
International Journal of Dynamics and Control (2022) 10:270–282
https://doi.org/10.1007/s40435-021-00794-4

Fault tracking sliding-mode controller design for fuzzy fractional-order
system subject to actuator saturation

S. Senpagam1 · P. Dhanalakshmi1 · R. Mohanapriya2

Received: 10 December 2020 / Revised: 9 March 2021 / Accepted: 21 March 2021 / Published online: 26 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This paper brings forth the fault tracking(estimation) problem for Fractional-Order Takagi-Sugeno Fuzzy(FOTSF) uncertain
model subject to time-varying actuator fault and actuator saturation. In order to maintain the stability of considered system,
fuzzy fault-tolerant sliding-mode controller is constructed based on fast adaptive fault estimation algorithm. Precisely, stability
analysis is performed for the FOTSF model based on state and fault estimations by using the Lyapunov’s stability theorem.
More precisely, the sufficient constraints for stability of formulated model are built in proposed theorems. Eventually, two
numerical exemplars including one chaotic model of Rossler are issued to support the proposed results and to demonstrate
the efficacy of prescribed controller.
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1 Introduction

Although the Fractional-Order(FO) calculus has a great his-
tory in the past, in recent years, scientists, researchers and
engineers are extremely attracted by the field of FO dynam-
ics due to its broad array of applications (see [1–7]). The
significant difference between the FO dynamic model and
the Integer Order(IO) dynamic model is that the IO deriva-
tive identifies the rate of change or specific properties of a
machine process at a specific time, while the FO derivative
identifies the same thing at all times. Moreover, only the
regional properties of a certain position in a physical pro-
cess can described by the IO derivatives, but FO derivatives
can describe the properties of physical process in the whole
space. Due to aforementioned aspects many practical and
dynamical systems can be designed accurately by the FO
derivatives, and these models are called by FO dynamical
models. There are many fusion of FO with other dynam-
ical models are presented in the research community, for
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example, FO neural networks with linear threshold neurons
([1,3]), FO fuzzy BAM model [5] and FO delayed fuzzy
model [5]. Among them the fusion of FO model and Takagi-
Sugeno Fuzzy(TSF) model is notable one. Because, the TSF
modeling provides a well-build algorithm to design various
classifications of complex nonlinear systems. In the algo-
rithm of TSF construction, complex nonlinear systems can
be effectively linearised via number of if...then-rules and
membership functions (see [8]). Therefore in the past half
decades, in research, there is a vast growth in thefield of fuzzy
dynamical models. However, these dynamical models may
face some problems during the processing time, among them
the instability and stabilization process are important issues
to be noticeable [6,7]. In the process of stabilisation there are
plenty of methods available, among them Lyapunov’s stabil-
ity method is one of an effective methods to deal the problem
of stabilization [6]. More precisely, for TSF model, analy-
sis of stability and control synthesis effects are discussed in
[9–13]. Furthermore, the stability analysis and control syn-
thesis for the combinations of fuzzy dynamical model with
other models such as Markovian jump [14,15], neural net-
work [16–18], neural network based stochastic systems [19]
and FO system [20–24] are discussed. Among them, fuzzy
FO models are to be noticeable due to its wide range of
applications. Lan and Zhou(see [7]) were investigated the
stability analysis under Lyapunov’s method and designed a
resilient robust controller for FO dynamical model. In [20–
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22], the authors discussed chaotic nature and stabilization
problem for FO Rossler model, FO Lorenz model and FO
permanent magnet synchronous motor model based on TSF
model. Moreover, in [23] the authors discussed the synchro-
nisation and Lyapunov’s stability problem for uncertain FO
model via TSF approach. Liu et. al. designed fuzzy back step-
ping controller for FO nonlinear system (see [24]). In very
recent, the authors Pan et. al developed a new set of results for
Lyapunov’s stabilization of fuzzy systems under fixed-time
fuzzy-controller [25] and the authors Liang et. al. designed
the adaptive control based on event triggered mechanism for
multi-agent systems [26].

In favour of improving productivity and performance of
the system, engineering systems are undergo difficult oper-
ating conditions which drag the system to failure or fault. In
order to handle this huddle situation, it is important to design
a fault-tolerant control. Further, in past few years the fault
diagnosis and estimation are became unavoidable problems
due to the incremented claim for performance, reliability and
protection in industrial actions. It is familiar that faults lay
hold of many forms in a dynamic system, they are actuator
faults, sensor faults, unforeseen instantaneous alters of some
variable or even instantaneous formation changes. To ascer-
tain where the fault and to surveil the system, fault detection
and isolation are used. Then, to detect the vastness of the
fault, fault tracking will be turn on (see [27,28]). As for the
themeof fault tracking for continuous-time systems, advanta-
geous upshot have been acquired throughout the past twenty.
Fast adaptive fault estimation algorithm provided an effec-
tive fault tracking method through the fault estimator (see
[29] and references therein) and the control which helps to
achieve this tracking process is called fault tracking control.
In [29] and [30] You et. al. discussed the problem of fault
estimation for a time-varying delayed model and TSF model
with sensor fault and the same problem was discussed for
Markovian jump system in [31] by Liu et. al. Recently, a
new adaptive fault tracking control is designed for discrete-
time multi-agent system in [32]. N’Doye and Kirati made
analysis on the problem of fault estimation for FO model
with uncertainties in [33]. The robust fault tolerance control
with estimation for FO model under quantization effect is
analysed in [34].

