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Abstract
By means of iterative learning parametrization for state/output feedback gains in linear time invariant systems, pointwise pole
assignment (PPA) is re-formulated and addressed in a complex-domain fashion, whereas implementation issues are also exam-
ined. Technical features include: (i) no assumptions other than controllability and observability are needed; (ii) the iterative
learning parametrization algorithms are numerically tractable and robust against initial values and matrix uncertainties; (iii)
the suggested algorithms are significant for achieving PPA-related control strategies, where data-modeling and data-driving
techniques are employed. Numerical examples are included to illustrate the main results.
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1 Introduction

As is well known, poles and zeros are substantially related
to system dynamics or structural properties, and control per-
formances [1]. Almost all structural and spectral features of
linear time-invariant systems are related to poles and zeros
defined on their state-space realizations and transfer func-
tions [2–6]. Therefore, how to locate or specify their positions
and distribution by means of state and/or output feedback
gain parametrization is one of the vital techniques for con-
trol design and applications, which is simply called pole
assignment. It is by no means an exaggeration to say that
pole assignment is a key tool for achieving almost all con-
trol objectives and performances. Indeed, in the literature, it
is not surprising to see that numerous pole assignment prob-
lems are formulated and resolved in various ways; as amatter
of fact, it is impossible to exhaust the literature even if we
focus only on the classical versions of pole assignment.

Roughly speaking, three types of pole assignment are
coined and addressed in diversity of terminologies and nota-
tions in continuous- and discrete-time systems. In what
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follows, we classify these types into pointwise, regional and
pinning pole assignments, with or without constraints. By
pointwise pole assignment, it means that the closed-loop
poles or eigenvalues are placed to some isolated points for
obtaining the expected dynamics and modes [7–13]; pole
assignment in this sense is typical as well as classical. By
regional pole assignment, it implies that the closed-loop
poles are placed into some prescribed region so that some
dynamics and features can be obtained, while some con-
troller parametrization freedom is available [14–18]; pole
assignment in this sense is relatively new and better reflects
engineering applications. By pinning pole assignment, it says
that some closed-loop poles are pinned to isolated points or
one region, while the other ones are located to another dis-
tinctive region [19–22]; pole assignment in this sense can
be exploited when complicated control plants are involved
or subject to uncertainties and constraints. Besides pole
assignment, specification in spectra and structures is reported
in [21–28], where time-domain as well as frequency-domain
concerns are considered.

Motivated by the existing studies, the paper creates an
iterative learning state/output feedback gain parametrization
approach, which not only solves pole assignment, but also
considers the numerical tractability and robustness against
initial values and matrix uncertainties. Moreover, the point-
wise pole assignment can be formulated in continuous- and
discrete-time alike, though only the former cases are talked
about.
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The major contribution is a class of iterative learning
algorithms for feedback gain parametrization, which pos-
sess the technical advantages: (i) no assumptions other than
controllability and observability are needed; (ii) the iter-
ative learning parametrization algorithms are numerically
tractable and robust against initial values and model uncer-
tainties; (iii) when PPA-related control strategies are based
on data-modeling and data-driving, the suggested algorithms
can be employed easily.

Outline. Section 2 collects preliminaries to LTI dynamical
systems, including the state-space models and their closed-
loop expressions under state/output feedback. Pointwise pole
assignment problems are concerned in Sect. 3. Technical
issues involved in the iterative learning algorithms are sum-
marized in Sect. 4. Numerical examples are sketched in
Sect. 5, whereas conclusions are given in Sect. 6.

Notations.R and C denote the sets of all real and complex
numbers, respectively. Ik denotes the k × k identity matrix.
(·)T means the transpose of a matrix (·) , while (·)∗ means
the conjugate transpose of (·). Also, (·)−T = ((·)−1)T .

2 Preliminaries to LTI multivariable systems

Consider the linear time-invariant dynamical continuous-
time system

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

where x ∈ Rn , u ∈ Rm , and y ∈ Rl , respectively, the
state, input and output vectors; A ∈ Rn×n , B ∈ Rn×m and
C ∈ Rl×n are constant matrices.

