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Abstract
In this research, the bifurcation analysis is inspected for a rotatory pre-twisted beam which is subjected to the time vary-
ing angular velocity and aerodynamic forces. Aerodynamic loads are obtained by the Piston and Whitehead theories. It is 
assumed that a time-dependent periodic component is superposed on the angular velocity. The extended Hamilton’s princi-
ple is utilized to derive the dynamic equations of motion in flapwise and chordwise directions. Then a combination of the 
Galerkin and multiple scales methods is established to obtain the modulation equations describing amplitude and phases of 
the interacting modes. Eigen value analysis is performed on the linear part of the equations and the possibility of 1:1 internal 
resonance condition is examined. The evolution of amplitudes is obtained versus the amplitude and frequency of the periodic 
angular velocity function. Primary and subharmonic resonance conditions are tuned between the angular velocity frequency 
and natural frequencies of the beam. Numerical simulations indicate that the nonlinear phenomena such as jump, saturation, 
and double jumping appear in nonlinear vibration of rotating beam with varying speed.

Keywords  Rotating cantilevered beam · Time-varying angular velocity · Double jump · Pitchfork bifurcation · Internal 
resonance

1  Introduction

The Blade is the main member of gas turbines. Distortion of 
the blades is caused by some parameters such as temperature 
gradient in blades, distribution of aerodynamic forces on 
the blades, and rubbing from the contact in the hub. These 
parameters lead to large amplitude vibrations and subsequent 
demolition of the blade. Thus, the dynamic response of the 
blades is essential for avoiding the large amplitude vibra-
tions of blades. In what follows, some recent works related 
to the nonlinear vibration of blades are illustrated.

Turhan and Bulut [1] have derived the governing equa-
tions of a rotatory beam under harmonic excitation at the tip 
of beam and inertia loads. Primary, sub and super-harmonic 
resonances have been adjusted respectively when the fre-
quency of the tip excitation force was very close to the one, 
triple and third of the lateral natural frequency of the beam. 
Amplitude and phases of the steady state solutions have 

been depicted for various spinning speed and hardening or 
softening response curves have been shown in simulations. 
Yonesian and Esmailzadeh [2] have obtained the vibration 
amplitude of the blade as a nonlinear expression of spin-
ning speed and time, when the spinning speed gets larger or 
detracts as a linear function of time with a constant slope. In 
this work, the variation of amplitude has been investigated 
for positive and negative values of constant slope, different 
values of hub radius, and structural damping of the rotatory 
beam. Arvin and Bakhtiari-Nejad [3] have investigated the 
axial and transverse vibration of a rotatory beam. The stabil-
ity investigation of the rotatory beam has been studied for 
internal resonance among the first axial and forth transverse 
modes. Wang and Zhang [4] have examined the stability 
boundaries of the rotatory blade. The spinning speed has 
been declared as a sinusoid function of time as well as a 
constant value of spinning speed. Bifurcation analysis has 
been performed in terms of amplitude and frequency of the 
sinusoid function. Yao et al. [5] have investigated the bifur-
cation diagram of the thin walled blade with an oscillating 
spin. The constant spinning speed has been varied with a 
harmonic function of time and frequency. Primary reso-
nance condition was the nearness of the spinning frequency 
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with the natural frequencies of the beam in flapwise and 
chordwise directions. Periodic, multi-periodic motions and 
chaos phenomenon have appeared for one to one internal 
resonance condition among two transverse modes. Stoykov 
and Ribeiro [6] have studied the nonlinear vibration of the 
rotatory Timoshenko beam under a periodic transversely 
force at the tip of the beam. Nonlinearity has arisen from the 
large deformation of the beam and inertia forces of the rota-
tion. The equations have been solved by the finite element 
analysis and the influences of spinning speed and external 
excitation have been investigated.

Arvin and Bakhtiari-Nejad [7] have studied the lateral, 
axial and torsional vibration of the rotatory composite beam 
for various spinning speed. The number of layers in the com-
posite beam, spinning speed and material properties of the 
beam were the main factors in producing the internal reso-
nance condition between the modes. Stability of the modes 
has been investigated in this analysis. Vibration of the rota-
tory thin walled beam has been investigated in the torsional 
mode under the axial load and initial enforced torque by Sina 
and Haddadpour [8]. Fiber angles of the composite beam, 
inertia load, spinning speed and pre-twist of the beam have 
been affected on the vibrational characteristic of the beam.

Arvin and Lacarbonara [9] have analyzed the nonlinear 
frequencies and interaction between modes of the rotatory 
composite beam. Huang and Zhu [10] have utilized the 
method of harmonic balance to solve the nonlinear equations 
of rotatory beam. In this analysis, the weight of beam has 
been considered and the stability of the periodic responses 
has been determined using the Floquet Theory. The gravi-
tational force emerged as the parametric excitation in linear 
terms and the external excitation in harmonic and nonlinear 
terms. Thomas et al. [11] showed that the jump phenomenon 
has been happened in frequency and forced responses of 
the rotatory beam under a force with sine function of time 
and frequency at the tip of beam by. When the frequency 
of tip force was near the natural frequency of the beam, 
hardening behavior has been presented in mode one for low 
spinning speed and softening behavior has been happened 
for high spinning speed. Moreover, softening behavior has 
been seen in any spinning speed for mode two. Arvin et al. 
[12] have studied the stability analysis of the rotatory beam 
with time varying spinning speed. The equations of motion 
in axial and lateral directions have been solved using the 
multiple scales method and the semi-analytic results have 
been collated with the obtained results by the differential 
quadrature method. Damping ratio and number of modes 
have changed the stability boundaries. Bekhoucha et al. [13] 
have plotted the steady state amplitudes of the hub-beam 
system as a function of spinning speed. Euler–Bernoulli 
and Timoshenko’s theories have been considered in their 
analysis. Large deflection and small deformation have been 
assumed in deriving the equations of motion. The effects of 

spinning speed and shear deformation have been analyzed 
in diagrams.

