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Abstract
In the present work, a system of two linear coupled logistic map is studied. Local stability analysis of the fixed points of the
proposed system is investigated. The system occurs transcritical, flip, and Neimark-Sacker bifurcations, which are analyzed
by both center manifold theory and bifurcation theory. For any non-linear system that represents a real-world model affected
by noise, white noise is included in the system and its effect on fixed points is analyzed via the technique of stochastic
sensitivity function. The phenomenon of noise-induced transitions between closed invariant curves is discussed. Finally,
numerical simulations are performed with the aid of Matlab to assure the agreements with analytical results obtained.

Keywords Coupled logistic maps · Fixed points · Bifurcation · White noise · Stochastic sensitivity function
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1 Introduction

It is well known that the logistic map is a very simple one-
dimensional discrete system that exhibits very complicated
behavior through a period-doubling bifurcation cascade and
eventual emergence of chaos [1–6]. The celebrated logistic
map is given by

xn+1 = axn(1 − xn), n = 0, 1, 2, 3, . . . , (1)

where 0 < x < 1, and 0 < a < 4. Following the formulation
of Eq. (1), many researchers have studied different aspects of
chaos in two-dimensional logistic map and investigated their
applications in many fields [7–9]. Recently, an experimental
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study of coupled oscillators shows an increase of complex-
ity due to coupling process [10]. Actually, when a system is
composed of many nonlinear units, it forms a new complex
system with more complex behaviors which are not held by
the individual units. Indeed, one of the standard models for
nonlinear dynamical systems is to deal with a system of two
symmetrically coupled maps admitting move towards chaos
via period doubling bifurcations [11–17]. Most of the exper-
imental results that studied systems of coupled objects agree
with the complicated dynamical behaviors of coupled sys-
tems [18–21]. The two logistic mapping system was applied
as a model for the chemical reaction dynamics [22] and pop-
ulation dynamics [23].Mathematically, there are twoways to
couple two logistic maps: linear and bilinear coupling. These
types of coupled logistic maps have been studied numeri-
cally and analytically [24,25] in which the authors found
a quasi-periodic behavior with frequency locking as well as
bifurcations. Indeed, discrete dynamical systems (mappings)
have attracted the attentions ofmany researches in the last few
decades as they are of enormous relevance in biological and
physical processes [26–34]. In addition, discrete timemodels
reflectmuch richer dynamics than those detected in their con-
tinuous temporal counterparts, as they represent many real
phenomena in communications, economics and biological
sciences.
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The field of encryption research is an important field in
computer science for the preservation of important infor-
mation and confidential information, so that information
security usinghybrid chaotic dynamics has becomean impor-
tant subject that attracts many researchers. The method of
encryption on the basis of separate chaotic systems is pro-
posed in [35,36]. In fact, chaotic maps have been shown to
have several significant advantages in relation to the basic
requirements for encryption algorithms [37]. It is evident
from this that discreet logistic maps showing chaotic dynam-
ics or hybrid with any integral transformations or elliptical
curves can be very useful in terms of secure communication,
encryption and information security.

It’s quite well known the uncontrolled random distur-
bances are an inevitable attribute of any kind of realistic
system. The weak noise with a nonlinear system can also
dramatically change its dynamics. Analyzing the effect of
random disturbances is therefore a challenge for modern
dynamics theory in various fields of science, such as bio-
logical, engineering and economics. Thus, noise becomes an
essential component of the evolution of the dynamic system.
It is noted that there is a fundamental shift in the dynamics
of coupled systems due to random noise. The effect of noise
on the non-linear dynamic behavior of many coupled maps
with different goals has been discussed in [38–41].

In this paper, a symmetrically coupled logistic map is con-
sidered as follows

{
xn+1 = axn(1 − xn) + b(yn − xn),
yn+1 = ayn(1 − yn) + b(xn − yn),

(2)

where 0 < xn, yn < 1, 0 < a < 4, and −2 ≤ b ≤ 2 is
called connection parameter. The system (2) is symmetrical
with respect to the exchange of x and y and was represented
in [25]. Other researchers have reconsidered the system (2)
in [42,43].

In this paper, a itemized bifurcation analysis for system
(2) is carried out which is not addressed in [25,42,43]. The
key contributions and outcomes of this work are defined as
follows: It provides a first, thoroughly analytical study of the
various types of codimension—onebifurcation that canoccur
in the linear coupled logistic map (2). Analyzing the effects
of white noise on the dynamic behavioral of the system is
discussed both analytically and numerically. The system (2)
has a number of periodic cycles, such as transcritical, flip,
and Neimark-Sacker bifurcations, which are analyzed by
both center and bifurcation theories. These are interesting
dynamic behaviors that have not been analytically analyzed
in the literature for this system. In addition, the impact of
each white noise parameter on the dynamic behavior was
examined. Moreover, the extensive simulation results will be
presented to detect the effect of the parameters on the change
of the stability and bifurcation thresholds.

The paper is structured as follows. Section 2 discusses the
existence and stability of fixed points of the deterministic
system. In Sect. 3, a detailed bifurcation analysis is investi-
gated.Awhite noise is added to the system and its influence is
discussed in Sect. 4. In Sect. 5, some numerical simulations
are performed using Matlab to verify the analytical results
obtained in Sect. 3. Finally, the conclusion and discussion
can be found in Sect. 6.