Meanwhile, since that internal and external noises always
occur in numerous experimental engineering models, it is
necessary to design a vigorous controller for deal the afore-
mentioned issues in practical applications. However, amid
the various technique developed to control uncertain models,
the Sliding-Mode-Control(SMC) has been greatly utilized.
Recently, Wang et. al. [35] and Li et. al. [36] designed fuzzy
SMC for continuous-time TSF model. In twenty o nine, an
SMC for FO model is designed by Si-Ammour et. al.(see
[37]). This is followed by in twenty eleven, Lin et. al. con-
structed the adaptive SMC for FO chaotic systems(see [38]).

Moreover, very recently, Xu et. al. developed the FO fuzzy
SMC for the real-time model thethered satellite system in
[39].

Furthermore, in a large number of engineering models,
actuator saturation causes spontaneously. This can triggered
by dropping of performance and instability of control sys-
tem which is disregarded in the design process (see [40] and
references therein). In recent years, numerous researchers
have made a research on the field of control system investi-
gation and modelling with actuator saturation(see [41,42]).
In favour of aforementioned introduction, the purpose of this
study is inquired into robust stabilization problem of FOTSF
model based on fault-estimation and actuator saturation via
SMC. The central contributions of this study are in the fol-
lowing characteristics:

(1) The internal, external noise and time-varying fault
against the FO dynamic model via the robust SMC is
considered for first time in terms of TSF model under
the actuator.

(2) A fresh Lyapunov function has been built and a class of
Linear Matrix Inequality(LMI) is constructed to main-
tain the stability of the proposedFOTSFuncertainmodel
with time-varying fault.

(3) The simulation studies let out the performance of pro-
posed controller. It also reveals, the proposed controller
does its best to achieve stability of recommendedmodel,
even in the presence of saturation and time-varying actu-
ator fault.

Remark 1 As it remarks, SMC is recognized as a robust tech-
nique to handle the nonlinearities, uncertainties and faults in
control systems. Particularly, the ideology of SMC is to stim-
ulate the trajectories of selected system states onto some pre
modeled sliding surfaces with the help of discontinuous con-
trols. The sliding surfaces are designed as some stable ones,
then the controlled system under the discontinuous controls
can achieve desired performances instantly, such as tracking
ability, nice transient behavior and disturbance/fault rejec-
tion capability. Hence, SMC has gained many theoretical
and empirical researches, and more related applications have
been accumulated.

Remark 2 Although a large number of fault-estimation based
research articles have been published recently, the number of
articles in the combination of FO system and fault-estimation
based papers is still very low. The articles [29–32] discuss the
problem of fault-estimation of IO dynamical system. Further,
the articles [33,34] provide some results on fault-estimation
for FO dynamical models. In the meantime, it is important to
study this problem for the FOTSFmodel, because, aswe have
already discussed, many practical models are not linear and
can be properly formatted using FO differential equations.
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As well as, based on the Remark 1 the study of SMC with
fault-estimation is meaningful one.

Notations:
Dd denotes the Riemann derivative of the order 0 <

d < 1 with respect to the parameter of time t . X(h) =
∑m

i=1 hi (t)Xi for all matrices Xi . sat(n) is saturation of the
element n. diag{a, b, . . . , c} notates diagonal matrix with
diagonal elements {a, b, . . . , c}.

2 Problem formulation and preliminaries

This section explains the construction of addressed prob-
lem in presence of fault-tolerant SMC law with the aid of
aforementioned fault-estimation algorithm. First, consider
the FOTSF plant with IF-THEN rule in the following form:

RULE i: If g1(t) is μi
1; If g2(t) is μi

2; If g3(t) is μi
3; …If

gl(t) is μi
l .

Then,

Ddx(t) = (Ai + �A)x(t) + Bi u(t) + Di�(t) + Ei f (t),

y(t) = Cx(t), (1)

where g(t) = [gT
1 (t) gT

2 (t) . . . gT
l (t)]T is premises vari-

able; μi
j are fuzzy sets, ∀i ∈ {1, 2, 3, . . . , m}, ∀ j ∈

{1, 2, 3, . . . , l}; x(t) ∈ R
n represents state-space vector

of the given system; u(t) ∈ R
k and y(t) ∈ R

h are
given to indicate input and output vectors, respectively;
�(t) and f (t) are external disturbance and time-varying
actuator fault, respectively; finally, Ai , Bi , C, Di , Ei and
�A = Mi F(t)Ni are named for system parameter matrices
of suitable dimension with unknown time-varying function
satisfying FT (t)F(t) ≤ I .