Now let us introduce to the system (1) the following static
state or output feedback, respectively.

u(t) = −Kx(t) + v(t), u(t) = −Ly(t) + v(t) (2)

where v ∈ Rm is a new input, and K ∈ Rm×n and L ∈ Rm×l

are static gains.
Then, the closed-loop state-space equations are

{
ẋ(t) = [A − BK ]x(t) + Bv(t)
y(t) = Cx(t)

(3)

and

{
ẋ(t) = [A − BLC]x(t) + Bv(t)
y(t) = Cx(t)

(4)

Correspondingly, we write the characteristic polynomial for
(3) and (4), respectively, by

{
p(s, K ) =: det(s In − A + BK )

q(s, L) =: det(s In − A + BLC)
(5)

where s ∈ C is the Laplace variable.
Controllability/observability, stabilization and stability of

the system (1) are standard and can be found in textbooks
about systems and control theory, say [1]. The PBH criteria
are important in understanding the discussions, which are
referred to Corollaries 12.6.19 and 12.8.4 of [2], respectively.

To facilitate our discussion, let �0 be a simple and close
complex contour defined on the complex plane C (for exam-
ple, the unit circle for the discrete-time systems; the Nyquist
contour for the continuous-time cases). {s0, s1, · · · , sκ } is
a set of isolated points on �0, namely si ∈ �0, with
i = 0, 1, · · · , κ; κ > 0 is an integer for the total points
number. The interior with �0 being the boundary is denoted
by Int(�0).

Let us denote the real polynomial

α(s) = αns
n + αn−1s

n−1 + · · · + α1s + α0 (6)

whose roots belong to Int(�0) and are specified according to
some expected performances; or α(s) is the desired charac-
teristic polynomial.

3 Pointwise pole assignment via iterative
learning algorithm

3.1 Problem 1: pole assignment

The problem in the state feedback is: determine the state
feedback gain K ∈ Rm×n such that the error function is
minimized over s ∈ {s0, s1, · · · , sκ } ⊂ �0.

J (s, K ) = 1

2
[p(s, K ) − α(s)][p(s̄, K ) − α(s̄)] (7)

Or, the problem in the output feedback is: determine the out-
put feedback gain L ∈ Rm×l such that the error function is
minimized over s ∈ {s0, s1, · · · , sκ } ⊂ �0.

J (s, L) = 1

2
[q(s, L) − α(s)][q(s̄, L) − α(s̄)] (8)

Remark 1 Clearly J (s, K ) > 0 for any s ∈ �0 and K . By
the error function (7), when the minimum is reached, it holds
that p(s, K ) = α(s). This says that by installing the state
feedback K to the system (1), the closed-loop eigenvalues
are assigned to the expected positions. To avoid redundance,
the discussion about the output feedback case is omitted. This
is also the case throughout the subsequent arguments.
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3.2 Problem 2: pole assignment with gain trace

The gain trace taken into account, the problem in the state
feedback is: determine the state feedback gain K ∈ Rm×n

such that the following error function is minimized over s ∈
{s0, s1, · · · , sκ } ⊂ �0.

J (s, K ) = 1

2
[p(s, K ) − α(s)][p(s̄, K ) − α(s̄)]

+1

2
trace(KT K ) (9)

Or, the problem in the output feedback when taking the gain
trace into consideration is: determine the output feedback
gain L ∈ Rm×l such that the following error function is
minimized over s ∈ {s0, s1, · · · , sκ } ⊂ �0.

J (s, L) = 1

2
[q(s, L) − α(s)][q(s̄, L) − α(s̄)]

+1

2
trace(LT L) (10)

Remark 2 By (9), when the minimum is reached, it holds
that p(s, K ) → α(s) and trace(KT K ) → min. This says by
roots continuity with respect to polynomial coefficients that
installing the state feedback K to the system (1), the closed-
loop eigenvalues are assigned to some neighborhood around
the expected positions, while the state feedback gain is the
smallest.

3.3 Problems solving via iterative learning
parametrization

In this section, we discuss algorithms for the pole assignment
by means of an iterative learning approach. The algorithms
present us with numerical approximations of the feedback
gains. This is a typical feature of the suggested approach.

