3 + α)b]
+ φ(α + m3)(m2 − m4)I

Hence, C0 D
ε
t F ≤ 0 ifR0 ≤ 1 and

m1φ(α + m3) + αbm2 + αφ(δ2 + α) + m2m3b

≤ αφm1 + m4(m3 + α)b , m2 ≤ m4.

Thus C
0 D

ε
t F is negative definite with respect to E0 and E0 is

globally asymptotically stable by Lemma 4. ��
Theorem 10 If R0 > 1, then the endemic equilibrium
E1(S∗, I ∗

c , I ∗, R∗) of system (2) is globally asymptotically
stable.

Proof Consider a positive definite function:

W = k1

(

S − S∗ − S∗ ln S

S∗

)

+ k2

(

Ic − I ∗
c − I ∗

c ln
Ic
I ∗
c

)

+ k3

(

I − I ∗ − I ∗ ln I

I ∗

)

(16)

where ki , i = 1, 2, 3, are positive constants specified later. It
is observed that W (E1) = 0. Taking ε order Caputo deriva-
tive C

0 D
ε
t of W , η = δ1S∗ + θ S∗ + bI ∗

c S
∗ + φ I ∗S∗ and

Lemma 3, we have got:

C
0 D

ε
t (W ) ≤ k1

(

1 − S∗

S

)
C
0 D

ε
t S

+ k2

(

1 − I ∗
c

Ic

)
C
0 D

ε
t Ic + k3

(

1 − I ∗

I

)
C
0 D

ε
t I

∴ C
0 D

ε
t (W ) ≤ k1 [η − (θ + δ1)S − (bIc + φ I )S

−η
S∗

S
+ (θ + δ1)S

∗ + (bIc + φ I )S∗
]

+ k2 [(q(bIc + φ I )S − (δ2 + α) + m1 Ic + m2 I ]
(

1 − I ∗
c

Ic

)

+ k3 [(1 − q)(bIc + φ I )S + α Ic

−(δ3 + ξ)I + m3 Ic + m4 I ]

(

1 − I ∗

I

)

=
[

k1(δ1 + θ)S∗
(

2 − S

S∗ − S∗

S

)]

+ [
k1(bI

∗
c + φ I ∗)S∗ + k2(δ2 + α − m1)I

∗
c

+k3(δ3 + ξ − m4)I
∗]

+ S(bIc + φ I )[−k1 + k2q + (1 − q)k3]
+ Ic[k1bS∗ − k2(δ2 + α − m1) + k3(m3 + α)]
+ I [k1φS∗ + k2m2 − k3(δ3 + ξ − m3)]
−
[

k1
(bI ∗

c + φ I ∗)S∗2

S
+ k2qbI

∗
c S

+ k2qφS
I I ∗

c

Ic

+ k2m2
I I ∗

c

Ic
+ k3m3

I ∗ Ic
I

+ k3(1 − q)SbIc
I ∗

I

+ k3(1 − q)Sφ I ∗ + k3α
I ∗ Ic
I

]

Let us choose k1 = 1 and k2, k3 in such a way that ki , i =
1, 2, 3, satisfy

−k1 + k2(1 − q) + k3q = 0

k1bS
∗ − k2(δ2 + α − m1) + k3(m3 + α) = 0

k1φS
∗ + k2m2 + k3(δ3 + ξ − m4) = 0 (17)

Solving:

k2 = (δ3 + ξ − m4) + φS∗(m3 + α)

(δ2 + α − m1)(δ3 + ξ − m4) − m2(m3 + α)

k3 = bS∗m2 + φS∗(δ2 + α − m1)

(δ2 + α − m1)(δ3 + ξ − m4) − m2(m3 + α)

k1 = 1 (18)

Let us rearrange the terms of C
0 D

ε
t (W ) in such a way that

C
0 D

ε
t (W ) = W1 + W2 + W3, where

W1 = (δ1 + θ)S∗
(

2 − S

S∗ − S∗

S

)