Assumption 1 To reduce the complexity in calculation the
parametersBi ’s and Ei ’s are assumed as follows:B = B1 =
B2 = · · · = Bl = E1 = E2 = · · · = El

Let the normalized membership function hi can be designed
in the following form:

hi (t) = yi (g(t))
m∑

i=1
yi (g(t))

, (2)

where yi (t) = �l
j=1μ

i
j (gi (t)) is inferred fuzzy set. Then the

overall fuzzy set can be rewritten in the form of

Ddx(t) = (A(h) + �A(h))x(t)

+ Bu(t) + D(h)�(t) + B f (t),

y(t) = Cx(t). (3)

To estimate the given time-varying fault in (1), construct the
overall fuzzy observer-model with estimated fault f̄ (t) by
following same steps in the construction of overall fuzzy
state-model in the following form:

Dd x̄(t) = (A(h) + �A(h))x̄(t)

+ Bu(t) + B f̄ (t) + L(h)[Cx(t) − ȳ(t)],
ȳ(t) = Cx̄(t),

Dd f̄ (t) = R−1F[Ddey(t) + ey(t)]. (4)

In the above consideration, Li ’s are observer gains; R−1

and F ′
i s are learning rate and fault unknowns, respectively;

and ey(t) = y(t) − ȳ(t). In adjacent, by considering the
actuator saturation effects in the construction of controller,
the proportionate control-input can be formed as

u(t) = sat(u(t)) (5)

and the saturation function is formed as sat(u(t)) =
[sat(u1(t)), sat(u1(t)), . . . , sat(uk(t))]T , here sat(ui (t))=
sgn(ui (t))min{ûi , |ui (t)|}, ∀i ∈ {1, 2, . . . , k} and the
known saturation level is named here as ûi of corresponding
i th actuator. Then, the control-input based on fuzzy dynami-
calmodelwith the effect of actuator saturationunder observer
feedback is declared in the following form:

sat(u(t)) = sat
(K(h)x̂(t)

)
, (6)

where Ki ’s are matrices of controller gains to be designed
later. Consider the following lemma to handle the effect of
actuator saturation.

Lemma 1 [42] Let W be the set of diagonal matrices with
the dimension k × k whose diagonal values are either 1 or
zero. Let the elements of W be denoted by W+

l and denote
W−

l = I − W+
l , then W−

l ∈ W . If K,H ∈ R
k×n, then for

any x̄(t) ∈ L(H)

sat(Kx̄) ∈ convex hull
{(W+

l K + W−
l H)

x̄(t), l = 1, 2, . . . , 2k
}

or

sat(Kx̄(t)) =
2k

∑

l=1

αl
(W+

l K + W−
l H)

x̄(t),

∀αl ∈ [0, 1] and
2k

∑

l=1

αl = 1

Based on above Lemma and from (6), it can be obtained that

sat(u(t)) =
2k

∑

l=1

αl
(W+

l K(h) + W−
l H(h)

)
x̄(t) (7)
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whereKi ’s are matrices of controller feedback gains andHi

are controller auxiliary gains. For notational convenient, take
∑2k

l=1 αl
(W+

l K(h) + W−
l H(h)

)
as K̄(h).

On the other hand the sliding mode controller can be
derived by following steps (i) choosing the suitable sliding
surface and (ii) constructing a controller law by taking the
first order derivative for sliding mode surface and equating
it to zero. First consider the sliding mode surface as in the
following form:

s(t) = GI1−d x̄(t) + s0, (8)

where, s0 = −G x̄(0) − G ∫ t
0

[A(h) + �A + BK̄(h)
]

x̄
(p)dp. Then to design the sliding mode controller law as
in [43] and solve ṡ(t) = 0 for controller. Consider,

ṡ(t) = G d

dt
I1−d x̄(t) + ṡ0(t) (9)

= GDd x̄(t) + ṡ0(t). (10)

Then based on ṡ(t) = 0 and (4) we have

ue(t) = − (GB)−1 G [E f̄ (t) + L(h)Cex (t)

−BK̄(h)x̄(t)
]
, (11)

where ex (t) = x(t) − x̄(t). Then, by substituting (11) in
(3), the proportionate sliding-mode dynamics of (4) can be
expressed as follows:

Dd x̄(t) = [
(A(h) + �A(h)) + BK̄(h)

]
x̄(t)

+ (I − B (GB)−1 G)L(h)Cex (t) (12)

Next it is necessary to construct the error system by using
the definition of error state ex (t) as in the following form:

Ddex (t) =(A(h) + �A(h))ex (t)

+ D(h)�(t) + Be f (t) − L(h)Cex (t), (13)

here e f (t) = f (t) − f̄ (t).
To derive the required theoretical result, we consider the

following assumption and lemma:

Definition 1 [43] For α > 0, β ∈ [0, 1], the error system of
prescribed model FOTSF model (1) is said to have a mixed
H∞ and passivity asymptotically stable with zero initial con-
dition if,

∫ t

0
[−α−1βeT

y (s)ey(s) − 2(1 − β)eT
y (s)�(s)]ds

≥ −
∫ t

0
α� T (s)�(s)ds. (14)

Assumption 2 Dd f (t) is normed-bounded. (i.e) ||Dd f (t)||
≤ F.

Assumption 3 B is of full column rank.

Assumption 4 Invariant zeros of (Ai ,B,C) lie in open left
plane ∀i ∈ {1, 2, . . . , k}.

3 Main results

The central intention of this section is to guarantee the robust
stability of contemplated FOTSF model (1) by resolving the
gains Ki , Hi and Li , such that the fuzzy SMC (11) have
the skill to obtain the system states to the inception. For the
purpose of do this, it is sufficient to prove error system (13)
is robustly asymtotically stable with the considered mixed
H∞ and passivity performance index under resolved feed-
back controller parameters. More precisely three theorems
are proven to show the asymptotic stability of the closed-
loop of FOTSF model (1). In particular, initially, in the first
theorem the controller and observer gain matrices are taken
as known parameters; second theorem gives the result for
unknown gains; finally, third theorem gives the SMC law
and ensures the reachability of the state trajectories.