The iterative learning algorithms in (11) are alternatively
given in terms of J (s,K) and J (s,L) (instead of J (s, K )

and J (s, L)), which will be defined soon in the following for
surmounting mathematical difficulties in calculating deter-
minant and trace derivatives with respect to K and L .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K(k+1) = K(k) − β
∂ J (s(k),K(k))

∂K

L(k+1) = L(k) − γ
∂ J (s(k),L(k))

∂L
k = 0, 1, · · · , κ, s(k) ∈ {s0, s1, · · · , sκ } ⊂ �0

(11)

where β > 0 and γ > 0 are the learning ratios, and

∂ J (s(k),K(k))

∂K
= ∂ J (s,K)

∂K

∣∣∣∣
s=s(k),K=K(k)

∂ J (s(k),L(k))

∂L
= ∂ J (s,L)

∂L

∣∣∣∣
s=s(k),L=L(k)

That is, the partial derivatives are the gradients of J (s,K)

and J (s,L) with respect to K and L evaluated at s = s(k),
andK(k) and L(k) (or, the k-th iterative evaluations ofK and
L, respectively).

Since Problems 1 and 2 are substantially the same, we
consider to work out a general iterative learning algorithm
for solving both of them. More precisely, we will focus only
on addressing Problem 2. The iterative learning algorithm to
Problem 1 follows as a special case of that to Problem 2.

To this end, let us write J (s, K ) in (9) as follows.

J (s, K ) = 1

2
[det([s In − A, B

] [
In
K

]
) − α(s)]

· [det([s̄ In − A, B
] [

In
K

]
) − α(s̄)]

+ 1

2
trace(

[
In
K

]T [
0 0
0 Im

] [
In
K

]
)

=1

2
[det(Q(s)K) − α(s)][det(Q(s)K) − α(s)]

+ 1

2
trace(KT EmK) =: J (s,K)

(12)

where Q(s) = [s In − A, B] ∈ Cn×(n+m) and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K =:
[
In
K

]
∈ R(n+m)×n

Em =
[
0 0
0 Im

]
∈ R(n+m)×(n+m)

To understand the iterative learning algorithm for fixing
K, we derive the partial derivative of J (s,K) with respect to
K. We observe that
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∂ J (s,K)

∂K
= 1

2

∂

∂K
[det(Q(s)K) − α(s)] · [det(Q(s̄)K)

− α(s̄)] + 1

2
[det(Q(s)K) − α(s)]

· ∂

∂K
[det(Q(s̄)K) − α(s̄)]

+ 1

2

∂

∂K
[trace(KT EmK)]

= 1

2

∂

∂K
[det(Q(s)K)] · [det(Q(s̄)K) − α(s̄)]

+ 1

2
[det(Q(s)K) − α(s)] · ∂

∂K
[det(Q(s̄)K)]

+ 1

2

∂

∂K
[trace(KT EmK)]

= 1

2
det(Q(s)K)QT (s)(Q(s)K)−T · [det(Q(s̄)K) − α(s̄)]

+ 1

2
[det(Q(s)K) − α(s)]

· det(Q(s̄)K)QT (s̄)(Q(s̄)K)−T + 1

2
(Em + ET

m)K

= 1

2
[det(Q(s)K) − α(s)] · det(Q(s̄)K)QT (s̄)(Q(s̄)K)−T

+ 1

2
[det(Q(s)K) − α(s)]

· det(Q(s̄)K)QT (s̄)(Q(s̄)K)−T + EmK

= Re([det(Q(s)K) − α(s)]
· det(Q(s̄)K)QT (s̄)(Q(s̄)K)−T ) + EmK (13)

Similarly, we observe the following algebras.