W2 = k1(bI
∗
c + φ I ∗)S∗

+ k2(δ2 + α − m1)I
∗
c + k3(δ3 + ξ − m4)I

∗

W3 = −k1
(bI ∗

c + φ I ∗)S∗2

S

− k2qbI
∗
c S − k2qφS

I I ∗
c

Ic

− k2m2
I I ∗

c

Ic
− k3m3

I ∗ Ic
I

− k3(1 − q)SbIc
I ∗

I
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− k3(1 − q)Sφ I ∗ − k3α
I ∗ Ic
I

(19)

It is clear that

W1 ≤ 0 (20)

from the inequality a+ 1
a ≥ 2 for all a > 0 andW1 = 0 if and

only if S = S∗. We have only to show that W2 + W3 ≤ 0.
We can rewrite W2 by using the relation (17), the values
of ki , i = 1, 2, 3, mentioned in (18) and the equilibrium
relation:

[(1 − q)(δ2 + α − m1) + q(m3 + α)]I ∗
c

= [q(δ3 + ξ − m4) − (1 − q)m2]I ∗ (21)

as

W2 = 2k2qφ I ∗S∗ + 2k2qbI
∗
c S

∗ + 2k3(1 − q)φ I ∗S∗

+ 2(1 − q)k3bI
∗
c S

∗ + k3(m3 + α)I ∗
c + k2m2 I

∗
(22a)

Using A.M . ≥ G.M ., we have

W2 ≤ 2k2qφ I ∗S∗ + 2k2qbI
∗
c S

∗ + 2k3(1 − q)φ I ∗S∗

+4[q(1−q)k2k3bφ I
∗
c ] 12 S∗+2[k2k3m2(m3+α)I ∗

c I
∗] 12

(22b)

Similarly,

W3 =
[

−k2qbI
∗
c S − qk2bS ∗2 I ∗

c

S

]

+
[

−k3(1 − q)Sφ I ∗ − k3
(1 − q)φ I ∗S∗2

S

]

+
[

−k2qφ
SI I ∗

c

Ic
− k2qφ

I ∗S∗2

S

−k3(1 − q)
bI ∗

c S
∗2

S
− k3(1 − q)

SbIc I ∗

I

]

+
[

−k2m2
I I ∗

c

Ic
− k3(m3 + α)

I ∗ Ic
I

]

(23)

Using the inequality A.M . ≥ G.M ., we have got:

W3 ≤ −2k2qφ I ∗S∗ − 2k2qbI
∗
c S

∗ − 2k3(1 − q)φ I ∗S∗

− 4[q(1 − q)k2k3bφ I
∗
c ] 12 S∗

− 2[k2k3m2(m3 + α)I ∗
c I

∗] 12 ≤ −W2

⇒ W2 + W3 ≤ 0 (24)

From relations (20) and (24), it is clear that C0 D
ε
t (W ) ≤ 0 and

thus C
0 D

ε
t (W ) is negative definite with respect to E1. Hence

E1 is globally asymptotically stable by Lemma 4. ��

4 Fractional optimal control problem

Optimal control is an efficient tool for finding combined
strategies for vaccination (θ) and treatment (ξ) of the optimal
control problem of an infectious disease system like Hepati-
tis B virus with active carrier. Our aim is to minimize the
number of susceptible and infected population and the cost
of implementing the control strategy. Earlier, Ding et al. [42]
and Agarwal et al. [25] have contributed on optimal control
theory in fractional calculus but progress in nonlinear control
theory in fractional dynamics is still limited. In this section,
we have used these results to solve our fractional order opti-
mal control problem stated later.

The theory of optimal control in fractional order is based
on Pontryagain’s principle [43]. The technique is quite simi-
lar to classical integer order optimal control problem.Let x be
the pseudo-state vector and u = [u1, u2, ..., um] ∈ U ⊆ Rm

is the input vector andU is the set of admissible control of the
dynamical system C

t0D
ε
t x = f (x, u, t), x(0) = x0. The sys-

tem’s pseudo state is supposed to reach final condition x f in
the unknown final time T f . The control u ∈ U must be cho-
sen for all t ∈ [0, T f ] to minimize the objective functional J
which is denoted and defined as

J = �(x(T f )) +
∫ T f

0
F (x(t), u(t))dt

Theconstraints on the systemdynamics canbe adjoined to the
LagrangianF by introducing time-varying Lagrange multi-
plier vector λ , whose elements are called the co-states of the
system. This motivates the construction of the Hamiltonian
H defined for all t ∈ [0, T f ].