Theorem 1 If the Assumptions 1–4 are hold and for the spec-
ified scalars α and β there exist a symmetry positive matrices
P , Q and M and positive scalar η such that the following
LMIs hold

φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 φ13 φ14 φ15 φ16

∗ −Q 0 0 0 0
∗ ∗ −Q 0 0 0
∗ ∗ ∗ −η 0 0
∗ ∗ ∗ ∗ −η 0
∗ ∗ ∗ ∗ ∗ −α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (15)

FC = BTQ, (16)

where
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φ11 =

⎡

⎢
⎢
⎣

φ1
11 0 0 0
∗ QA(h) + AT (h)Q − QL(h)C − CT (h)LT (h)Q −AT (h)QB + CTLT (h)QB QD(h) − (1 − β)CT (h)

∗ ∗ −2BTQB + M −BTQD(h)

∗ ∗ ∗ −α I

⎤

⎥
⎥
⎦,

φ12 = [
(I − B (GB)−1 G)TP 0 0 0

]T
, φ13 = [0 QL(h)C 0 0]T ,

φ14 = [
ηMT (h)P MT (h)Q MT (h)QB 0

]T
φ15 = [

N (h) ηN (h) 0 0
]T

,

φ16 = [
0

√
βC 0 0

]T
, φ1

11 = PA(h) + PBK̄(h) + AT (h)P + K̄T (h)BTP.

Then the considered fuzzy model (1) and error systems are
uniformly bounded if and only if the system is asymptotically
stable.

Proof As in Lemma 1 from [34], the systems (12), (13) and
error-fault can be re-assembled in the following form:

∂ Z1(
, t)

∂t
= − 
Z1(
, t)

+ [
(A(h) + �A(h)) + BK̄(h)

]
x̄(t)

+ (I − B (GB)−1 G)L(h)Cex (t)

x̄(t) =
∫ ∞

0
θ(
)Z1(
, t)d
 (17)

∂ Z2(
, t)

∂t
= − 
Z2(
, t) + (A(h) + �A(h))ex (t)

+ D(h)�(t) + Be f (t) − L(h)Cex (t)

ex (t) =
∫ ∞

0
θ(
)Z2(
, t)d
 (18)

∂ Z3(
, t)

∂t
= − 
Z3(
, t) + Dd f (t)

− R−1F[Ddey(t) + ey(t)]
e f (t) =

∫ ∞

0
θ(
)Z3(
, t)d
 (19)

To manifest the desire sequel of results in theorem
statement, consider the followingLyapunov’s functional can-
didate:

V (x, ex , e f , t) =
∫ ∞

0
θ(
)V(Z1, Z2, Z3, t)d
 (20)

with the monochromatic Lyapunov’s function V(Z1, Z2,

Z3, t) = Z T
1 (t)PZ1(t)+Z T

2 (t)QZ2(t)+Z T
3 (t)RZ3(t)with

corresponding elementary frequency 
 and the weighting
function θ . To prove the Lyapunov’s stability condition of
given system, intially the time derivative of constructed Lya-
punov’s function (20) is taken as follows:

V̇ (x, ex , e f , t)

=
∫ ∞

0
θ(
)V̇(Z1, Z2, Z3, t)d


= 2
∫ ∞

0
θ(
)

[

Z T
1 (t)P ∂ Z1(
, t)

∂t

+Z T
2 (t)Q∂ Z2(
, t)

∂t
+ Z T

3 (t)R∂ Z3(
, t)

∂t

]

d


= −2
∫ ∞

0
θ(
)Z T

1 (t)P(
Z1(
, t))d


− 2
∫ ∞

0
θ(
)Z T

2 (t)Q(
Z2(
, t))d


− 2
∫ ∞

0
θ(
)Z T

3 (t)R(
Z3(
, t))d


+ 2
∫ ∞

0
θ(
)Z1(
, t)d
P{[(A(h) + �A(h))

+ BK̄(h)]x̄(t) + (I − B (GB)−1 G)L(h)Cex (t)}
+ 2

∫ ∞

0
θ(
)Z2(
, t)d
Q{(A(h)

+ �A(h))ex (t) + D(h)�(t)

+ Be f (t) − L(h)Cex (t)}
+ 2

∫ ∞

0
θ(
)Z3(
, t)d
R{Dd f (t)

− R−1F[Ddey(t) + ey(t)]}
= −2

∫ ∞

0
θ(
)Z T

1 (t)P(
Z1(
, t))d


− 2
∫ ∞

0
θ(
)Z T

2 (t)Q(
Z2(
, t))d


− 2
∫ ∞

0
θ(
)Z T

3 (t)R(
Z3(
, t))d


+ 2x̄ T (t)P{[(A(h) + �A(h)) + BK̄(h)]x̄(t)

+ (I − B (GB)−1 G)L(h)Cex (t)}
+ 2eT

x (t)Q{(A(h) + �A(h))ex (t) + D(h)�(t)

+ Be f (t) − L(h)Cex (t)} + 2eT
f (t)R{Dd f (t)

− R−1F[Ddey(t) + ey(t)]}. (21)

As reported in Lyapunov’s stability theory it is enough to
prove that the time derivative of the energy equation (Lya-
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punov’s candidates) is less than zero instead of proving the
stability of a system. Since the first three terms of above Eq.
(21) are negative terms, it remains to prove that the other
terms of the Eq. (21) is less than zero (ie.)