J (s, L) = 1

2
[det([s In − A, B

] [
In 0
0 L

] [
In
C

]
) − α(s)]

· [det([s̄ In − A, B
] [

In 0
0 L

] [
In
C

]
) − α(s̄)]

+ 1

2
trace(

[
In 0
0 L

]T [
0 0
0 Il

] [
In 0
0 L

]
)

=1

2
[det(Q(s)LC) − α(s)][det(Q(s)LC) − α(s)]

+ 1

2
trace(LT ElL) =: J (s,L)

(14)

where El ∈ R(n+l)×(n+l) is similar to Em but with Im being
replaced by Il ; and

L =:
[
In 0
0 L

]
∈ R(n+m)×(n+L), C =

[
In
C

]
∈ R(n+l)×n

Now we turn to derive the derivative of J (s,L) with
respect to L. We observe that

∂ J (s,L)

∂L
= 1

2

∂

∂L
[det(Q(s)LC) − α(s)] · [det(Q(s̄)LC)

− α(s̄)] + 1

2
[det(Q(s)LC) − α(s)] · ∂

∂L
[det(Q(s̄)LC)

−α(s̄)] + 1

2

∂

∂L
[trace(LT ElL)]

=1

2
det(Q(s)LC)QT (s)(Q(s)LC)−TCT

· [det(Q(s̄)LC) − α(s̄)] + 1

2
[det(Q(s)LC) − α(s)]

· det(Q(s̄)LC)QT (s̄)(Q(s̄)LC)−TCT + 1

2
(El + ET

l )L

=Re([det(Q(s)LC) − α(s)]
· det(Q(s̄)LC)QT (s̄)(Q(s̄)LC−T ) + ElL

(15)

In summary, we claim the following pole assignment pro-
cedures according to (11) and (13). The procedures for (11)
and (15) can be given similarly.

1. Set k = 0, s(0) = s0, and initialize K(0) ∈ R(n+m)×n

with the top n × n sub-matrix being In (respectively.,
L(0) ∈ R(n+m)×(n+l) with the (1,1)-sub-matrix being In ,
and the (1,2)- and (2,1)-sub-matrices being zeros);

2. Calculate ∂ J (s,K)
∂K

∣∣∣
s=s(k),K=K(k)

by (13) (respectively.,

∂ J (s,L)
∂L

∣∣∣
s=s(k),L=L(k)

by(15));

3. If det(Q(s(k))K(k)) = 0, then Q(s(k))K(k) is not
invertible (respectively, if det(Q(s(k))L(k)C) = 0, then
Q(s(k))L(k)C is not invertible), and drop this s(k) by let-
ting sk = sk+1 over k = k + 1, · · · , κ − 1 and setting
κ = κ − 1, and return to the previous step; otherwise, go
forward to the next step;

4. Determine K(k+1) (resp., L(k+1)) according to (11), and
let the top n × n sub-matrix of K(k+1) be In (resp., let
the (1,1)-sub-matrix of L(k+1) be In , and the (1,2)- and
(2,1)-sub-matrices of L(k+1) be zeros);

5. Test if ‖K(k+1) −K(k)‖ ≤ ε (resp., ‖L(k+1) −L(k)‖ ≤ ε)
is satisfied, where ε > 0 is the tolerance error sufficiently
small;

6. If yes, go to the next step; otherwise, set k = k + 1 and
go back to Step. 2;

7. Let K = K(k+1) (resp., L = L(k+1)) and end.

Remarks about the iterative learning pole assignment
algorithm:
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– The obtained K (resp., L) is quasi-optimal at most, since
the iterative learning algorithms are constructed in terms
of K or L, in which K and L are their sub-matrices.

– When determining the contour �0, trial-and-errors are
inevitable. In principle,�0 should include all the expected
closed-loop eigenvalues in its interior; to improve the
iterative learning efficiency, �0 needs to be near to the
expected eigenvalues.

– In each iteration, the invertibility of Q(s)K is assumed.
Now we see that the invertibility is satisfied if the pair
(A, B) is controllable. Although the iterative learning
algorithm does not explicitly entail controllability of the
concerned system, it is an underlying assumption for the
algorithm to be numerically meaningful.
To see this, let us suppose that the pair (A, B) is uncon-
trollable. This implies that some eigenvalues of A− BK
cannot be assigned as expected by choosing the feedback
gain K . In other words, p(s, K ) = α(s) cannot be true
no matter how K is fixed. This in turn says that J (s, K )

defined in (9) cannot achieve its minimum.
– The output feedback cannot assign all the closed-loop
eigenvalues as expected in general, even if the system (1)
is controllable and observable [1]. Bearing this in mind,
the suggested algorithm for the output feedback case at
most provides us with some partial pole assignment.