Van der Male et al. [14] have investigated the dynamic 
response of the cantilevered rotatory blade under aerody-
namic forces which were considered as the nonlinear func-
tion of wind oscillation, time derivatives of blade displace-
ment, and time. The drag and lift forces have been explained 
in literature and numerical simulations demonstrated the 
importance of the considered forces on the nonlinear behav-
ior of the simplified model of the blade. Kim and Chung [15] 
have selected the new variables for deriving the dynamic 
equations of the rotatory beam. The axial and lateral dis-
placements of the beam have been obtained by integrat-
ing over time. Numerical simulations demonstrated that 
dynamic response of the model had a faster convergence rate 
and more accuracy than the previous models in the literature.

Zhang et al. [16] have determined the existence of Hopf 
bifurcation and quasi-periodic motion of the rotatory beam 
which has been investigated in previous work [5]. In this 
research, thin walled beam has been rotated with a harmonic 
function of time and has been subjected to the gas pressure 
as the external load. The thermal effect has been assessed 
in constitutive relations. Nearness of the natural frequen-
cies of the beam to the frequency of the harmonic spinning 
speed function has been defined by two detuning parameters. 
Bifurcation analysis of the averaged equations describing the 
steady state responses has been analyzed using the center 
manifold and normal form theories. Tian et al. [17] have 
presented the effects of Coriolis and stretch terms on the 
vibrational characteristic of the rotatory extensional beam. 
For special beams with the low value of hub radius, the 
large value of slender ratio, and high spinning speed these 
mentioned effects have been observed in numerical simula-
tions. Zhang et al. [18] have indicated the double jump and 
saturation phenomena in frequency and forced responses 
of the rotatory beam under gas excitation with high tem-
perature. Distribution of gas pressure has been considered 
as the harmonic excitation. The frequency of the gas has 
been expressed near the natural frequencies in the flapwise 
and chordwise directions and the auto-parametric resonance 
condition has been imposed among two named directions. 
Steady state amplitudes of the beam versus the magnitude 
and frequency of the exciting pressure have been presented 
for various damping values.

Frequency-amplitude curves show the characteristic of 
forced vibration of the nonlinear systems. Depending on the 
nonlinearity, amplitudes have hardening or softening behav-
ior which leads to a jump in frequency response curves. 
However, in the presence of internal resonance, amplitudes 
may have two jumps in frequency response curves and thus 
double jump phenomenon occurs. In double jump phe-
nomenon, the steady state amplitudes bend to left and right 
directions and two jumps appear in amplitudes. Nayfeh et al. 
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have found the double jump phenomenon in pitch and roll 
motions of a ship [19]. Other recent works related to the 
double jump phenomenon have been studied and explained 
in the literature [20–23].

Chen et al. have considered two modes for the lateral 
vibrations of pipe conveying fluid and internal resonance 
condition has obtained in the supercritical speed of flowing 
fluid [20]. Double jump has been presented in frequency 
response curves. Chen and Jiang have designed an elec-
tromagnetic energy harvester with a mass-spring system 
under primary and auto-parametric resonances [21] and the 
frequency responses have been presented the double jump 
phenomenon. Frequency responses show the double jump 
phenomenon. Karimpour and Eftekhari have attached a 
moving mass-spring system to the cantilevered beam [22]. 
The internal resonance condition has been constrained 
between the natural frequency of the moving mass and the 
natural frequencies of the beam. Double jump phenomenon 
has obtained in frequency responses.

Zhang et al. have modeled the blade as a composite plate 
and the blade has been excited by the subsonic airflow in the 
presence of two-to-one internal resonance condition between 
the bending and torsional modes [23]. Double jump and 
saturation have been represented in bifurcation diagrams.

Yao et al. investigated the nonlinear vibration of the rota-
tory thin-walled blade by considering the nonlinearity in 
deformation of the blade, time varying rotating speed and 
centrifugal and aerodynamic forces [24]. The averaged equa-
tions were obtained for the primary resonance and paramet-
ric resonance between the frequency of the transverse and 
lateral modes. The effects of periodic perturbation speed, 
nonlinearity and damping were shown in frequency response 
curves.

The combination of the extermum response surface 
method and the interval method was proposed by Bai et al. 
for probabilistic and non-probabilistic reliability analysis 
[25]. The computational efficiency of the method for the 
tuned and mistuned blisks was better than the Mont Carlo 
and the multilevel nested algorithm methods which were 
reported in literature.

The nonlinear equations of the rotatory composite plate 
with time varying speed were obtained by Yao et al. [26] in 
the presence of the centrifugal and the aerodynamic forces. 
The aerodynamic loads were applied on the blade by the 
first order Piston theory. Time varying speed was assumed 
as the constant value as well as the harmonic term. Three 
to one internal resonance condition between the first and 
second modes of transverse vibration was selected when 
the constant angular velocity was near the twice of the first 
natural frequency. Multi-periodic and chaotic behaviors were 
presented in numerical solutions.

Niu et al. studied the same problem by considering the 
functionally graded material for the composite cylindrical 

panel [27]. The natural frequencies were presented for dif-
ferent material and geometric parameters.

Bai et al. studied the vibration and reliability investiga-
tions of the mistuned bladed disk using the combination of 
the extremum response surface method and improved sub-
structural component modal synthesis [28]. The dynamic 
probabilistic of the mistuned bladed disk was investigated 
and the new method could be established for the complex 
structures.

Zhang et al. investigated the free vibration characteris-
tic of the rotating pre-twisted composite cylindrical panel 
reinforced by graphene coating layers [29]. The natural 
frequencies and the mode shapes of the tapered cantilever 
blade were obtained using the Chebyshev-Ritz method. The 
effectiveness of some parameters such as the graphene plate-
let geometry, graphene platelet weight fraction, taper ratio, 
length-to-radius ratio, pre-twist angle, presetting angle and 
rotating speed were presented in numerical simulations.