2x̄ T (t)P{[(A(h) + �A(h))

+ BK̄(h)]x̄(t) + (I − B (GB)−1 G)L(h)Cex (t)}
+ 2eT

x (t)Q{(A(h)

+ �A(h))ex (t) + D(h)�(t)

+ Be f (t) − L(h)Cex (t)}
+ 2eT

f (t)R{Dd f (t) − R−1F[Ddey(t)

+ ey(t)]} < 0. (22)

Let T̃ be left hand side of the above equation, then from the
Eq. (13)

T̃ = 2x̄ T (t)P[(A(h) + �A(h))

+ BK̄(h)]x̄(t)

+ 2x̄ T (t)P(I − B (GB)−1 G)L(h)Cex (t)

+ 2eT
x (t)Q(A(h) + �A(h))ex (t)

+ 2eT
x (t)QD(h)�(t)

+ 2eT
x (t)QBe f (t) − 2eT

x (t)Q
× L(h)Cex (t)

+ 2eT
f (t)RDd f (t)

− 2eT
f (t)FC[Dde(t) + e(t)]

= 2x̄ T (t)P[(A(h) + �A(h))

+ BK̄(h)]x̄(t)

+ 2x̄ T (t)P(I − B (GB)−1 G)L(h)Cex (t)

+ 2eT
x (t)Q(A(h)

+ �A(h))ex (t) + 2eT
x (t)QD(h)�(t)

+ 2eT
x (t)QBe f (t) − 2eT

x (t)Q
× L(h)Cex (t)

+ 2eT
f (t)RDd f (t)

− 2eT
f (t)FC(A(h)

+ �A(h))ex (t)

− 2eT
f (t)FCD(h)�(t)

− 2eT
f (t)FCBe f (t)

+ 2eT
f (t)FCL(h)Cex (t)

− 2eT
f (t)FCe(t). (23)

By substituting the Eq. (16) in (23), it is obtained that

T̃ = 2x̄ T (t)P[(A(h) + �A(h))

+ BK̄(h)]x̄(t)

+ 2x̄ T (t)P(I − B (GB)−1 G)L(h)Cex (t)

+ 2eT
x (t)Q(A(h) + �A(h))ex (t)

+ 2eT
x (t)QD(h)�(t)

− 2eT
x (t)QL(h)Cex (t)

+ 2eT
f (t)RDd f (t) − 2eT

f (t)B
TQ(A(h)

+ �A(h))ex (t) − 2eT
f (t)B

TQD(h)�(t)

− 2eT
f (t)B

TQBe f (t)

+ 2eT
f (t)B

TQL(h)Cex (t). (24)

The considered term in (24) as in the following has been
taken as sum of two terms in the following form,

2x̄ T (t)P(I − B (GB)−1 G)L(h)Cex (t)

≤ x̄ T (t)P(I − B (GB)−1 G)Q−1(I − B (GB)−1 G)TP x̄(t)

+ eT
x (t)CT (h)LT (h)QL(h)Cex (t). (25)

Similarly from Assumption 2, there exist a positive definite
matrixM for the term 2eT

f (t)RDd f (t) in (24) such that,

2eT
f (t)RDd f (t)

≤ eT
f (t)Me f (t) + Dd f T (t)RM−1RDd f (t),

≤ eT
f (t)Me f (t) + ||Dd f (t)||λRM−1R,

≤ eT
f (t)Me f (t) + FλRM−1R, (26)

where λRM−1R is maximum eigen value of RM−1R.
Finally from the Lemma 3 in [34], the terms including uncer-
tainty �A(h) can be rewritten as in the following forms:

2x̄ T (t)P�A(h)x̄(t) = 2x̄ T (t)PM(h)F(t)N (h)x̄(t)

≤ x̄ T (t)PM(h)ηMT (h)P x̄(t)

+ x̄ T (t)N T (h)η−1N (h)x̄(t), (27)

2eT
x (t)Q�A(h)ex (t) = 2eT

x (t)QM(h)F(t)N (h)ex (t)

≤ eT
x (t)QM(h)η−1MT (h)Qex (t)

+ eT
x (t)N T (h)ηN (h)ex (t), (28)

−2eT
f (t)BTQ�A(h)ex (t) = −2eT

f (t)BTQM(h)F(t)N (h)ex (t)

≤ eT
f (t)BTQM(h)η−1MT (h)QBeT

f (t)

+ eT
x (t)N T (h)ηN (h)ex (t). (29)

Then from (21)–(29) T̃ becomes,

V̇ (x, ex , e f , t) ≤ T̃ ≤ζ T (t)φ1ζ(t)

+ �T (t)φ2�(t) + FλRM−1R. (30)
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In the above equation

ζ T =
[
�T (t) � T (t)

]
,�T (t) =

[
x̄ T (t) eT

x (t) eT
f (t)

]
and

φ1 =

⎡

⎢
⎢
⎣

PA(h)+PBK̄(h)+AT (h)P+K̄T (h)BT P 0 0 0
∗ QA(h)+AT (h)Q−QL(h)C−CT (h)LT (h)Q −AT (h)QB+CT LT (h)QB QD(h)

∗ ∗ −2BT QB+M −BT QD(h)�(t)
∗ ∗ ∗ 0

⎤

⎥
⎥
⎦,

φ2 =
⎡

⎣
φ11
2 0 0
∗ CT (h)LT (h)QL(h)C + QM(h)η−1MT (h)Q + N T (h)ηN (h) 0
∗ ∗ BT QM(h)η−1MT (h)QB

⎤

⎦ ,

φ11
2 = P(I − B (GB)−1 G)Q−1(I − B (GB)−1 G)T P + PM(h)ηMT (h)P + N T (h)η−1N (h).