Now we claim the following results.

Proposition 1 Assume that the system (1) is controllable.
Consider the iterative learning algorithm in the first equation
of (11). If for each s ∈ {s0, s1, · · · , sκ } ⊂ �0 with κ > 0
sufficiently large, J (s,K(k)) → 0 as k → ∞, then all the
eigenvalues of A − BK (k) are assigned to small neighbor-
hoods around the roots of α(s) = 0.

Proof of Propostion 1 Under the given assumptions, J (s,
L(k)) → 0 as k → ∞ implies that J (s, K (k)) → 0 as
k → ∞. This can be interpreted as p(s, K (k)) → α(s). Then
eigenvalue continuity with regard to polynomial coefficients
yields the desired assertion. 	

Proposition 2 Assume that the system (1) is controllable and
observable. Consider the iterative learning algorithm in the
second equation of (11). If for each s ∈ {s0, s1, · · · , sκ } ⊂
�0 with κ > 0 sufficiently large, J (s,L(k)) → 0 as k → ∞,
then it is obvious thatmin {n, rankB + rankC − 1} eigenval-
ues of A − BL(k)C can be assigned to small neighborhoods
around the corresponding roots of α(s) = 0.

4 Numerical issues about the iterative
learning algorithms

When implementation of the iterative learning algorithms is
concerned, there are numerical issues that need to be expli-

cated carefully. This section is written for collecting such
issues and give solutions, if any. This section can be simply
skipped if the reader has no interest in the numerical aspects
of the iterative learning pole assignment algorithms.

4.1 Convergence and learning ratios

In the above, iteration convergence in the suggested algo-
rithms is not examined, and the learning ratios are constants.
Since these problems are somehow beyond the scope of this
study, these issues are left for our subsequent studies. It must
be added that as far as the authors are concerned, convergence
of almost all iterative learning algorithms are still open prob-
lems.

4.2 Contours, pole distribution and gain realness

For the obtained state or output feedback gain
parametrization tomake sense, theymust be some real matri-
ces. After carefully reviewing these algorithms, it is not
difficult to see that the feedback gains derived do give us
with real gain matrices. In what follows, we collect rules
about how to avoid complex feedback gains.

• The contour must be symmetric with respect to the real
axis, besides being simple and close;

• The specified poles must be real ones or in pairs of con-
jugate complex numbers.

4.3 Alternative evaluation functions and summation
iterative learning

Based on the error evaluation functions defined in (7), (8), (9)
and (10), the iterative learning algorithms of (11) are devel-
oped. Carefully examining the definition formula, one can
easily find that the algorithms are actually implemented in a
point-by-point fashion over each s(k) ∈ {s0, s1, · · · , sκ } ⊂
�0. Our numerical simulations show that the iterative learn-
ing algorithms in thisway are sensitive to the distribution pat-
tern and computational ordering of s(k) ∈ {s0, s1, · · · , sκ } ⊂
�0.

To reduce computational sensitivity, we define the error
evaluation functions by

	∀s(k)∈{s0,s1,··· ,sκ } J (s(k),K)

	∀s(k)∈{s0,s1,··· ,sκ } J (s(k),L)

which are summations of the error evaluation functions as
appropriately. Accordingly, the iterative learning algorithms
can be given in form of
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K(k+1) = K(k) − β
∑

∀s(k)
∂ J (s(k),K(k))

∂K

L(k+1) = L(k) − γ
∑

∀s(k)
∂ J (s(k),L(k))

∂L
k = 0, 1, 2, · · ·

(16)

In other words, the corresponding iterative learning algo-
rithms in (16) will be implemented in each iteration with
the error evaluation summation at all the testing points being
summed up, and the iterative algorithm goes repeatedly until
the error evaluation summation is sufficiently small.