In this paper, the stability of fixed points of the rotatory 
beam with varying spinning speed is investigated under 
primary and 1:1 internal resonances. The variable operat-
ing speed of the rotatory beam is composed of constant 
value and periodic function of time. Based on the first order 
piston and Whitehead theories, the aerodynamic loads are 
dependent on the velocity of air flow, the time derivative 
of beam displacements, the twist angle of the beam, and 
Mach number. Hamilton’s principle yields the governing 
equations of the rotatory beam in flapwise and chordwise 
directions. One-to one internal resonance condition appears 
between the transverse and lateral modes of the blade and 
the constant value of the spinning speed is equal to one 
and two times of the first natural frequency of the flapwise 
and chordwise directions. Double jump, jump, Hopf points 
(describing quasi-periodic or chaotic motions) and satura-
tion are revealed in the internal and primary, sub-harmonic 
resonance conditions. To the best of our knowledge, double 
jump and saturation have not been reported in rotary blade 
with time varying spinning speed in the presence of 1–1 
internal resonance and sub-harmonic external resonance. 
Moreover, the Whitehead theory is applied on the blade and 
unstable, saddle and Hopf points are shown in frequency 
response curves. The effect of amplitude and frequency of 
the periodic spinning function is studied on the stability of 
the beam amplitudes in resonance conditions.

2 � Equation of motion for rotating blade

Figure 1a shows the pre-twisted cantilevered beam that 
rotates at a steady state speed Ω0 with a periodic function 
AΩ cos(�Ωt) . The radius of the hub is R0 and length of the 
cantilever beam is L . The cantilever beam is attached to the 
hub with a settling angle � . �(x) is the pre-twist angle of any 
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cross section of the beam at position x with respect to the 
fixed end cross section with angle � . As shown in Fig. 1b, 
the beam has a rectangular cross section with width a and 
height b . The defined coordinates are: (1) inertial coordinate 
XYZ at the Centre of the hub with unit vectors �, �,� , (2) 
rotating coordinate xyz is placed at the origin of the blade 
root with unit vectors �, �, � and (3) xpypzp is placed at the 
arbitrary cross section of the beam with the principle axes 
of yp − zp . The considered assumptions are: (1) displace-
ments of neutral axis in yp, zp directions are v0,w0 and they 
are much larger than displacement in x direction or u0 . (2) In 
deriving equations, it is neglected from u0 and derivatives of 
it. (3) Shear deformation and warping effects are neglected. 
(4) The beam model is Euler–Bernoulli and the material 
of the beam is isotropic. (5) The beam is subjected to the 
supersonic gas flow.

The relation between x − y − z and xp − yp − zp are 
defined as

where in Eq. (1), �(x) = �0x∕L is the pre-twist of an arbitrary 
cross section at the position x and  �0 is the pre-twist at the 
tip. The position vector of an arbitrary point on the deformed 
state of the beam is written as:

where, the deformed and undeformed states of the beam are 
indicated by the generalized coordinates u, v,w and x, y, z 
respectively. The velocity vector of an arbitrary point can 
be obtained as:

(1)

x = xp,

y = yp cos(�(x) + �) − zp sin(�(x) + �),

z = yp sin(�(x) + �) + zp cos(�(x) + �),

(2)�(�,�,�, �) = (R0 + u + x)� + (y + v)� + (z + w)�,

where, the dot defines the derivative with respect to time. 
The components of the displacement field of an Euler–Ber-
noulli beam can be written:

where in Eq. (4), u0, v0,w0 are the neutral axis translations 
along with the x, y, z directions respectively. The displace-
ment–strain relationships are obtained as:

A Hamiltonian derivation of the dynamic equations of 
motion is rendered as:

where T and U are the total kinetic and potential energies 
respectively, W  is the work which is done by the external 
forces, � is the variational operator and t is time. The kinetic 
and potential energies are obtained as:

(3)�̇ = [u̇ − (y + v)Ω(t)]� + [v̇ + (R0 + x + u)Ω(t)]� + ẇ�,

(4)u = u0 − z�w0∕�x − y�v0∕�x, v = v0, w = w0,

(5)

�xx = �u∕�x + 1∕2((�v∕�x)2 + (�w∕�x)2), �yy = 1∕2(�w∕�x)2,

�xy = �yz = �xz = 0,

(6)∫
t

0

(�T + �U − �W)dt = 0,

(7)

T = 1∕2∫
l

0

�A[(�v0∕�t)
2 + (�w0∕�t)

2

+ Ω2(t)((R0 + x)2 + v
2

0
cos2(�(x) + �)

+ w
2

0
sin

2(�(x) + �) − 2v0w0 sin(�(x) + �) cos(�(x) + �))

+ 2Ω(t)((�v0∕�t)(R0 + x) cos(�(x) + �)

− (�w0∕�t)(R0 + x) sin(�(x) + �))]dx,

Fig. 1   A rotatory beam system with attached Cartesian coordinates
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In Eqs. (7–8), � is the beam density, A is the cross-sec-
tional area of the beam, E is the elasticity modulus, Iy, Iz are 
the moment inertia along y and z axes respectively and Iyz 
is the product moment of inertia about y–z axes. The work 
done by the external loads is given by:

where py and pz are the projections of the external forces on 
the y and z axes respectively which are caused by the gas 
pressure as [5]:

In Eqs. (10–11), ΔPzp and ΔPyp are the pressures of the 
supersonic flow on the blade which are obtained from the 
first-order piston theory as follows [5]:

In Eqs. (12–13), �∞ is the density of air, C∞ is the speed 
of sound,Ut

yp
,Ut

zp
 and vp,wp are respectively the fluid velocity 

components and the displacement components on the posi-
tive yp and zp directions. vp,wp are [5]:

Substituting Eqs. (7–9) in to Eq. (6), and setting each of 
coefficients �v0(x, t), �w0(x, t) equal to zero, the governing 
equations are obtained as:

(8)

U1 = (1∕2)∫
l

0

Fc((�v0∕�x)
2 + (�w0∕�x)