H (x(t), u(t), λ(t)) = λT (t) f (x(t), u(t)) + F (x(t), u(t)).

Where λT stands for transpose of λ. Pontryagin’s minimum
principle states that the optimal state trajectory x∗, optimal
control u∗, and corresponding Lagrange multiplier vector λ∗
must minimize the Hamiltonian H so that [44]

1. H (x∗(t), u∗(t), λ∗(t)) ≤ H (x∗(t), u(t), λ∗(t))
2.

∂�(x)

∂T f
|x=x(T f ) + H (T f ) = 0

3. RL
t Dε

T f
λT = ∂H

∂x
|x=x∗

4.
∂H

∂u
|u=u∗ = 0 and

∂2H ((x∗(t), u∗(t), λ∗(t)))
∂u2

≤ 0,
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where

RL
t Dε

T f (t) = −1

	(1 − ε)

d

dτ

∫ T

t
(τ − t)−ε f (τ )dτ,∀t ∈ [0, T ]

is the Right-Liouville derivative of order ε. These four con-
ditions are necessary for optimal control.

We have formulated our optimal control problem as
followswhere the state variables (S, Ic, I , R) satisfy the pro-
posed system of fractional order differential equations (2)
depending on the control variables u1(t), u2(t). Here u1 is
considered power of vaccination and u1 can be utilized as
a important factor to create a constructive outcomes on sus-
ceptible population with 0 ≤ u1 ≤ 1. Here 0 portrays no
vaccination in certain time frame ([0,T]), while 1 is speaking
to full vaccination. Likewise, u2 = 0 means no treatment
and u2 = 1 is the full treatment.

We have omitted the last equation of R(t) of system (2)
during the analysis since the variable R does not appear in
other equations of system (2). After analyzing the reduced
system, we can also acquire the knowledge of the dynamics
of R. It is assumed that the control functions u1(t), u2(t) are
measurable and 0 ≤ u1(t), u2(t) ≤ 1. Our main objective is
to minimize the given objective function J in time interval
[0, T ] by finding optimal control u∗ = (u∗

1, u
∗
2) as follows:

J (u∗
1, u

∗
2) = Jmin (u1(t),u2(t))∈U (25)

J (u1, u2)= Ic(t)+
∫ T

0
[α1S(t)

+α2 Ic(t)+α3 I (t)+ β1

2
u21(t)+

β2

2
u22(t)

]

dt (26)

subject to

C
0 D

ε
t S(t)=η−δ1S−S(bIc+φ I )−u1θ S, S(0)= S0 > 0,

C
0 D

ε
t Ic(t) = qS(bIc + φ I ) − (δ2 + α)Ic

+ m1 Ic + m2 I , Ic(0) > 0,
C
0 D

ε
t I (t) = (1 − q)S(bIc + φ I ) − (δ3 + u2ξ)I

+ α Ic + m3 Ic + m4 I , I (0) = I0 > 0, (26a)

whereU = {
(u1, u2) ∈ L∞

1 (0, T ), 0 ≤ u1, u2 ≤ 1, t ∈ (0, T )
}

being the control space. The existence and uniqueness of the
solutions of the optimal control problem stated in (26a) can
be established in a similar way as mentioned in section 3.2.

The existence of optimal control (u∗
1, u

∗
2) can be estab-

lished in the next theorem.