2 The existence of fixed points and their
stability

At most, the system (2) has four fixed points:

1. The fixed point E1 = (0, 0) exists for all parameters
values.

2. For a �= 1, there exists E2 = ( a−1
a , a−1

a ),
3. Furthermore, there are two fixed points

E3 =
(

1

2a
((a − 1 − 2b) + √

(1 − a + 2b)(1 − a − 2b)),

1

2a
((a − 1 − 2b) − √

(1 − a + 2b)(1 − a − 2b)

)
,

E4 =
(

1

2a
((a − 1 − 2b) − √

(1 − a + 2b)(1 − a − 2b)),

1

2a
((a − 1 − 2b) + √

(1 − a + 2b)(1 − a − 2b)

)
,

which are real if and only if a ≤ 1−2|b| or a ≥ 1+2|b|.

Lemma 1 [44] Let F(λ) = λ2 + Pλ + Q. Suppose that
F(1) > 0, λ1 and λ2 are two roots of F(λ) = 0. Then

1. |λ1| < 1 and |λ2| < 1 if and only if F(−1) < 0, Q < 1;
2. |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and

only if F(−1) < 0;
3. |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and

Q > 1;
4. λ1 = −1 and |λ2| �= 1 if and only if F(−1) = 0 and

P �= 0, 2;
5. λ1 and λ2 are complex and |λ1| = 1and |λ2| = 1 if and

only if P2 − 4Q < 0 and Q = 1.

Lemma 2 [44] Let F(λ) = λ2 + Pλ + Q is characteristic
equation corresponding with the Jacobian matrix computed
at a fixed point (x∗, y∗), then (x∗, y∗) is called

1. a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally
asymptotically stable;

2. a source if |λ1| > 1 and |λ2| > 1, so the source is locally
unstable;
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3. a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and
|λ2| > 1);

4. non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

In order to study stability and bifurcation, it is necessary
to calculate the Jacobin matrix of the system (2) at any fixed
point (x∗, y∗) reads as

J (x∗, y∗) =
(
a(1 − 2x) − b b
b a(1 − 2y) − b

)
. (3)

3 Analysis of local bifurcations

Amore detailed description of the bifurcation in this section
is being performed for the fixed points of system (2). Both
center manifold theorem and bifurcation theory [45–50] are
used to study bifurcation types in the system (2).

Proposition 1 The fixed point E1 = (0, 0) of system (2) is

1. A sink if −1 < a < 1, and a−1
2 < b < a+1

2 ,
2. A source if (i) a > 1 or a < −1 and (ii) b < a−1

2 or
b > a+1

2 ,
3. A saddle if (i) a > 1 or a < −1 and (ii) a−1

2 < b < a+1
2 ,

4. A non-hyperbolic if (i) a = ±1 and (ii) b = a−1
2 or

b = a+1
2 .

Proposition 2 The fixed point E2 = ( a−1
a , a−1

a ) of system
(2) is

1. A sink if 1 < a + 2b < 3, and 1 < a < 3,
2. A source if (i) a + 2b < 1 or a + 2b > 1 and (ii)

1 < a < 3,
3. A saddle if 2ab − 6(a + b) < −5,
4. A non-hyperbolic if (i) 3(a+b)−ab = 5

2 and (ii) a+b /∈
{−2, 1}.

It is worth to mention here that system (2) admits no bifur-
cation at E1(0, 0).

3.1 Bifurcation of the fixed point E2

The Jacobian matrix (4) at E2 reads as

J (E2) =
(−a − b + 2 b
b −a − b + 2

)
,

it owns two eigenvalues λ1 = −a−2b+2 and λ2 = −a+2.
If a + 2b = 3, thus we have λ1 = −1, |λ2| �= 1 provided
that a �= 1, 3.

Theorem 1 If b = 3−a
2 , and a �= 1, 3, then system (2)

exhibits a flip bifurcation at E2. In addition, at this fixed
point the stable period-doubling orbit bifurcates.

Proof The system (2) can be used as follows

{
x → ax(1 − x) + b(y − x),
y → ay(1 − y) + b(x − y).

(4)

Let b∗ is a parameter bifurcation, consider the perturbation
of (4) is given by

{
x → ax(1 − x) + (b + b∗)(y − x),
y → ay(1 − y) + (b + b∗)(x − y),

(5)

which |b∗| � 1 is a small perturbation.
Consider u = x − x∗, v = y − y∗, thus map (5) changed

as follows

⎧⎪⎪⎨
⎪⎪⎩

u → (−a + 2 − b)u + bv − ub∗ + vb∗ − au2

+O((|u| + |v| + |b∗|)3),
v → bu + (−a + 2 − b)v + ub∗ − vb∗ − av2

+O((|u| + |v| + |b∗|)3).
(6)