2)dx, Fc = �AΩ2(t)(R0(L − x) + (1∕2)(L2 − x2)),

U2 = (1∕2)∫
l

0

{EA[(1∕2)(�v0∕�x)
2(�w0∕�x)

2) + (1∕2)(�v0∕�x)
4+(1∕4)(�w0∕�x)

4]

+ EIz(�
2v0∕�x

2)2 + EIy(�
2w0∕�x

2)2 + 2EIyz(�
2v0∕�x

2)(�2w0∕�x
2)}dx,

U = U1 + U2,

(9)W = ∫
L

0

(pyv0 + pzw0)dx,

(10)py = aΔPzp sin(�(x) + �) − bΔPyp cos(�(x) + �),

(11)pz = −aΔPzp cos(�(x) + �) − bΔPyp sin(�(x) + �),

(12)ΔPzp = C∞�∞((�w
p∕�t) + Ut

zp
(�wp∕�x)),

(13)ΔPyp = C∞�∞((�v
p∕�t) + Ut

yp
(�vp∕�x)),

(14)vp = v0 cos(�(x) + �) + w0 sin(�(x) + �),

(15)wp = −v0 sin(�(x) + �) + w0 cos(�(x) + �),

(16)

𝛿v0 ∶

EA[−3(v�
0
)2v��

0
− (1∕2)(w�

0
)2v��

0
− v

�
0
w
�
0
w
��
0
] + E(I

z
v
��
0
)�� + E(I

yz
w
��
0
)��

+ 𝜌A[v̈0 + Ω̇(R0 + x) − Ω2[((1∕2)(L2 − x
2) + R0(L − x))v��

0

− (R0 + x)v�
0
+ v0]] − p

y
= 0,

Boundary conditions are
at x = 0

at x = L

The resultant equations are presented dimensionless by 
introducing the following parameters:

The non-dimensional equations are obtained as:

and non-dimensional boundary conditions are
at x = 0

at x = 1

(17)

𝛿w0 ∶

EA[−3(w�
0
)2w��

0
− (1∕2)(v�

0
)2w��

0
− v

�
0
w
�
0
v
��
0
] + E(I

z
w
��
0
)�� + E(I

yz
v
��
0
)��

+ 𝜌A[ẅ0 − Ω2[((1∕2)(L2 − x
2) + R0(L − x))w��

0

− (R0 + x)w�
0
]] − p

z
= 0,

(18)v0 = 0,w0 = 0, v�
0
= 0,w�

0
= 0,

(19)

v
�3
0
+ (1∕2)v�

0
w
�2
0
+ (1∕A)(I

y
v
��
0
− I

yz
w
��
0
)� = 0,

w
�3
0
+ (1∕2)w�

0
v
�2
0
+ (1∕A)(I

z
w
��
0
− I

yz
v
��
0
)� = 0,

v
��
0
= (I

z
∕I

yz
)w��

0
, w

��
0
= (I

y
∕I

yz
)v��

0
,

(20)

x = x∕L v0 = v0∕L w0 = w0∕L R0 = R0∕L a = a∕L

b = b∕L Iy = Iy∕AL
2 Iz = Iz∕AL

2 Iyz = Iyz∕AL
2 P = P

√

𝜌∕E

C∞ = C∞

√

𝜌∕E 𝜌∞ = 𝜌∞(L2∕𝜌A) t = t
√

E∕𝜌L2 Ω = Ω
√

𝜌L2∕E
̇
Ω = Ω̇𝜌L2∕E

M = P∕C∞,

(21)

v̈0 − Ω2
v0 − Ω2[((1∕2)(1 − x

2) + R0(1 − x))v��
0

− (R0 + x)v�
0
] + (I

z
v
��
0
)�� + (I

yz
w
��
0
)��

= 3(v�
0
)2v��

0
+ (1∕2)(w�

0
)2v��

0
+ v

�
0
w
�
0
w
��
0
+ Ω̇(R0 + x) + p

y
,

(22)

ẅ0 − Ω2[((1∕2)(1 − x
2) + R0(1 − x))w��

0

− (R0 + x)w�
0
] + (I

z
w
��
0
)�� + (I

yz
v
��
0
)��

= 3(w�
0
)2w��

0
+ (1∕2)(v�

0
)2w��

0
+ v

�
0
w
�
0
v
��
0
+ p

z
,

(23)v0 = 0,w0 = 0, v�
0
= 0,w�

0
= 0,
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In Eqs. (21–24), the bar sign is eliminated for simplicity.

3 � Galerkin discretization

The Galerkin method is utilized to truncate Eqs. (21–22) by 
using the following approximation

where in the above equations p(t), q(t) are the related time-
dependent generalized coordinate variables and H(x) is the 
shape function of the cantilevered beam which is given as:

where in Eq. (27), r is the root of

Substituting Eqs. (25–26) in to Eqs. (21–22) and mul-
tiplying by H(x) and integrating from 0 to 1, the following 
equations in the time domain are obtained:

where, the coefficients of Eqs.  (29–30) are given in the 
Appendix 1. Dividing Eqs. (29) and (30) by n5, the follow-
ing equations are obtained as:

(24)

v�3
0
+ (1∕2)v�

0
w�2
0
+ (Iyv

��
0
− Iyzw

��
0
)� = 0,

w�3
0
+ (1∕2)w�

0
v�2
0
+ (Izw

��
0
− Iyzv

��
0
)� = 0,

v��
0
= (Iz∕Iyz)w

��
0
, w��

0
= (Iy∕Iyz)v

��
0
,

(25)v0(x, t) = p(t)H(x),

(26)w0(x, t) = q(t)H(x),

(27)

H(x) = cosh(rx) − cos(rx) − [(cosh(r) + cos(r))∕

(sinh(r) + sin(r))](sinh(rx) − sin(rx)),

(28)cosh(r) cos(r) + 1 = 0,

(29)

[n5]p̈(t) + [n11]ṗ(t) + [n2]q̇(t) + [n62]p
3(t) + [n61]q

2(t)p(t)