Then apply Schur complement Lemma for �T (t)φ2�(t),
by taking �(t) = 0 and the parameters of noise terms
as zero in φ. From given LMI (15), it is obvious that
V̇ (x, ex , e f , t) ≤ T̃ < 0 when λφ ||θ(t)|| ≥ F2λRM−1R
where −λφ is minimum eigen value of φ. Since � is uni-
formly bounded, λφ ||θ(t)|| ≥ F2λRM−1R is satisfied for

some bound
F2λRM−1R

λφ
. So, by the Lyapunov’s stability the-

orem the given system is asymptotically stable.
On the other case �(t) 
= 0 it is necessary to reject or

dominate them by using some performance. To prove the
necessary condition ofmixedH∞ andpassivity performance,
the following consideration is taken

V̇ (x, ex , e f , t) − α� T (t)�(t)

− 2(1 − β)eT
y (t)�(t) + α−1βeT

y (t)ey(t)

≤ T̃ − α� T (t)�(t) − 2(1 − β)eT
y (t)�(t)

+ α−1βeT
y (t)ey(t). (31)

Then again applying Schur complement Lemma for the term
α−1β yT (t)y(t), the LMI (15) is obtained. Thus, the condi-
tion (15) hold and V̇ (x, ex , e f , t) < 0 , then

− α� T (t)�(t) − 2(1 − β)eT
y (t)�(t)

+ α−1βeT
y (t)ey(t) < 0. (32)

Then by the definition of mixed H∞ and passivity perfor-
mance, the given system is asymptotically stable with the
mixed H∞ and passivity performance. ��
Remark 3 Optimisation problem is one of the easiest way to
solve the Eq. (16). In this technique, an equation ismoderated
as an inequality in the following LMI formate:

[−ρ I FC − BTQ
∗ −ρ I

]

< 0. (33)

Theorem 2 Suppose the Assumptions 1–4 hold and for the
specified scalars α and β, there exist matricesV11i ,V12i and
V2i , symmetry positive matrices P̄ , Q, and M and positive
scalar η such that the following LMIs hold

�i i < 0, ∀i ∈ {1, 2, . . . , m}
�i j + � j i < 0, ∀i < j, and i, j ∈ {1, 2, . . . , m}, (34)

[−ρ I FC − BTQ
∗ −ρ I

]

< 0, (35)
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where

�i j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1
i j �2

i j �3
i j �4

i j �5
i j �6

i j
∗ −Q 0 0 0 0
∗ ∗ −Q 0 0 0
∗ ∗ ∗ −ηI 0 0
∗ ∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ ∗ −α I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

φi j
1 =

⎡

⎢
⎢
⎣

Ai P̄ + BV1 j + P̄AT
i + V1 jB

T 0 0 0
∗ QAi + AT

i Q − V2iC − CT
j V2

T
i −AT

i QB + CTV2
T
i B QDi − (1 − β)CT

i
∗ ∗ −2BTQB + M −BTQDi

∗ ∗ ∗ −α I

⎤

⎥
⎥
⎦ ,

�2
i j = [

(I − B (GB)−1 G)T 0 0 0
]T

,

�3
i j = [

0 ViC 0 0
]T

,

�4
i j = [

ηMT
i MT

i Q MT
i QB 0

]T
,

�5
i j = [

Ni P̄ ηNi 0 0
]T

,

�6
i j = [

0
√

βC 0 0
]T

,

V1i =
2k

∑

l=1

αl
(W+

l V11i + W−
l V12i

)
.

Then the FOTSF model (1) and error systems are uniformly
bounded if and only if the system is asymptotically sta-
ble. Further, Ki = V11i P̄−1, Hi = V12i P̄−1 and Li =
Q−1V2i .

Proof The proof of this theorem is as comes behind from
the proof of Theorem 1. For the same Lyapunov’s func-
tional candidates which leads to the same LMI as given in
Theorem 1. Then take the pre- and post- multiplication by
S = diag{S, I , I , I , I } (whereS = diag{P−1, I , I , I , I })
for the matrix given in (15), it is able to acquired the follow-
ing:

SφS =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sφ11S Sφ12 Sφ13 Sφ14 Sφ15 Sφ16

∗ −Q 0 0 0 0
∗ ∗ −Q 0 0 0
∗ ∗ ∗ −ηI 0 0
∗ ∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ ∗ −α I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (36)

where

Sφ11S =

⎡

⎢
⎢
⎣

P̄φ1
11P̄ 0 0 0
∗ QA(h) + AT (h)Q − QL(h)C − CT (h)LT (h)Q −AT (h)QB + CTLT (h)QB QD(h) − (1 − β)CT (h)