Constructing an invertible matrix as follows

T =
(
b b
a + b − 3 b

)
,

We use the transformation as follows

(
u
v

)
= T

(
x̃
ỹ

)
,

then the system (6) will be changed to

(
x̃
ỹ

)
→

(−1 0
0 −a + 2

) (
x̃
ỹ

)
+

(
φ(x̃, ỹ, b∗)
ψ(x̃, ỹ, b∗)

)
, (7)

where

φ(x̃, ỹ, b∗)

= 1

3 − a

(−ub∗ + vb∗ − au2 + O((|u| + |v| + |b∗|)3)) ,

ψ(x̃, ỹ, b∗)

= 1

b(3 − a)

(
(3 − a − b)(−ub∗ + vb∗ − au2 + bub∗

−bvb∗ − abv2 + O((|u| + |v| + |b∗|)3)) .

and

u = b(x̃ + ỹ),

v = (a − b − 3)x̃ + bỹ.
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By the center manifold theorem [50,51], there exists a center
manifoldWc(0, 0, 0) of (7) at the fixed point (0, 0) in a small
neighborhood of b∗ which may take the form

Wc(0, 0, 0) = {(x̃, ỹ, b∗) ∈ R3, ỹ

= h(x̃, b∗), h(0, 0) = 0, Dh(0, 0) = 0},

for x̃ and δ∗ sufficiently small. We suppose that the center
manifold of the form

h(x̃, b∗) = μ0 x̃
2 + μ1 x̃b

∗ + μ2b
∗2 + O((|x̃ | + |b∗|)3). (8)

The center manifold should achieve the equation

h(−x̃ + φ(x̃, h(x̃, b∗), b∗), b∗) = (−a + 2)h(x̃, b∗)
+ψ(x̃, h(x̃, b∗), b∗). (9)

By replacing (8) for (9) and matching similar power coeffi-
cients for (9), we obtain

μ0 = ab

(a − 1)(a − 3)
,

μ1 = a + b − 3

b(a − 3)
,

μ2 = 0.

Hence, we realize the system (7) which is restrictive to the
center manifold:

F : x̃ → −x̃ + Ax̃2 + Bx̃b∗ + Cx̃2b∗ + Dx̃b∗2 + Ex̃3

+F0x̃3b∗ + Gx̃2b∗2 + Hx̃4 + O((|x̃ | + |b∗|)4), (10)

where

A = −ab2

3 − a
, B = −1

3 − a
,

C = ab

(3 − a)(a − 1)(a − 3)
+ ab2

(a − 1)(a − 3)

+ (−2ab2)(a + b − 3)

b(a − 3)(3 − a)
,

D = a + b − 3

b(3 − a)(a − 3)
, E = −2a2b3

(a − 1)(a − 3)(3 − a)
,

F0 = (−2a2b3)(a + b − 3)

b(a − 3)(3 − a)
, G = (−ab2)(a + b − 3)2

b2(a − 3)2(3 − a)
,

H = −a2b3

(a − 1)2(a − 3)2(3 − a)

To allow the map (10) to occur a flip bifurcation, we order
that two preferential quantities α1 and α2 are not zero [51]:

α1 =
(
2

∂2F

∂b∗∂ x̃
+ ∂F

∂b∗
∂F

∂ x̃

)
(0,0)

= −2 �= 0,

α2 =
(1
2

(∂2F

∂ x̃2

)2 + 1

3

(∂3F

∂ x̃3

))
(0,0)

= −2a2b4

3 − a
(1 + 2ab

(a − 1)(a − 3)
)2

− 4a2b3

3(3 − a)(a − 1)(a − 3)
(1 + 2ab

(a − 1)(a − 3)
) �= 0.

	

Now we discuss the transcritical bifurcation of E2.

Theorem 2 If b = 1−a
2 , and a �= 1, 3, then system (2) shows

a transcritical bifurcation at E2.

Proof Use the b∗ as a bifurcation parameter, and realize the
disturbance of (4) as in the system (5). Taking u = x − x∗,
v = y − y∗, then the map (5) has form

⎧⎪⎪⎨
⎪⎪⎩

u → (1 + b)u + bv − ub∗ + vb∗ − (1 − 2b)u2

+O((|u| + |v| + |b∗|)3),
v → bu + (1 + b)v + ub∗ − vb∗ − (1 − 2b)v2

+O((|u| + |v| + |b∗|)3).
(11)

Design the inverse matrix as follows

T =
(
b b
−b b

)
,

and to use transformation
(
u
v

)
= T

(
x̃
ỹ

)
,

thus (11) turn into

(
x̃
ỹ

)
→

(
1 0
0 λ2

) (
x̃
ỹ

)
+

(
θ(x̃, ỹ, b∗)
ϑ(x̃, ỹ, b∗)

)
, (12)

where

θ(x̃, ỹ, b∗) = 1

2b
(−2ub∗ + 2vb∗ − (1 − 2b)(u2 + v2))

+O((|u| + |v| + |b∗|)3)),
ϑ(x̃, ỹ, b∗) = −(1 − 2b)

2b
(u2 + v2) + O((|u| + |v| + |b∗|)3)),

with

u = b(x̃ + ỹ),

v = b(−x̃ + ỹ).