+ [n13 + n17 − n10Ω
2

0
]p(t) + [n14 + n8]q(t)

− 2[n10][Ω0][AΩ][p(t)][cos(𝜔Ωt)] − [n10][A
2

Ω
][p(t)][cos2(𝜔Ωt)]

= [n9][AΩ][𝜔Ω][sin(𝜔Ωt)],

(30)

[n5]q̈(t) + [n21]q̇(t) + [n2]ṗ(t) + [n62]q
3(t) + [n61]p

2(t)q(t)

+ [n24 + n27 − n20Ω
2

0
]q(t) + [n23 + n8]p(t)

− 2[n20][Ω0][AΩ][q(t)][cos(𝜔Ωt)]

− [n20][A
2

Ω
][q(t)][cos2(𝜔Ωt)] = 0,

(31)

p̈(t) + [m12]ṗ(t) + [m13]q̇(t) + [m52]p
3(t) + [m51]q

2(t)p(t)

+ [𝜔2
v
]p(t) + [m11]q(t) − 2[m14][Ω0][AΩ][p(t)][cos(𝜔Ωt)]

− [m14][A
2
Ω
][p(t)][cos2(𝜔Ωt)] = [m16][AΩ][𝜔Ω][sin(𝜔Ωt)],

where, the coefficients in Eqs. (31–32) are defined in the 
Appendix 1.

4 � Multiple scales method

Equations (31–32) can be changed to the Eqs. (34–35) by 
using the given assumption in (33):

where � is a small perturbation parameter and �v, �w are 
defined in the Appendix 1. p(t, �), q(t, �) can be taken as a 
formal asymptotic expansion in terms of � as:

w h e r e  T0 = t, T1 = �t  .  S u b s t i t u t i n g  E q s . 
(36–37) in to (34–35) and using the derivatives 
d∕dt = D0 + �D1 +⋯ , d2∕dt2 = D2

0
+ 2�D0D1 +⋯ ,  the 

terms with equal orders of ε is balanced as:
Order �0 ∶

Order �1 ∶

(32)

q̈(t) + [m23]q̇(t) + [m22]ṗ(t) + [m52]q
3(t) + [m51]p

2(t)q(t)

+ [𝜔2
w
]q(t) + [m21]p(t) − 2[m24][Ω0][AΩ][q(t)][cos(𝜔Ωt)]

− [m24][A
2
Ω
][q(t)][cos2(𝜔Ωt)] = 0,

(33)

m11 → �m11 m12 → �m12 m13 → �m13

m14 → �m14 m51 → �m51 m52 → �m52

m16 → �m16 m21 → �m21 m22 → �m22

m23 → �m23 m24 → �m24

(34)

p̈(t)+[𝜔2
v
]p(t) = −𝜀[m12][ṗ(t)] − 𝜀[m13][q̇(t)] − 𝜀[m52][p

3(t)]

−𝜀[m51][q
2(t)p(t)] − 𝜀[m11][q(t)] + 2𝜀[m14][Ω0][AΩ][p(t)] cos(𝜔Ωt)

+𝜀[m14][A
2

Ω
][p(t)] cos2(𝜔Ωt) + 𝜀[m16][AΩ

][𝜔Ω] sin(𝜔Ωt),

(35)

q̈(t) + [𝜔2
w
]q(t) = −𝜀[m22][ṗ(t)] − 𝜀[m23][q̇(t)] − 𝜀[m52][q

3(t)]

− 𝜀[m51][p
2(t)q(t)]𝜀[m21][p(t)] + 2𝜀[m24][Ω0][AΩ][q(t)] cos(𝜔Ωt)

+ 𝜀[m24][A
2

Ω
][q(t)] cos2(𝜔Ωt)

(36)p(t, �) = p0(T0, T1) + �p1(T0, T1),

(37)q(t, �) = q0(T0, T1) + �q1(T0, T1),

(38)D2
0
p0 + [�2

v
]p0 = 0,

(39)D2
0
q0 + [�2

w
]q0 = 0,

(40)

D2

0
p1 + [�2

v
]p1 = −2D0D1p0 − [m12]D0p0 − [m13]D0q0 − [m11]q0

+ 2[m14][p0][Ω0][AΩ] cos(�Ωt) + [m14][p0][A
2

Ω
] cos2(�Ωt)

− [m51]p0q
2

0
− [m52]p

3

0
+ [m16][AΩ][�Ω] sin(�Ωt),



55Nonlinear dynamics of the rotating beam with time‑varying speed under aerodynamic loads﻿	

1 3

The solutions of Eqs. (40–41) are in complex form as

where, A1(T1), A2(T1) are the complex conjugates of the 
A1(T1), A2(T1) respectively. Substituting Eqs. (42–43) in to 
the right hand of Eqs. (40–41), we get

where RHp,RHq are respectively right hand of Eqs. (44) and 
(45) which are written in the Appendix 2.

5 � Modulation equations

In this section, the modulation equations are derived for 
different cases of primary and internal resonances. After 
separating the secular terms, the modulation equations in 
the complex form are obtained and then are converted to 
the Cartesian form. The complex and Cartesian forms of the 
equations for the cases 1:6 are presented in the Appendix 2 
as follows:

Case1: �Ω = �v + �� . Eqs. (B.3)–(B.9).
Case2: �Ω = �w + �� . Eqs. (B.10)–(B.16).
Case 3: �Ω = 2�v + �� . Eqs. (B.17)–(B.23).
Case4: �Ω = 2�w + �� . Eqs. (B.24)–(B.30).
Case 5: �Ω = �v + �� , �w = �v + ��∕2 . Eqs. (B.31)–
(B.37).
Case 6: �Ω = 2�v + �� , �w = �v + ��∕2 . Eqs. (B.38)–
(B.44).

In each case, A1 and A2 are defined and are substituted 
in modulation equations. Then real and imaginary parts are 
separated and equations are obtained in Cartesian form. The 
parameters �, � are utilized for detuning external and internal 
resonances.