Theorem 11 Let the control function u = (u1, u2) ∈ U be
measurable on [0, T ] with value of each of u1, u2 lies in
[0,1]. Then an optimal control u∗ = (u∗

1, u
∗
2) minimizing the

objective function J (u1, u2) of (26) with

RL
t Dε

T λ1(t) = λ1(δ1 + bIc + φ I + u1θ) − λ2q(bIc + φ I )

Table 2 Parametric values used in system (2)

Parameters Values Source

η 0.1 person day−1 [29]

b 0.02 person−1 day−1 [29]

δ1 0.01 person day−1 [29]

δ2 0.025 person day−1 [29]

δ3 0.03 person day−1 [29]

ξ 0.5 day−1 [29]

q 0.3 Assumed

α 0.15 day−1 [29]

φ 0.04 day−1 [29]

θ 0.1 day−1 [29]

m1 0.05 day−1 [31]

m2 0.06 day−1 Assumed

m3 0.07day−1 Assumed

m4 0.07day−1 Assumed

ε 0.95 Assumed

Table 3 Parametric values used in system (2)

Parameters Values Source

η 0.5 person day−1 Assumed

b 0.02 person−1 day−1 [29]

δ1 0.01 person day−1 [29]

δ2 0.025 person day−1 [29]

δ3 0.03 person day−1 [29]

ξ 0.45 day−1 [29]

q 0.3 Assumed

α 0.1 day−1 [29]

φ 0.04 day−1 [29]

θ 0.1 day−1 [29]

m1 0.05 day−1 [31]

m2 0.06 day−1 Assumed

m3 0.07 day−1 Assumed

m4 0.07 day−1 Assumed

ε 0.95 Assumed

− λ3(1 − q)(bIc + φ I ) − α1
RL
t Dε

T λ2(t) = λ1(Sb) + λ2(δ2 + α − qSb − m1)

− λ3{(1 − q)Sb + α + m3} − α2
RL
t Dε

T λ3(t) = λ1(Sφ) − λ2(qφS + m2)

+ λ3{(δ3 + u2ξ − m4) − (1 − q)φS} − α3,

where

u∗
1 = max{min{ū1, 1}, 0};

u∗
2 = max{min{ū2, 1}, 0}

123



Optimal control of a fractional order epidemic model with carriers 609

Fig. 1 Time series and phase
portrait of system (10)
corresponds to Table 2 when
E∗
0 (0.2856, 0, 0), In time series,

Horizontal axis (time axis)
1 unit = 1day ; Vertical axis
1 unit = 1000 persons
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ū1 = λ1Sθ

β1
, ū2 = λ3 I ξ

β2
(27)

and (S, Ic, I ) is the corresponding solution of (26).

Proof We have considered the Hamiltonian as follows:

H =
[

α1S(t) + α2 Ic(t) + α3 I (t) + β1

2
u1

2 + β2

2
u2

2
]

+ λ1{η − δ1S − S(bIc + φ I ) − u1θ S}
+ λ2{qS(bIc + φ I ) − (δ2 + α)Ic + m1 Ic + m2 I }
+λ3{(1−q)S(bIc+φ I )−(δ3+u2ξ)I+α Ic+m3 Ic+m4 I } (28)

with (λ1, λ2, λ3) being the associated adjoint variables with
λi (T ) = 0 (i = 1, 2, 3), which have been written in the
following canonical equations:

RL
t Dε

T λ1(t) = −∂H

∂S
= λ1(δ1 + bIc + φ I + u1θ)

− λ2q(bIc + φ I )

− λ3(1 − q)(bIc + φ I ) − α1

RL
t Dε

T λ2(t) = −∂H

∂ Ic
= λ1(Sb) + λ2(δ2 + α − qSb − m1)

− λ3{(1 − q)Sb + α + m3} − α2

RL
t Dε

T λ3(t) = −∂H

∂ I
= λ1(Sφ) − λ2(qφS + m2)

+ λ3{(δ3 + u2ξ − m4) − (1 − q)φS} − α3

(29)

Therefore, the problem of finding u∗ that minimizes J
subject to (29) is converted to minimizing the Hamiltonian
with respect to the control. Then by Pontryagin principle[44],
we have achieved the optimal conditions:

∂H

∂u2
= β2u2 − λ3 I ξ = 0

∂H

∂u1
= β1u1 − λ1Sθ = 0 (30)

which can be solved in terms of state and adjoint variables
to give

ū1 = λ1Sθ

β1
, ū2 = λ3 I ξ

β2
(31)
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Fig. 2 Time series and phase
portrait of system (10)
corresponds to Table 3 when
E∗
1 (1.042, 6.635, 2.174), In

time series, Horizontal axis
(time axis) 1 unit = 1day;
Vertical axis
1unit = 1000 persons
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Fig. 3 Time series of system
(10) corresponds to Table 3
when E∗

1 (1.042, 6.635, 2.174)
and ε = 0.9, 0.95, 0.99,
Horizontal axis (time axis)
1unit = 1day; Vertical axis
1unit = 1000 persons
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Fig. 4 Time series of system
(10) corresponds to Table 3
when E∗

1 (1.042, 6.635, 2.174)
and ε = 0.5, 0.6, 0.7,
Horizontal axis (time axis)
1 unit = 1day; Vertical axis
1 unit = 1000 persons
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For the optimal control u∗, which requires considering the

constrains on the control and the sign of
∂H

∂u
. Hence we have

u∗
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∂H

∂u1
< 0

ū1 if
∂H

∂u1
= 0

1 if
∂H

∂u1
> 0s

(32a)

u∗
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∂H

∂u2
< 0

ū2 if
∂H

∂u2
= 0

1 if
∂H

∂u2
> 0

(32b)

and

u∗
1 = max{min{ū1, 1}, 0}; u∗

2 = max{min{ū2, 1}, 0} (33)

where ū1 = λ1Sθ

β1
, ū2 = λ3 I ξ

β2
. Optimal state can be found

by substituting u∗ into the system (29). ��

5 Numerical simulations

Analytical study is incompletewithout numerical verification
of the results. In this section we have presented numeri-
cal simulation of system (2). We have used FDE12 matlab
function which is designed on predictor-corrector scheme
based on Adams-Bashforth-Moulton algorithm introduced

by Roberto Garrappa [45]. We have also used iterative
scheme (Euler’s forward and backward) to develop frac-
tional order optimal control problem.The process is briefly
described below. The optimality system constitutes a two-
point boundary value problem including a set of fractional-
order differential equations. The state system (26a) is an
initial value and adjoint system (29) is a boundary value prob-
lem.

The state system (26a) is solved using the iterative scheme
below:

S(i) = [η − δ1S(i − 1) − S(i − 1)(bIc(i − 1)

+φ I (i − 1)) − u1θ S(i − 1)]hε

−
i∑

j=1

c( j)S(i − j)

Ic(i) = [qS(i − 1)(bIc(i − 1) + φ I (i − 1))

−(δ2 + α)Ic(i − 1) + m1 Ic(i − 1) + m2 I (i − 1)]hε

−
i∑

j=1

c( j)Ic(i − j)

I (i) = [(1 − q)S(i − 1)(bIc(i − 1)

+φ I (i − 1)) − (δ3 + u2ξ)I (i − 1)

+α Ic(i − 1) + m3 Ic(i − 1) + m4 I ](i − 1)hε

−
i∑

j=1

c( j)I (i − j)

where c(0) = 1 and c( j) = (1 − 1+ε
j )c( j − 1), j ≥ 1 and

hε is the time step length (we have assumed h = 0.02). Here
S(i) is the value of S(t) at i th iteration. The last term of each
of the above system of equations stands for memory. The
adjoint system (29) is solved by backward iteration method
with terminal conditions λi (T ) = 0, i = 1, 2, 3 using the
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Fig. 5 Time series of optimal state variables for the control problem (26) correspondence to Table 2 with ε = 0.8

Fig. 6 Time series of optimal
control variables for the control
problem (26) correspondence to
Table 2 with ε = 0.8
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Fig. 7 Optimal cost for the control problem (26) correspondence to
Table 2 with ε = 0.8

following iterative scheme:

λ1(i) = [λ1(i − 1)(δ1 + bIc(i) + φ I (i) + u1θ)

−λ2(i − 1)q(bIc(i) + φ I (i))