Assuming there is a center manifold Wc(0, 0, 0) of (12) at
the fixed point (0, 0) in a small neighborhood of b∗ which
may take the form

Wc(0, 0, 0) = {(x̃, ỹ, b∗) ∈ R3,
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ỹ = l(x̃, b∗), l(0, 0) = 0, Dl(0, 0) = 0},

for x̃ and b∗ sufficiently small. Consider a center manifold
as follows

l(x̃, b∗) = m0 x̃
2+m1 x̃b

∗ +m2b
∗2+O((|x̃ |+|b∗|)3). (13)

The center manifold must be satisfied

l(x̃+θ(x̃, l(x̃, b∗), b∗), b∗) = λ2l(x̃, b
∗)+ϑ(x̃, l(x̃, b∗), b∗).

(14)

By replacing (13) for (14) and matching similar power coef-
ficients for in (14), we obtain

m0 = −2(1 − 2b)

1 − λ2
,m1 = m2 = 0.

Hence, we realize the system (12) which is restricted to the
center manifold:

F1 : x̃ → x̃ − b(1 − 2b)x̃2 − 2x̃b∗ − b(1 − 2b)m2
0 x̃

4

+O((|x̃ | + |b∗|)5), (15)

one can check that conditions of transcritical bifurcation are
satisfies as

F1(0, 0) = 0,
(∂F1

∂ x̃

)
(0,0)

= 1,
(∂2F1

∂ x̃2

)
(0,0)

= −2b(1 − b) �= 0,
( ∂2F1
∂b∗∂ x̃

)
(0,0)

= −2 �= 0.

	


3.2 Bifurcation for the fixed point E3

The characteristic equation at the positive fixed point
E3(x∗, y∗) = ( 1

2a ((a − 1 − 2b) +√
(1 − a + 2b)(1 − a − 2b)), 1

2a ((a − 1 − 2b) −√
(1 − a + 2b)(1 − a − 2b)) has the following form:

λ2 + P(x∗, y∗)λ + Q(x∗, y∗) = 0,

where

P(x∗, y∗) = −2a + 2a(x∗ + y∗) + 2b,

Q(x∗, y∗) = a2(1 − 2x∗)(1 − 2y∗) − b(2a − 2a(x∗ + y∗)),

let

F(λ) = λ2 + P(x∗, y∗)λ + Q(x∗, y∗),

If a > 1 + 2b, then

F(1) = 4b2−(1−a)2 > 0, F(−1) = 4+4b+4b2−(1−a)2

It is very important here to pay attention that we cannot use
Lemma 1 to classify topological properties of the fixed points
E3 and E4. To make this clear, we need for Lemma 1 that
F(1) > 0 which ends up with 4b2 − (1 − a)2 > 0. The last
inequality contradicts with the condition 4b2 − (1−a)2 < 0
which is necessary for the fixed points E3 and E4 to be real.

Now, by solving the characteristic equation

λ2 − 2(1 + b)λ + (1 + 2b + 4b2 − (1 − a)2) = 0,

has two eigenvalues:

λ1,2 = (1 + b) ±
√

(1 − a2) − 3b2. (16)

Proposition 3 The fixed point E3 of the system (2) is

• a sink if |(1 + b) + √
(1 − a2) − 3b2| < 1, and |(1 +

b) − √
(1 − a2) − 3b2| < 1,

• a source if |(1 + b) + √
(1 − a2) − 3b2| > 1, and |(1 +

b) − √
(1 − a2) − 3b2| > 1,

• a saddle if either: |(1 + b) + √
(1 − a2) − 3b2| < 1,

and |(1 + b) − √
(1 − a2) − 3b2| > 1, or |(1 + b) +√

(1 − a2) − 3b2| > 1, and |(1+b)−√
(1 − a2) − 3b2| <

1,
• a non-hyperbolic if either a = 1 ± 2|b|, or a = 1 ±
2
√
b2 + b + 1, b �= −1,−2.

Let

FB1 =
{
(a, b) : a = 1 − 2

√
(1 + b)2 − b, b �= −1,−2

}
,

or

FB2 =
{
(a, b) : a = 1 + 2

√
(1 + b)2 − b, b �= −1,−2

}
.

Theorem 3 The system (2) can admit a flip bifurcation at the
fixed point E3whenparameters vary in a small neighborhood
of FB1 or FB2.

Proof Since (a, b) ∈ FB1, choosing b represents the bifur-
cation parameter. Assuming the perturbation of (4):

{
x → ax(1 − x) + (b1 + b∗)(y − x),
y → ay(1 − y) + (b1 + b∗)(x − y),

(17)

such that |b∗| � 1 is the perturbation parameter.
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Put u = x−x∗, v = y−y∗, thus themap (17) transformed
as follows:

⎧⎪⎪⎨
⎪⎪⎩

u → a1u + a2v + a13ub∗ + a23vb∗ + a11u2

+O((|u| + |v| + |b∗|)3),
v → b1u + b2v + b13ub∗ + b23vb∗ + b22v2

+O((|u| + |v| + |b∗|)3),
(18)

where

⎧⎪⎪⎨
⎪⎪⎩

a1 = a − 2ax∗ − b, a2 = b, a13
= −1, a23 = 1, a11 = −a
b1 = b, b2 = a − 2ay∗ − b, b13
= 1, b23 = −1, b23 = −1, b22 = −a.