The fixed points of equations in each case are obtained 
from p�

1
= q�

1
= p�

2
= q�

2
= 0. A pseudo-arc length continua-

tion is applied to trace the branches of steady state responses. 
The fixed points lose the stability through the saddle-node, 
pitchfork or Hopf bifurcations.

(41)

D2

0
q1 + [�2

w
]q1 = −2D0D1q0 − [m22]D0p0 − [m23]D0q0 − [m21]p0

+ 2[m24][q0][Ω0][AΩ] cos(�Ωt) + [m24][q0][A
2

Ω
] cos2(�Ωt)

− [m51]q0p
2

0
− [m52]q

3

0
,

(42)p0 = A1(T1)e
i�vT0 + A1(T1)e

−i�vT0 ,

(43)q0 = A2(T1)e
i�wT0 + A2(T1)e

−i�wT0 ,

(44)D2
0
p1 + [�2

v
]p1 = RHp,

(45)D2
0
q1 + [�2

w
]q1 = RHq,

6 � Whitehead’s theory

Whitehead’s unsteady aerodynamic theory is used to derive 
the aerodynamic loading of the system [30]. The system of 
blades is considered as a two dimensional cascade and the 
effects of airfoil camber and thickness are neglected. The 
basic assumptions of the Whitehead’s theory are

1.	 The airfoils vibrate in the bending and torsion modes 
with a constant phase angles between two adjacent 
blades and the amplitude of vibration are assumed to be 
small.

2.	 The flow is considered as subsonic, incompressible and 
inviscid.

The Lift and moment of the vibrating blades per unit 
length are derived as

where, har, �ar are the bending and torsional degrees of 
freedom of the blades in the rth mode. The coefficients 
lhhr, lh�r, lwhr, l�hr, l��r, lw�r are defined as

where, �∞ is the fluid density, P is the free stream velocity 
relative to the blade and wr is the velocity induced by wakes. 
The coefficients CFq,CF� ,CMq,CM� ,CFw,CMw are evaluated 
by knowing the reduced frequency k, inter-blade phase 
angle �r and the stagger angle � . The coefficients lwhr, lw�r 
are neglected which are used for the blades operating in the 
wakes. Since this work is focused on the bending vibration 
of the turbomachinery cascades, only the lift force is only 

(46)

L(s) = −��∞(a∕2)
3�2

N−1
∑

r=0

[lhhr
2har

a
+ lh�r�ar + lwhr]e

i(�t+�rs)

(47)

M(s) = −��∞(a∕2)
3�2

N−1
∑

r=0

[lhhr
2har

a
+ lh�r�ar + lwhr]e

i(�t+�rs)

(48)

lhhr =
2i

k
CFq,

lh�r =
2

k2
(CF� − i��CFq),

l�hr =
4i

k
(CMq − �CFq),

l��r =
4i

k2
(CM� − �CFq − i��CMq + i��2CFq),

lwhr =
−2wr

k2P
(ei��CFw),

lw�r =
−4wr

k2P
(ei��CMw − �ei��CFw),

� = 2k, � =
1 + a

2
, k =

a�

2P
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considered in this analysis. The work done by the aerody-
namic lift is evaluated and is substituted instead of the aero-
dynamic forces of Piston theory in Eqs. (21) and (22). The 
aerodynamic lift forces L sin(� + �(x)),−L cos(� + �(x)) are 
respectively added to the right hand of the Eqs. (21) and 
(22). By applying the Galekin method, the following equa-
tions are obtained

where, the coefficients of Eqs. (49) and (50) are given in the 
Appendix 2.

7 � Numerical results

The steady state response of the rotatory beam with varying 
speed is investigated in this section. The Eqs. (B.31)–(B.37) 
in the Appendix 2 are obtained for primary and 1:1 internal 
resonances. The coefficients of these equations agree closely 
with the coefficients of modulation equations of thin-walled 
model [5] by ignoring thermal distribution in beam. The 
fixed points of the obtained equations for the thin-walled 
structure in Ref. [5] are plotted in Fig. 2. Fixed points lose 
the stability through a Hopf bifurcation at AΩ = 2.7 . The 
results are in good agreement with numerical results in Ref. 
[5].

The equilibrium points and their stability are pre-
sented in steady state responses. For this purpose, 
p�
1
= q�

1
= p�

2
= q�

2
= 0 in different cases and then the 

resulting equations are solved for p1, q1, p2, q2 and specified 

(49)

p̈(t) + [m12]ṗ(t) + [m13]q̇(t) + [m52]p
3(t) + [m51]q

2(t)p(t)+

[𝜔2
v
]p(t) + [m11]q(t) − 2[m14][Ω0][AΩ][p(t)][cos(𝜔Ωt)]−

[m14][A
2

Ω
][p(t)][cos2(𝜔Ωt)] − [m16][AΩ][𝜔Ω][sin(𝜔Ωt)] − [m1L]e

i𝜔Lt = 0,

(50)

q̈(t) + [m23]q̇(t) + [m22]ṗ(t) + [m52]q
3(t) + [m51]p

2(t)q(t)+

[𝜔2
w
]q(t) + [m21]p(t) − 2[m24][Ω0][AΩ][q(t)][cos(𝜔Ωt)]−

[m24][A
2
Ω
][q(t)][cos2(𝜔Ωt)] + [m2L]e

i𝜔Lt = 0,

values of �, � . The amplitudes a1, a2 are evaluated from 
ai = (p2

i
+ q2

i
)1∕2, i = 1, 2 . In all figures, the settling 

angle and pretwist angle at the tip of blade are equal to 
� = 10 deg, �0 = 45 deg respectively. Moreover, in order to 
verify the frequency responses of the system under flapwise 
and chordewise excitations, the obtained amplitudes by the 
arc-length continuation method are authenticated by the 
Rang-kutta method.

Figure 3 shows the softening frequency response for 
�Ω = �v + ��, AΩ = 0.05.Mach numbers are 4,5 and ampli-
tudes are almost the same and coincide together. As the fre-
quency decreases, a jump phenomenon occurs at � = −2 and 
the amplitude is lessened from a1 = 0.4176 to zero as well.