−λ3(i − 1)(1 − q)(bIc(i) + φ I (i)) − α1]hε

−
i∑

j=1

c( j)λ1(i − j)

λ2(i) = [λ1(i)(Sb) + λ2(i − 1)(δ2 + α − qS(i)b − m1)

−λ3(i − 1){(1 − q)S(i)b + α + m3} − α2]hε

−
i∑

j=1

c( j)λ2(i − j)

λ3(i) = [λ1(i)(S(i)φ) − λ2(i)(qφS(i) + m2)

+λ3(i−1){(δ3+u2ξ−m4)−(1−q)φS(i)}−α3]hε
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Fig. 8 Time series of optimal state variables for the control problem (26) correspondence to Table 2 with ε = 0.9
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Fig. 9 Time series of optimal control variables for the control problem (26) correspondence to Table 2 with ε = 0.9
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Fig. 10 Optimal cost for the control problem (26) correspondence to
Table 3 with ε = 0.9

−
i∑

j=1

c( j)λ3(i − j)

The optimal control is updated by the scheme below:

u∗
1 = max{min{ū1, 1}, 0}, where ū1 = λ1(i − 1)S(i)θ

β1

u∗
2 = max{min{ū2, 1}, 0}, where ū2 = λ3(i − 1)I (i)ξ

β2

We have assumed t = 1 day as smallest unit in horizontal
axis (time axis) and the unit in the vertical axis is person
where smallest unit (1 unit) in vertical axis is 1000 persons
(for S, Ic, I ), in control diagram u1, u2 axes has no physical
unit and cost axis (J ∗) has smallest unit (1 unit = 1 Euro)
money. We have considered Table 2 and Table 3 where we
have taken set of different parametric values. It is noticeable
that natural death rate is lower than carrier class death rate and

carrier class death rate is lower than infected class death rate.
We have not considered recovery class in our simulations.

We first consider the case when R0 = 0.1548 < 1
using the parametric values mentioned in Table 2. Figure 1
reveals the fact that only susceptible population survives
(S = 0.2856) and the infective population (Ic) in carrier
stage (asymptomatic) and infective population in symp-
tomatic stage (I ) are going to extinct. It shows that disease
free equilibrium is locally asymptotically stable whenever
R0 < 1. This numerical simulations validate our analytical
results derived in Theorem 7 and 8.

Next, using parametric values enlisted in Table 3, it is
observed that R0 = 2.3077 > 1 and so the condition
for existence of endemic equilibrium is established. It is
also observed that the system is locally asymptotically sta-
ble around (1.042, 6.635, 2.174) as depicted in Fig. 2. We
have also observed that for higher value of ε, the stabil-
ity of the equilibrium reaches faster as reported in Fig. 3.
When ε increases, the infective population at carrier stage and
the infective population at symptomatic stage also increase
(Fig. 4 represents this case).

For optimal control problem, let us assume αi = 1, i =
1, 2, 3, and β1 = 1, β2 = 10 and all the parametric values
are taken from Table 2. We have chosen T = 80 days for
final time. In each Figs. 5, 6, 7, 8, 9, 10, the dynamics of
different population classes along with the implication of
controls measures are demonstrated. We have studied three
strategies for eradication of carrier based disease like HBV
infection, typhoid etc.

5.1 Scenario 1: coupled control strategies

We start first the strategy by making control u1 �= 0, u2 �=
0 which analyze the effect of the implementation of the
vaccination coupled with treatment control. The effect of
vaccination and treatment controls on different population

123



Optimal control of a fractional order epidemic model with carriers 615

0 20 40 60 80
t (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S 
(

 1
00

0 
pe

rs
on

s)

0 20 40 60 80
t (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I c(
 1

00
0 

pe
rs

on
s)

0 20 40 60 80
t (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I (
 1

00
0 

pe
rs

on
s)

0 20 40 60 80
t (day)

0

0.2

0.4

0.6

0.8

1

u* 1

0 20 40 60 80
t (day)

0

0.2

0.4

0.6

0.8

1

u* 2

0 20 40 60 80
t (day)

55

55.5

56

56.5

57

57.5

J*  (E
ur

o)