(19)

Construct an invertible matrix

T =
(
a2 a2
−1 − a1 λ2 − a1

)
,

and applying transformation:

(
u
v

)
= T

(
x̃
ỹ

)
,

then the system (18) will be changed to

(
x̃
ỹ

)
→

(−1 0
0 λ2

) (
x̃
ỹ

)
+

(
f (x̃, ỹ, b∗)
g(x̃, ỹ, b∗)

)
,

where

f (x̃, ỹ, b∗) =
(
a13(λ2 − a1)

a2(1 + λ2)
− a2b13

)
ub∗

+
(
a23(λ2 − a1)

a2(1 + λ2)
− a2b23

)
vb∗

+a4(λ2 − a1)

a2(1 + λ2)
u2 − a2b22

a2(1 + λ2)
v2

+O((|u| + |v| + |b|∗|)3),
g(x̃, ỹ, b∗) =

(
(1 + a1)a13
a2(1 + λ2)

+ a2b13

)
ub∗

+
(

(1 + a1)a23
a2(1 + λ2)

+ a2b13

)
vb∗

+ (a1 + 1)a11
a2(1 + λ2

u2 + a2b22
a2(1 + λ2

v2

+O((|u| + |v| + |b|∗|)3).

and

u = a2(x̃ + ỹ), v = −(1 + a1)x̃ + (λ2 − a1)ỹ,

u2 = a22(x̃
2 + x̃ ỹ + ỹ2),

v2 = (1 + a2)
2 x̃2 + (λ2 − a1)

2 ỹ2 − 2(1 + a1)(λ2 − a1)x̃ ỹ.

Based on the center manifold theory, there exists the follow-
ing center manifold:

Wc(0, 0, 0) = {(x̃, ỹ, b∗) ∈ R3,

ỹ = h(x̃, b∗), h(0, 0) = 0, Dh(0, 0) = 0},

for x̃ and b∗ sufficiently small. To compute the center mani-
fold, we assume that

h(x̃, b∗) = n0 x̃
2 + n1 x̃b

∗ + n2b
∗2 + O((|x̃ | + |b∗|)3). (20)

The center manifold has to satisfy

h(−x̃ + f (x̃, h(x̃, b∗), b∗), b∗)
= λ2h(x̃, b∗) + g(x̃, h(x̃, b∗), b∗). (21)

Replacing (20) in (21) andmatching similar power coefficient
values of (21), we have

n0 = a11a2(1 + a1) + b22(1 + a1)2

(1 − λ22)
,

n1 = −(1 + a1)a13 − a2b13
(1 + λ2)2

,

n2 = 0.

The system (18) constrained by the center manifold is given
as follows:

F2 : x̃ → −x̃ + A1 x̃
2 + A2 x̃b

∗ + A3 x̃
2b∗ + A4 x̃b

∗2

+A5 x̃
3 + A6 x̃

3b∗ + A7 x̃
2b∗2 + A8 x̃

4 + O((|x̃ | + |b∗|)5).
(22)

where

A1 = a11a
2
2 − a2b22(1 + a1),

A2 = λ2 − a1
a2(1 + λ2)

(a13a2 − a23(1 + a1))

−a22b13 + b23a2(1 + a1),

A3 = λ2 − a1
a2(1 + λ2)

(a13a2n0 + a23(λ2 − a1)n0 + 2a11a
2
2n1)

−a22b13n0 − a2b23(λ2 − a1)n0

+a2b22(1 + a1)(λ2 − a1)n1,

A4 = λ2 − a1
a2(1 + λ2)

(a13a2n1 + a23(λ2 − a1)n1)

−a22b13n1 − a2b23(λ2 − a1)n1,

A5 = 2a11a
2
2n0

λ2 − a1
a2(1 + λ2)

+ a2b22(1 + a1)(λ2 − a1)n0,

A6 = 2a11a
2
2n0n1

λ2 − a1
a2(1 + λ2)

− 2a2b22(λ2 − a1)
2n0n1,

A7 = a11a
2
2n

2
1

λ2 − a1
a2(1 + λ2)

− a2b22(λ2 − a1)
2n21,
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A8 = a11a
2
2n

2
0

λ2 − a1
a2(1 + λ2)

− a2b22(λ2 − a1)
2n20.

Thus, map (22) undergoes a flip bifurcation because the fol-
lowing conditions are satisfied

β1 =
(
2

∂2F2
∂b∗∂ x̃

+ ∂F2
∂b∗

∂F2
∂ x̃

)
(0,0)

= 2A2 �= 0,

β2 =
(1
2

(∂2F2
∂ x̃2

)2 + 1

3

(∂3F2
∂ x̃3

))
(0,0)

= 2(A2
1 + A5) �= 0.

	


The same procedure can be applied to the points in the
neighborhood of FB2.