5 Numerical illustrations

5.1 Example system description

Consider the example system of the reference [18]:

G(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

−4 0 −2 0 0
0 −2 0 2 0
0 0 −2 0 −1
0 −2 0 −1 0
3 0 −2 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦

[
1 0 0 0 0
0 1 0 0 0

] [
0 0 0
0 0 0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Clearly, n = 5, m = 3 and l = 2. And the eigenvalues
of A are: λ1 = 0.4009, λ2,3 = −3.7004 ± 1.1286 j and
λ4,5 = −1.5000 ± 1.9365 j .

To facilitate our statements, let us write the controllability
matrix as follows.

Q(s) = [s I5 − A, B]

It is easy to see that rank{Q(s)} = 5 for any s ∈ C so
that by the Popov-Belevitch-Hautus criteria [2], the system
is completely controllable.

5.2 Numerical simulations with the proposed
iterative learning algorithms

In what follows, only the state feedback cases are considered
and the summation iterative learning algorithms in (16) are
adopted for the sake of brevity. Throughout the numerical
simulations, the learning tolerance error is ε = 0.0001. The
specified closed-loop eigenvalues are assigned at λ1 = −1,
λ2 = −1.5, λ3 = −2 and λ4,5 = −2.5 ± j

√
3. That is, the

expected characteristic polynomial is

α(s) = (s + 1)(s + 1.5)(s + 2)(s2 + 4s + 7)

The set �0 consists of the 36 equitably and symmetrically
chosen isolated points on the circlewith radius r and centered
at (−2, j0).

Case 1: r = 3.2, β = 0.12 with gain trace minimization
The obtained state gain is

K =
⎡
⎣−1.1335 0.3762 −1.2513 0.5784 0.6308

−0.0096 −0.2688 0.0442 0.0140 −0.0149
0.5010 −0.3567 −0.6497 −0.0400 0.2433

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7319i, −0.9988 + 0.0000i
−1.5032 + 0.0000i, −1.9980 + 0.0000i

Case 2: r = 3.2, β = 0.12 without gain trace minimiza-
tion The obtained state gain is

K =
⎡
⎣−1.1339 0.3761 −1.2513 0.5785 0.6311

−0.0094 −0.2698 0.0440 0.0145 −0.0148
0.5021 −0.3565 −0.6504 −0.0403 0.2434

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7321i, −1.0000 + 0.0000i
−1.5000 + 0.0000i, −2.0000 + 0.0000i

Case 3: r = 3, β = 0.1 with gain trace minimization The
obtained state gain is

K =
⎡
⎣−1.1410 0.3732 −1.2469 0.5794 0.6348

−0.0134 −0.2830 0.0449 0.0191 −0.0162
0.5081 −0.3589 −0.6452 −0.0421 0.2487

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7319i, −0.9988 + 0.0000i
−1.5032 + 0.0000i, −1.9980 + 0.0000i

Case 4: r = 3, β = 0.1 without gain trace minimization
The obtained state gain is

K =
⎡
⎣−1.1417 0.3730 −1.2468 0.5795 0.6354

−0.0131 −0.2847 0.0445 0.0198 −0.0161
0.5100 −0.3585 −0.6463 −0.0426 0.2489

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7321i, −1.0000 + 0.0000i
−1.5000 + 0.0000i, −2.0000 + 0.0000i
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Fig. 1 Pole distributions under iterative learning state feedback pole
assignment

Case 5: r = 2.8, β = 0.08 with gain trace minimization
The obtained state gain is

K =
⎡
⎣−1.1485 0.3716 −1.2413 0.5790 0.6404

−0.0163 −0.3029 0.0467 0.0224 −0.0177
0.5147 −0.3642 −0.6402 −0.0433 0.2545

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7319i, −0.9988 + 0.0000i
−1.5032 + 0.0000i, −1.9980 + 0.0000i

Case 6: r = 2.8, β = 0.08 without gain trace minimiza-
tion The obtained state gain is

K =
⎡
⎣−1.1497 0.3712 −1.2411 0.5791 0.6414

−0.0157 −0.3058 0.0461 0.0236 −0.0175
0.5177 −0.3636 −0.6419 −0.0441 0.2548

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7321i, −1.0000 + 0.0000i
−1.5000 + 0.0000i, −2.0000 + 0.0000i

The set �0 as well as the above numerical pole distribu-
tions are plotted in Fig. 1, where the asterisks stand for the
closed-loop eigenvalues assigned with gain trace minimiza-
tion, and the circles represent the ones assigned without gain
trace minimization.