Figure 4 shows the amplitude of rotatory beam versus AΩ 
with the frequency of the excitation �Ω held fixed ( � = 1 ). 
As AΩ increases from -10 to -0.855, the stable amplitude 
a1 decreases. Amplitudes a1 and a2 are zero from AΩ equal 
-0.855 to 0.855. For further values of AΩ from 0.855 to 10, 
stable branch of a1 increases.

Figures 5 and 6 show the amplitude of responses for sub-
harmonic resonance case �Ω = 2�v + �� and � = 10 deg , 
�0 = 45 deg,M = 5 . Figure 5 is plotted for AΩ = 0.01 and 
Fig. 6 is plotted for � = 0. In Fig. 5, the softening planar 
response is represented and the nonlinear inertia terms are 
dominant for AΩ = 0.01 . As shown in Fig. 6, the amplitude 
a2 is zero in the whole domain and  a1 is decreased for AΩ 
from -0.1 to zero and is increased from zero to 0.1.

Figure  7 shows amplitude of responses versus the 
dimensionless parameter AΩ for subharmonic resonance 
�Ω = 2�v + �� and detuning parameters � = 0.1, 1. As 
seen in parts (a) and (b), a2 is zero in whole domain and 
a1 is zero for � = 0.1, 1 in the ranges −0.078 ≤ AΩ ≤ 0.078 
and −0.49 ≤ AΩ ≤ 0.49 respectively. There are two points 
PF1,PF2 with pitchfork bifurcations. For AΩ ≤ PF1 and 
AΩ ≥ PF2 , the amplitude of a1 increases. Comparison of 
Figs. 6, 7 show that when the detuning parameter � increases 
the pitchfork bifurcations occur in a wider range of AΩ . Fig-
ure 8 shows the amplitude of responses versus AΩ for sub-
harmonic resonance case �Ω = 2�w + ��, � = 1, 5. As seen 
in Fig. 8, the amplitude a1 is zero in the whole domain. Two 
stable branches of a2 increase for AΩ ≤ PF1 or AΩ ≥ PF2 . 
Figure 8 b presents a2 is zero in −1.133 ≤ AΩ ≤ 1.133 for 
� = 5 and −0.391 ≤ AΩ ≤ 0.391 for � = 1 respectively.

Figure 9 is repeated for � = −0.1 . As seen in this figure, 
supercritical and subcritical pitchfork bifurcations occur at 
AΩ = −0.0714, 0.0714 respectively. By increasing AΩ from 
0 to 0.15 and by decreasing AΩ from 0.05 to -0.15 a jump 
phenomenon occurs at AΩ = 0.00013 and a2 increases.

Figure  10 shows the amplitude versus AΩ for 
�Ω = �w + ��, � = 1, 5. amplitude of a1 is zero in whole 
range of considered AΩ and a2 is zero −0.729 ≤ AΩ ≤ 0.729

,� = 1 and −1.631 ≤ AΩ ≤ 1.631 , � = 5.  For AΩ ≤ PF1 as Fig. 2   Amplitude x1 as a function of AΩ.(___) stable, (….) unstable 
with the real part of a complex conjugate pair of eigenvalues being 
positive, HF, Hopf bifurcation
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Fig. 3   Variation of the response amplitude with the frequency detuning parameter �.(___) stable, (---) unstable with at least one eigenvalue being 
positive, SN, saddle-node

Fig. 4   Variation of the response 
amplitude with the amplitude 
of periodic angular velocity AΩ.
(___) stable, (---) unstable with 
at least one eigenvalue being 
positive, SN, saddle-node

Fig. 5   Variation of the 
response amplitude with the 
frequency detuning parameter 
� for sub-harmonic resonance 
�Ω = 2�

v
+ �� . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, SN, 
saddle-node
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AΩ decreases or for AΩ ≥ PF2 as AΩ increases, the stable 
branch of a2 increases.

Figures 11, 12, 13, 14, 15, 16, 17 show the amplitude 
of fixed points for �Ω = 2�w + �� or �Ω = 2�v + ��  and 
1–1 internal resonance �w = �v + ��∕2 . Figure 11 shows 
the amplitudes a1, a2 versus AΩ for detuning parameters 

� = 0.1, � = 0. it is noted that a1, a2 are zero in a range 
of −0.045 ≤ AΩ ≤ 0.045 . Pitchfork bifurcations occur at 
AΩ = −0.045, 0.045. Moreover, transfer of energy occur 
between two modes due to internal resonance.

Figure 12 shows the amplitude of response as a function of 
AΩ for internal resonance �w = �v + ��∕2 and two cases of 

Fig. 6   Variation of the response 
amplitude with the amplitude of 
periodic angular velocity AΩ for 
� = 0. �Ω = 2�

v
+ ��

Fig. 7   Variation of the response 
amplitude with the amplitude 
of periodic angular velocity AΩ 
for � = 0.1, 1.�Ω = 2�

v
+ �� . 

(___) stable, (---) unstable with 
at least one eigenvalue being 
positive, PF, pitchfork bifurca-
tion
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subharmonic resonances (1) �Ω = 2�v + ��, � = 0.1, � = 0.1 
and (2) �Ω = 2�w + ��, � = 0.1, � = 0.1. In two cases, since 
the internal resonance occurs, both amplitudes a1, a2 are 
excited. The response undergoes the subcritical pitchfork 
bifurcations at AΩ = −0.00673, 0.00673 . As AΩ  increases 
from -0.1 to 0.1, the amplitudes undergo a saddle-node 
bifurcation at AΩ = 0.001 , resulting in a jump in to non-
planar response. For further values of  AΩ  up to 0.1, a1 and 
a2 amplitudes increase. As AΩ decreases from 0.1 to -0.1, a 
jump occurs at AΩ = 0.001 and a1, a2 amplitudes increase 
from zero to 0.015. For lower values of AΩ , amplitudes 
increase. The external and internal detuning parameters are 

changed to � = −0.1 and � = −0.1 respectively and ampli-
tudes are plotted versus AΩ in Fig. 13. As shown, the ampli-
tudes undergo the saddle-node bifurcations at AΩ = −0.1015 
( SN1 ) and AΩ = 0.1015(SN2 ) resulting in jump phenom-
enon. Moreover, a jump occurs at AΩ = 0.0003 and a1, a2 
amplitudes jump to values 0.0508 and 0.0226 respectively. 
Pitchfork bifurcations occur at AΩ = −0.00645 ( PF1 ) and 
AΩ = 0.00645(PF2).