We pay attention here that a Neimark-Sacker bifurcation
can not occur neither at the fixed point E3 nor at E4. This is
because the eigenvalues in (16) are complex only if 3b2 >

(1 − a)2 which contradicts the fact that the fixed points E3

and E4 are real only if 4b2 < (1−a)2. On the other hand, we
may discuss the possibility of occurence of Neimark-Sacker
bifurcation at E3 if it is not real. If the (a, b) parameters vary
in a small neighborhood of NS1,2 which is expressed by

NS1 =
{

(a, b) : b = −1 + √
1 + 4(1 − a)2

2
, a �= −1, 3

}
,

NS2 =
{

(a, b) : b = −1 − √
1 + 4(1 − a)2

2
, a �= −1, 3

}
,

Considering parameters (c, s, b2) arbitrarily from NS1, Take
into account the system (5) with (c, s, b2), that is described
in

{
x → ax(1 − x) + b2(y − x),
y → ay(1 − y) + b2(x − y),

(23)

The system (23) has a positive fixed point E3(x∗, y∗). Since
parameters (c, s, b2) ∈ NS1, then b2 = −1+M

4 , where M =√
1 + 4(1 − a)2. Choosing b∗ as the bifurcation parameter,

we consider a perturbation of the system (23) as follows:

{
x → ax(1 − x) + (b2 + b̄∗)(y − x),
y → ay(1 − y) + (b2 + b̄∗)(x − y),

(24)

such that b̄∗ � 1 is a perturbation parameter.

Let u = x−x∗, v = y−y∗, thus themap (24) transformed
to

{
u → a1u + a2v + a11u2 + O((|u| + |v| + |b∗|)3),
v → b1u + b2v + b22v2 + O((|u| + |v| + |b∗|)3),

(25)

where a1, a2, a11, and b1, b2, b22 are chosen to give (20)
replacing b1 by b2 + b̄∗.

Now, the characteristic equation of system (25) can be
written as

λ2 + P(b̄∗)λ + Q(b̄∗) = 0,

where

P(b̄∗) = −2(1 + b̄∗ + b2),

Q(b̄∗) = 1 + 2(b̄∗ + b2) + 4(δ̄∗ + δ2)
2 − (1 − a)2.

Now, we can write the pair of complex eigenvalues in the
form

λ, λ̄ = − P(b̄∗)
2

± i

2

√
4Q(b̄∗) − P2(b̄∗),

and so

|λ|b̄∗=0 = √
Q(0) = 1,

d|λ|
db̄∗ |b̄∗=0 = − M√

1
4 (3 + M2) − (1 − a)2

�= 0.

Moreover, we required that when b̄∗ = 0, λm, λ̄m �= 1, (m =
1, 2, 3, 4), which is equivalent to P(0) �= −2, 0, 1, 2. Since
we choose (c, s, b2) ∈ NS1. So, P(0) �= −2, 2. We require
only that P(0) �= 0, 1, which ends up with

M �= −3, 3. (26)

Therefore, the eigenvaluesλ, λ̄ at origin of the system (25) do
not lie in the intersection of the unit circle with the coordinate
axes when b̄∗ = 0 and the condition (26) holds.

Next, we analyze the normal system form (25) at b̄∗ = 0.
Let b̄∗ = 0, μ = 1 + b2, ω = √

3b2 − (1 − a)2. Construct
an invertible matrix

123



76 S. M. Salman et al.

T =
(
a2 0
μ − a1 −ω

)
,

using transformation

(
u
v

)
= T

(
x̃
ỹ

)
,

then the system (25) has form

(
x̃
ỹ

)
→

(
μ −ω

ω μ

) (
u
v

)
+

(
f1(x̃, ỹ)
f2(x̃, ỹ)

)
, (27)

where

f1(x̃, ỹ) = a11
a2

u2 + O((|x̃ | + |ỹ|)3),

f2(x̃, ỹ) = (μ − a1)a11
a2ω

u2 − b22
ω

v2 + O((|x̃ | + |ỹ|)3).

with

u = a2 x̃, v = (μ − a1)x̃ − ω ỹ,

u2 = a2
2 x̃2, v2 = (μ − a1)

2 x̃2 + ω2 ỹ2 − 2ω(μ − a1)x̃ ỹ.

So, at the origin (0, 0), we have

f1x̃ x̃ = 2a11a2,

f1x̃ x̃ x̃ = f1x̃ ỹ = f1ỹ ỹ = f1x̃ x̃ ỹ = f1x̃ ỹ ỹ = f1ỹ ỹ ỹ = 0,

f2x̃ x̃ = 2(μ − a1)

ω
(a2 − b22(μ − a1)), f2x̃ ỹ = b22(μ − a1),

f2 ỹ ỹ = −2b22ω,

f2x̃ x̃ x̃ = f2x̃ x̃ ỹ = f2x̃ ỹ ỹ = f2 ỹ ỹ ỹ = 0.