Fig. 11 Time series of state variables and optimal control variables for the control problem (26) when α1 = 0, α2, α3 �= 0 correspondence to
Table 2 with ε = 0.8

classes are shown graphically in Figs. 5, 6, 7 for ε = 0.8 and
Figs. 8, 9, 10 for ε = 0.9. From Fig. 5, it is clear that indi-
viduals under treatment (infected class) along with carrier
class decreased significantly when we have applied coupled
control strategy. It is also noted that the increase in the order
of derivative (ε) in both the infected and carrier classes is
increasing, but that the susceptible classes are decreasing. In
Fig. 11, we have shown the case when α1 = 0, where we
took into account the fact that there are no expenditures due
to the susceptible class. It is observed that after 80 days opti-

mal cost is higher than the previous case where α1 = 1 and
the number of population in infected and carrier class is also
increased in later case (α1 = 0).

5.2 Scenario 2: single control strategies

5.2.1 First strategy

This strategy analyze the effect of the implementation of the
vaccination with no treatment (u1 �= 0, u2 = 0). Figure 12
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Fig. 12 Time series of state variables and optimal control variables for the control problem (26) when u1 �= 0, u2 = 0 correspondence to Table 2
with ε = 0.8

shows the impact of this strategy and it is observed that the
individuals in both infected and carrier classes are increased
rapidly. So this strategy is not much effective to control the
disease.

5.2.2 Second strategy

This strategy analyze the effect of the implementation of
treatment with no vaccination (u1 = 0, u2 �= 0). Fig. 13
depicts the impact of this strategy. It is observed that this
strategy is better than first strategy but the coupled strategy
is the best among them.

6 Conclusions

It is known that treatment and vaccination of HBV infection
or other carrier based infectious diseases reduce the risk of

progression and so it is a desirable to implement control mea-
sures on these efforts to prevent these diseases. In this work,
a deterministic fractional order model incorporating control
measures on vaccination and treatment efforts is constructed
to analyze the dynamic behaviors. It is observed that the
disease free equilibrium is stable under suitable parametric
conditions and same for endemic equilibrium. An interest-
ing fact is observed that the solutions of the system depend
on order of differentiation very much. Lowering the order of
differentiation the infected and carrier population increases.

Optimal control techniques are often used in developing
optimal strategy for complex biological situations. Since con-
trol combination of vaccination and treatment is important in
the disease prevention and control, it is studied by classical
and fractional optimal theories when these two parameters
(treatment and vaccination) appear as functions of time. The
aim of the proposed work is to minimize the given objective
functional modulating the control variables in a time inter-
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Fig. 13 Time series of state variables and optimal control variables for the control problem (26) when u1 = 0, u2 �= 0 correspondence to Table 2
with ε = 0.8

val, which is asserted that there exists an optimal control by
invoking suitableHamiltonian. In addition to vaccination and
treatment, other measures may also be important to control
HBV (Hepatitis B virus) or other infectious diseases with
carrier, such as the prevention of vertical transmission by
vaccination and proper diagnosis. Moreover, we have illus-
trated three different strategies for infection minimization
and observed that implementation of the vaccination and
treatment control interventions at a time is useful and fruitful
for the eradication of disease with carrier.

On the other hand, the actual progression of infectious
diseases like HBV, typhoid and others related with carriers
are complex, and the interventions in preventing these dis-
eases are changed with time according to their responses and
the administration policies. The implementation of fractional
derivatives is also significant in control problems. Control
actsmore effectively in shorter time ifwedecreases fractional
order (ε). Thus, ε can be related with awareness or reception
toward some policies to decrease infected and carrier popula-
tion. The proposed system is not affected significantly by the

vertical transmission parameters (mi , i = 1, 2, 3, 4). From
numerical section it is evident that with proper control, we
can reduce the infected populations and also minimize the
economical burden to implement those control policies. The
method of discretization and Euler’s method (both forward
and backward ) have been used to solve the fractional order
optimal control problem. In future works, it will be interest-
ing to develop a good scheme for solving fractional order
control problems.
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