Based on Fig. 1, we can observe that

• In each case, the iterative learning algorithm is conver-
gent;

• In general, the gain K obtained with gain trace mini-
mization is slightly smaller than that obtained without
gain trace minimization;

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Ω

0
 by r=3, γ=0.15

with trace
without trace

Fig. 2 Pole distributions under iterative learning output feedback pole
assignment

• The choice of �0 does have effect on the gain, though its
effect on the closed-loop eigenvalues may be negligibly
small.

Case 7: r = 3, γ = 0.15 with gain trace minimization
The obtained output gain is

L =
⎡
⎣−1.7278 1.2278

−0.4253 −0.1029
3.8763 2.9934

⎤
⎦

and the closed-loop eigenvalues are

−2.4999 ± 1.7323i, −0.9999 + 0.0000i
−1.4983 + 0.0000i, −2.0020 + 0.0000i

Case 8: r = 3, β = 0.15 without gain trace minimization
The obtained output gain is

L =
⎡
⎣−1.7273 1.2273

−0.4173 −0.1023
3.8852 2.9894

⎤
⎦

and the closed-loop eigenvalues are

−2.5000 ± 1.7321i, −1.0000 + 0.0000i
−1.5000 + 0.0000i, −2.0000 + 0.0000i

The points of the set �0 as well as the above numerical
poles distributions are plotted in Fig. 2. Compared to the
numerical results of Fig. 1, it is clear to see that the output
feedback pole assignment is equally efficient and accurate.

Case 9: r = 3, β = 0.1 with gain trace minimization,
while K and A are randomly set More precisely, the points
of the set �0 are the same as those in Fig. 2, and the learning
ratio is β = 0.1. All the entries of K are randomly prescribed
initially (namely K0 is randomly given), while each and all
entries of A are perturbed by white noise in form of A +
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Fig. 3 Pole distributions under iterative learning pole assignment while
K and A are randomly perturbed

�A with �A being randomly given. The learning iteration
number is fixed at 4000.

All the numerical poles are plotted in Fig. 3. Compared to
the numerical results of Fig. 1, it is clear to see that the state
feedback pole assignment is fairly robust with respect to the
initial conditions K0 of the state feedback gain K as well as
the perturbations�A in the statematrix A. In otherwords, the
suggested pole assignment algorithm is numerically efficient
and not sensitive to model uncertainties.

5.3 Numerical results with the conventional method

In what follows, only the state feedback case is considered
and the standard pole assignment algorithm in [29] is adopted
to fix the feedback gain matrix. The specified closed-loop
eigenvalues are assigned at the same positions mentioned as
in Sect. 5.2. That is, λ1 = −1, λ2 = −1.5, λ3 = −2 and
λ4,5 = −2.5± j

√
3. The obtained state feedback gainmatrix

is

K =
⎡
⎣−1.5419 0.1208 −1.3512 1.2792 −0.1891

−1.0024 −1.0105 −1.1687 0.9617 −0.8183
3.0556 0.4281 −1.9567 0.6715 −0.0406

⎤
⎦

which has a matrix norm larger than those obtained by the
suggested algorithms.

6 Conclusion

In this article, pole assignment in linear dynamical systems
is re-formulated and addressed by developing an iterative
learning parametrization approach, by exploiting the matrix
and trace/determinant derivative concepts. In other words,
the suggested design producers are claimed completely from
a frequency-domain viewpoint. Numerical implementation
of the algorithms are also explicated. The results obtained
through numerical examples show how the approach works,
and clearly demonstrate high efficiency of the approach.

The selection of learning ratios and convergence in the
suggested iterative algorithms remains an interesting and
open problem in our future work. This could improve prac-
ticability and accuracy of the proposed algorithms hopefully
.
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