The system (25) will encounter the Neimark-Sacker bifurca-
tion when the following quantity is not equal to zero:

θ =
[

− Re
( (1 − 2λ)λ̄2

1 − λ
L11L12

)

−1

2
|L11|2 − |L21|2 + Re(λ̄L22)

]
b̄∗=0

,

where

L11 = 1

4
(( f1x̃ x̃ + f1ỹ ỹ) + i( f2x̃ x̃ + f2 ỹ ỹ)),

L12 = 1

8
(( f1x̃ x̃ − f1ỹ ỹ + 2 f2x̃ ỹ) + i( f2x̃ x̃ − f2 ỹ ỹ − 2 f1x̃ ỹ)),

L21 = 1

8
(( f1x̃ x̃ − f1ỹ ỹ − 2 f2x̃ ỹ) + i( f2x̃ x̃ − f2 ỹ ỹ + 2 f1x̃ ỹ)),

L22 = 1

16
(( f1x̃ x̃ x̃ + f1x̃ ỹ ỹ + f2x̃ x̃ ỹ + f2 ỹ ỹ ỹ)

+i( f2x̃ x̃ x̃ + f2x̃ ỹ ỹ − f1x̃ x̃ ỹ − f1ỹ ỹ ỹ)),

The same arguments can be applied to NS2.

4 Coupled logistic maps with white noise

In any real system, noise is present and this makes the inter-
action between nonlinearity and stochasticity very important
in modeling dynamic behaviors of many systems such as
epidemics, climate, optics and so on [52–55]. In [55], the
authors have studied the effect of noise on the attractors
of two coupled logistic maps. They have concluded that
a very small noise can lead to attractor destruction. The
aim of this part of the paper is to discuss the response of
the fixed points of the deterministic system (2) to random
disturbance.

Consider the following stochastically forced system

{
xn+1 = axn(1 − xn) + b(yn − xn) + ε1ηn,

yn+1 = ayn(1 − yn) + b(xn − yn) + ε2ζn,
(28)

where ε1 and ε2 are noise intensities, and ηn and ζn are inde-
pendent Gaussian random values with parameters Eηn =
Eζn = 0, Eη2 = Eζ 2 = 1. According to [56], the stochastic
trajectories leave the deterministic attractor under the ran-
dom noise and form a probabilistic distribution nearby. In
our analysis, we assume that ε1 = ε2 = ε.

4.1 Analysis of randomly forced fixed points

As the noise is present, the regular structure of thefixedpoints
is smoothed. A dispersion of random states near the bifurca-
tion points grows. Consider the influence of noise on fixed
point E1 of model (2). The following analysis is based on
the stochastic sensitively function technique and confidence
ellipses method represented in [56–59]. Let us consider the
impact of the noise on E1. According to this method, we

need to construct a matrixW =
(

w11 w12

w21 w22

)
, which is the

stochastic sensitivity matrix for the fixed point E1(0, 0). In
fact, W is the unique solution to the matrix equation [56]
W = JW JT + Q, J = ∂ f

∂x (E1), Q = σ(E1)σ
T (E1),

where f =
(
ax(1 − x) + b(y − x)
ay(1 − y) + b(x − y)

)
, and σ(E1) char-

acterizes the dependence of random disturbance on state.
Consequently, we have

w11 = −a2 + 2ab − 2b2 + 1

a4 − 4a3b + 4a2b2 − 2a2 + 4ab − 4b2 + 1
,

w12 = w21 = 2b(a − b)

a4 − 4a3b + 4a2b2 − 2a2 + 4ab − 4b2 + 1
,

w22 = −a2 + 2ab − 2b2 − 1

a4 − 4a3b + 4a2b2 − 2a2 + 4ab − 4b2 + 1
.
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Fig. 1 Eigenvalues of the matrix W of system (28) at E1

Fig. 2 Random states and confidence ellipse for a = 0.5 and ε = 0.001
of the system (28) at E1

The eigenvalues associated to W are λ1 = −1
a2−1

, and

λ2 = 1
−a2+4ab−4b2+1

which at the fixed point E1 describes
the stochastic sensitivity of noise.

The two eigenvalues have different attitude as it is depicted
in Fig. 1. λ1(b) is constant while λ2(b) is monotonically
increasing form 1.35 to 1.95 for a = 0.5. These eigen-
values and the corresponding eigenvectors form confidence
ellipses as spatial arrangement of random states around the
fixed point E1(0, 0). In fact, the eigenvalues determine the
sizes of the semi-axes of the ellipses, and the eigenvectors
demonstrate the directions of these axes. Figure 2 shows ran-
dom states and confidence ellipse for a = 0.5, ε = 0.001
and b = 0.6 of system (28) at E1 with a trust probability of
P = 0.95.

Fig. 3 Attractors of the deterministic system (2) for a = 3.2 and b =
0.15

4.2 Noise-induced transitions between attractors

The deterministic system (2) has variety of dynamic behavior
such as regular attractors deformed in closed invariant curves.
Consider the transition induced by noise between stochastic
system attractors (28) for a = 3.2, and b = 0.15. For these
values, the deterministic system (2) admits coexisting two
closed invariant curves and a 6-discrete cycle as shown in
Fig. 3.

First of all, let the noise intensity be weak, that is ε =
0.002. As depicted in Fig. 4, random trajectories which start
near one of the closed invariant curves are well localized near
it. As the intensity of the noise increases, that is ε = 0.02, a
dispersion of random states increases too.

5 Numerical simulations

Numerical simulations for the verification of analytical
results obtained in Sects. 3 and 4 are shown in this section.