∗ ∗ −2BTQB + M −BTQD(h)

∗ ∗ ∗ −α I

⎤

⎥
⎥
⎦ ,

Sφ12 = [
(I − B (GB)−1 G)T 0 0 0

]T
,

Sφ13 = [
0 QL(h)C 0 0

]T
,

Sφ14 = [
ηMT (h) MT (h)Q MT (h)QB 0

]T
,

Sφ15 = [
N (h)P̄ ηN (h) 0 0

]T
,

φ16 = [
0

√
βC 0 0

]T
,

P̄φ1
11P̄ = A(h)P̄ + BK̄(h)P̄ + P̄AT (h) + P̄K̄T (h)BT

and P̄ = P−1. Rest of the proof can be reached by substi-

tuting K̄(h) = ∑2k

l=1 αl
(W+

l K(h) + W−
l H(h)

)
, V11(h) =

K(h)P̄ , V12(h) = H(h)P̄ , V2(h) = QL(h) and X(h) =
∑m

i=1 hi (t)Xi for all X . Then it leads to the matrix � =
∑m

i=1
∑m

j=1 hi (t)h j (t)�i j . Thus, the conditions (34),(35)
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and Remark 3 hold, the proof is obvious as similar as in
Theorem 1. ��

Theorem 3 For the considered FOTSF model (1), make the
assumption that the LMI conditions in Theorems 1 and 2
are hold. Then, sliding surface assumed in (8) where G is
selected such that |GB| 
= 0, the SMC condition can be
satisfied control law in following form:

u(t) =
k∑

i=1

2k
∑

l=1

hi (t)
[
αl

(W+
l Ki + W−

l Hi
)

x̄(t)

− f̄ (t) − pi (t)sgn(s(t))
]
, (37)

where pi (t) = ε + ||(GB)−1G||||L(h)Ce(t)||.

Proof Let the sliding surface parameter has chosen as G =
BTJ for some positive symmetric matrix J . Then, it is
trivial that GB = BTJB is non singular. To prove the
reachability of SMC the following Lyapunov’s candidate is
considered:

Ṽ(t) = 1

2
sT (t) (GB)−1 s(t). (38)

By taking time derivative for Ṽ(t), it is easily obtained that

˙̃V = s(t) (GB)−1 ṡ(t). (39)

Then from the Eqs. (4), (10) and (37) it can be rewritten as
follows,

˙̃V = sT (t)(GB)−1G [Bu(t)

+L(h)Cex (t) − BK̄x̄(t)
]

≤ ‖s(t)‖
∥
∥
∥(GB)−1G

∥
∥
∥ ‖L(h)Ce(t)‖

+ sT (t)
[
u(t) − K̄x̄(t)

]

≤ −ε ‖s(t)‖ , ∀ ‖s(t)‖ 
= 0 (40)

since the system state trajectories of (3) converge to the slid-
ing surface which is already defined in (8) in a finite time
duration for all subsequent time. This completes the proof. ��

4 Numerical examples

This section contains an artificial numerical example and a
simulated example of Rossler FOmodel to show the efficacy
and reachability of suggested method in preceding sections.

Example 1 Consider the FOTSF model (3) of the order d =
0.9with the controller law (37) andwith the following param-

eters:

A1 =
⎡

⎣
−3 2 2
1 −2 0
1 2 −5

⎤

⎦ ,

A2 =
⎡

⎣
−5 1 3
0 −1 0

−1 3 −4

⎤

⎦ ,

B =
⎡

⎣
1
1
1

⎤

⎦ ,

C = [
0 1 0

]
,

D1 = D2 =
⎡

⎣
0
0.1
0

⎤

⎦ ,

M1 = M2 = 0.01

⎡

⎣
−1.5 0 1
0 −1 25
2 4 −4

⎤

⎦ ,

N1 = N2 = 0.1I3 and F(t) = sin t .

Further, disturbance and fault are assumed as 0.8(sin(2(t −
1))) and 1.5 cos(15π t) − 0.3 sin(11π t), respectively. Fur-
thermore, the other known constant scalar parameters are
chosen as α1 = 0.3, α2 = 0.7, R = 0.0250, α = 0.05,
β = 0.3 and ρ = 0.3. Finally the membership function is
taken as h1(t) = 0.5

(
1 + x1

20

)
and h2(t) = 1 − h1(t). Then,

solve the LMIs given in Theorem 2 by using LMI Toolbox
in MATLAB, the following unknowns are obtained:

K1 = [−2.8640 −21.9594 3.9382
]
,

K2 = [
3.0114 −24.1852 1.4563

]
,

H1 = [−1.2271 −9.4107 1.6873
]

H2 = [
1.2909 −10.3646 0.6236

]
,

L1 =
⎡

⎣
0.8332

−0.0311
0.4717

⎤

⎦ ,

L2 =
⎡

⎣
0.2570

−0.1962
0.2078

⎤

⎦ ,

F = [2.5092] and η = 4.6629.

In Fig. 1, the state trajectories of closed loop is displayed
and Fig. 2 shows the state trajectories of open loop system.
From the Figs. 1 and 2 it can be conclude that the proposed
controller has the ability of stabilization before 1 second. The
disturbance is taken as non periodic (i.e)�(t) = 1.5 and the
system-states are ploted with the considered disturbance in
Fig. 3. Furthermore, Fig. 4 proves the effectiveness of pro-
posed tracking control under fast adaptive fault estimation
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Fig. 1 State response for controller
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Fig. 2 Open-loop system-state trajectories
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Fig. 3 State response for controller with non-periodic disturbance

algorithm. With the assumption parameter of sliding surface
G = 0.01BT , the graph of sliding surface is plotted in the
Fig. 5. Figure 6 shows the domain of attraction for saturation
controller and the evaluation of state trajectories with differ-
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Fig. 4 Fault trajectory with its estimated fault trajectories
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Fig. 5 Sliding surface state trajectories
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Fig. 6 Domain of attraction and system-state trajectories for different
initial conditions

ent initial conditions which all are belonging in the integral
domain.
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Fig. 7 State response for controller with actuator saturation
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Fig. 8 State response for controller without actuator saturation

Example 2 The model of Rossler in FO is described as fol-
lows:

D0.99x1(t) = −x2(t) − x3(t),

D0.99x2(t) = x1(t) + ax2(t),

D0.99x3(t) = bx1(t) − (c − x1(t))x3(t).

It can be rewritten as a fuzzy model as in [20] is given in
the following form:
Rule 1: If x1(t) is h1(t)(x1(t)), then D0.99x(t) = A1x(t),
Rule 2: If x1(t) is h2(t)(x1(t)), then D0.99x(t) = A2x(t),
where

A1 =
⎡

⎣
0 −1 −1
1 a 0
b 0 −d

⎤

⎦ ,

A2 =
⎡

⎣
0 −1 −1
1 a 0
b 0 d

⎤

⎦ ,

h1(t) = (1/2)(1 + (c − x1(t))/d), h2(t) = 1 − h1(t)
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Fig. 9 Sliding surface state trajectories
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Fig. 10 Chaotic behaviour of Rossler models state trajectories

with d = 10, a = 0.34, b = 0.4 and c = 4.5. In order to
check the efficiency of proposed controller, a controller ele-
ment and the external disturbance is considered to the above
said system. Then the system can be modified as follows:
Rule 1: If x1(t) is h1(t)(x1(t)), then D0.99x(t) = (A1 +
�A)x(t) + B(u(t) + f (t)) + D1�(t),
Rule 2: If x1(t) is h2(t)(x1(t)), then D0.99x(t) = (A2 +
�A)x(t) + B(u(t) + f (t)) + D2�(t), where A1 = A1,
A2 = A2, �A = 0, B = I3, f (t) = 0, D1 = D2 =⎡

⎣
0
0.1
0

⎤

⎦ and �(t) = 0.8 cos(0.01t)e−0.28t2 . Then, solve

the LMIs given in Theorem 2 by using LMI Toolbox in
MATLAB, the following unknowns are obtainedwith the fol-
lowing considerations: saturation parameter αl = 1/8, ∀l ∈
{1, 2, 3, . . . , 23}, performance parameters γ = 0.2 and
θ = 0.4:
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K1 = 103

⎡

⎣
0.1962 0.1866 −5.2594
0.0836 −0.0234 0.2805
0.3199 −0.0166 −0.1515

⎤

⎦ ,

K2 = 103

⎡

⎣
−0.1153 −0.2344 3.0873
0.0413 −0.0522 0.8358

−0.1817 −0.0518 0.0288

⎤

⎦ ,

H1 = 103

⎡

⎣
0.1962 0.1866 −5.2594
0.0836 −0.0234 0.2805
0.3199 −0.0166 −0.1515

⎤

⎦ ,

H2 = 103

⎡

⎣
−0.1153 −0.2344 3.0873
0.0413 −0.0522 0.8358

−0.1817 −0.0518 0.0288

⎤

⎦ ,

L1 =
⎡

⎣
44.9807

−31.9966
2.6293

⎤

⎦ and L2 =
⎡

⎣
44.9807

−31.9966
22.6293

⎤

⎦ .

Figures 7 and 8 show the effectiveness of saturated control.
It is observed that even in Fig. 7 the state trajectories have
large oscillations than the trajectories have in Fig. 8 but they
are converged within short time period. The sliding surface
trajectories are ploted in Fig. 10 for the sliding parameter

G = BT

⎡

⎣
0.015 0 0
0 0.015 0

0.0001 0 0.01

⎤

⎦. The chaotic behaviour of

Rossler model is shown in Fig. 9 by plotting the evaluation
of state trajectories.

From the above-mentioned two examples it is well proven
that the proposed controller mixed H∞ and passivity FO
sliding mode controller with actuator saturation have a high
effective performance which can stabilize the system even it
is a chaotic.

5 Conclusion

A novel mixed H∞ and passivity fuzzy SMC of FOTSF
uncertain model subject to time-varying actuator fault and
actuator saturation is considered.The closed-loopof observer
based FOTFS uncertain model with time varying actuator
fault via SMC controller is formulated. Precisely, stability
analysis is done for the FOTSFmodel based on state and fault
estimations by using the Lyapunov’s stability theorem and
the sufficient constraints for stability of formulated model
are built. Finally, two simulated exemplars including one
Rossler chaotic model are issued to support the proposed
results. Moreover, many real world systems are containing
random process in it, so our next stand is to develop our
current existing results for stochastic FO systems.
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