1. First of all, let us consider the deterministic system (2).
Fix the parameter a and let b be free. In Figs. 5 and 6,
we present the bifurcation diagram and corresponding
maximal lyapunov exponent for the influence of the
parameter b. Figure 7 represents the bifurcation diagram
when a = 3 with initial values (x0, y0) = (0.1, 0.2).
The fixed pointE2 = ( a−1

a , a−1
a ) is given by E2 =

(0.6875, 0.6875). At b = −0.1, E2 loses its stability via
a period-2 orbit that agrees with the theorem 1. The asso-
ciated maximal lyapunov exponent is shown in Fig. 8.
Next, let a = 3.4, that is, E2 = (0.7059, 0.7059). At
b = −0.2, E2 loses its stability via a period-2 orbit which
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Fig. 4 Random states of system (28) with a = 3.2, b = 0.15, and a)ε = 0.002, b)ε = 0.02, c)ε = 0.05, d)ε = 0.1, closed invariant curves of
system (2) are plotted in red

Fig. 5 Bifurcation of (2) in (b, x) plane for a = 3 Fig. 6 Maximal Lyapunov exponent for (2)
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Fig. 7 Bifurcation for the system (2) in (b, x) plane for a = 3.2

Fig. 8 Maximal Lyapunov exponent for (2)

again agrees with theorem 1 as can be seen in Fig. 9. The
corresponding maximal lyapunov exponent is shown in
Fig. 10. The same results can be said to Figs. 11 and 12.
The transcritical bifurcation at E2 = (0.6875, 0.6875)
occurs at b = −1.1 as a = 3.2 as can be seen in Fig. 7
which agrees with theorem 2. Again the system (2) admits
a transcritical bifurcation at E2 = (0.7059, 0.7059) if
a = 3.4 and b = −1.2 and this agrees with theo-
rem 2. Figure 11 illustrates the bifurcation diagram for
a = 3.45 and different b, while Fig. 12 illustrates the
corresponding maximal lyapunov exponent. Finally, dif-
ferent phase portraits are plotted in Fig. 13 for different
a and b. Figure 13a shows four closed invariant curves
with a = 3.4 and b = −0.45 which appear as a result

Fig. 9 Bifurcation for the system (2) in (b, x) plane for a = 3.4

Fig. 10 Maximal Lyapunov exponent for (2)

of a Neimark-Sacker bifurcation, while Fig. 13b–e show
chaotic attractorswitha = 3.5, 3.5, 3, 3.2, 3.45, 3.45 and
b = −0.4,−0.2, 0.4, 0.3,−0.3,−0.25 respectively. In
[43], it was concluded that coupled logistic maps have
new transitions to chaos such as quasiperiodicity and torus
destruction as can be seen in Figs. 9 and 11.

2. Second of all, let us consider the stochastic system
(28). Figure 14 shows the noise induced transforma-
tions of bifurcation diagrams for a = 3.4 and for
ε = 0.001, 0.005, 0.02, 0.01 in Fig. 14a–d, respectively.
From above figures, the fine structures of the bifur-
cation diagrams become blemished especially near the
bifurcation points. Fig. 15a–d show the influence of the
white noise on the regular attractors (four closed invari-
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Fig. 11 Bifurcation for the system (2) in (b, x) plane for a = 1.7

ant curves here) of the deterministic system (2) when
a = 3.4, b = −0.25 and different noise intensity
ε = 0.001, 0.005, 0.02, 0.01.

6 Conclusion

Linearly coupled logistic maps as a deterministic and a
stochastic system is considered in this work. The form
of the coupled system were already proposed in [25] and
investigated further by other researchers but the detailed
bifurcation analysis were not reported in any of them. The
local stability conditions for the fixed points of the deter-
ministic system are obtained. Dynamic behavior such as
bifurcation and chaos is described in the proposed system.
According to the center manifold theorem and the bifur-
cation theory, explicit conditions assure that the system
admits transcritical, flip, and Neimark-Sacker bifurcations

Fig. 12 Maximal Lyapunov exponent for (2)

are given. The detailed bifurcation analysis introduced here
supports the numerical observations given in [25]. Since
we believe that noise is present in any nonlinear real sys-
tem, we add a white noise to the deterministic system and
study its influence on its fixed points using the stochas-
tic sensitivity function technique. Finally, The phenomenon
of noise-induced shifts between closed invariant curves is
explored.

Now, the new results in this work enhance the under-
standing of the complexities of deterministic and stochastic
logistic mapping system. The rich dynamics of the system
have also been analyzed, including interesting chaotic sets.
In addition, the studied system (2) can be used in various
engineering applications such as secure communications,
encryption and security of information which will be investi-
gated in a forthcoming work. In addition, this paper provides
an effective analytical technique for the thorough implemen-
tation of various discrete time systems.
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Fig. 13 Phase portraits for the
system (2) with different a and b
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Fig. 14 The bifurcation diagrams for stochastic system (28) with a = 3.4 and a ε = 0.001, b ε = 0.005, c ε = 0.02, and d ε = 0.01
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Fig. 15 Phase portraits for the stochastic system (28) with a = 3.4, b = −0.25, and a ε = 0.001, b ε = 0.005, c ε = 0.02, and d ε = 0.01
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