Figure  14 indicates the amplitudes for the perfectly 
external detuning parameter � = 0 and internal detuning 
parameter � = 0.1 . Saddle-node bifurcations SN1, SN2 occur 
at AΩ = −0.0840, 0.0840 respectively which is resulted in 

Fig. 8   Variation of the response amplitude with the amplitude of periodic angular velocity AΩ for � = 1, 5.(�Ω = 2�
w
+ ��) . (___) stable, (---) 

unstable with at least one eigenvalue being positive, PF, pitchfork bifurcation
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Fig. 9   Variation of the response amplitude with the amplitude of periodic angular velocity AΩ for � = −0.1.(�Ω = 2�
w
+ ��) . (___) stable, (---) 

unstable with at least one eigenvalue being positive, SN, saddle-node, PF, pitchfork bifurcation

Fig. 10   Variation of the 
response amplitude with the 
amplitude of periodic angu-
lar velocity Ω2 for � = 1, 5.

(�Ω = �
w
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, PF, 
pitchfork bifurcation

Fig. 11   Variation of the 
response amplitude with the 
amplitude of periodic angular 
velocity AΩ for � = 0.1, � = 0. 
(�Ω = 2�

v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive
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two peaks bending to the left and right respectively. The 
heights of two peaks are the same. Pitchfork bifurcations 
occur at AΩ = −0.0097, 0.0097 . Curves jump downwards 
for increasing AΩ at Ω2 = 0.0840 and for decreasing AΩ at 
AΩ = −0.0840 . By increasing AΩ , amplitudes jump upwards 

AΩ = 0.0002 from zero to values 0.0226, 0.0508 for a1, a2 
respectively. Also, by decreasing AΩ from 0.1 to zero, the 
amplitudes jump downwards at AΩ = 0.0002.

Figure  15 presents the amplitude as a func-
tion of internal detuning parameter � for 1–1 

Fig. 12   Variation of the 
response amplitude with the 
amplitude of periodic angular 
velocity AΩ for � = 0.1, � = 0.1.

(�Ω = 2�
v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, PF, 
pitchfork bifurcation

Fig. 13   Variation of the 
response amplitude with 
the amplitude of peri-
odic angular velocity AΩ 
for � = −0.1, � = −0.1.

(�Ω = 2�
v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, SN, 
saddle-node, PF, pitchfork 
bifurcation

Fig. 14   Variation of the 
response amplitude with the 
amplitude of periodic angular 
velocity AΩ for � = 0, � = 0.1.

(�Ω = 2�
v
+ ��, �Ω = 2�

w
+ ��) . 

(___) stable, (---) unstable with 
at least one eigenvalue being 
positive, SN, saddle-node, PF, 
pitchfork bifurcation
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Fig. 15   Variation of the 
response amplitude with the 
internal detuning param-
eter � for AΩ = 0.1, � = 0.

.(�Ω = 2�
v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, SN, 
saddle-node

Fig. 16   Variation of the 
response amplitude with the 
internal detuning param-
eter � for AΩ = 0.1, � = 0.1.

(�Ω = 2�
v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, SN, 
saddle-node, (….) unstable with 
the real part of a complex con-
jugate pair of eigenvalues being 
positive, HF, Hopf bifurcation

Fig. 17   Variation of the response amplitude with the internal detuning parameter � for AΩ = 0.1, � = −0.1.   (�Ω = 2�
v
+ ��) . (___) stable, (---) 

unstable with at least one eigenvalue being positive, SN, saddle-node
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internal resonance and �Ω = 2�v + ��, AΩ = 0.1, � = 0, or 
�Ω = 2�w + ��,AΩ = 0.1, � = 0. as � increases from -1 to 5, 
the nontrivial solution undergoes a saddle-node bifurcation 
at � = 0.115 . By increasing � from 0 to 0.218, amplitudes 
jump upwards at � = 0.115 and by decreasing � from 0.2 
to zero, amplitudes jump downwards at � = 0.115 . There 
are three points ( � = 0.115, 0.218, 0.258 ) with saddle node 
bifurcations. As � exceeds the critical value � = 0.258 , a1 
saturates and a2 decreases.

Figure 16 is repeated for detuning parameter � = 0.1 . 
There are two points ( � = −0.0508, 0.207 ) with saddle-
node bifurcation and two points ( � = 0.207, 0.230 ) with 
Hopf bifurcations. Dynamic response between two points 
HF1,HF2 may be periodic or chaotic. A single jump occurs 
at SN2 resulting in a non-planar response. For � ≥ 0.207 , a1 
saturates and a2 decreases. Figure 17 is plotted for � = −0.1 
and fixed points lose stability through saddle-node bifurca-
tions at � = −0.283,−0.274,−0.096 . A pitchfork bifurcation 
occurs at � = −0.298 and by increasing � , the amplitudes 
jump downwards at � = −0.283,−0.096 . Figure 18 shows 
the amplitudes versus � for �Ω = 2�v + ��, AΩ = 1, � = 1. 
There is a saddle-node bifurcation at � = −0.178 . for 
AΩ = 1, � = 1 , the a2 amplitude bends to the right and the 
nonlinearity type is hardening.

Figure 19 shows the amplitude of response as a func-
tion of AΩ for internal resonance �w = �v + ��∕2 , 
�L = �v + ��  �Ω = 2�v + ��, � = −0.1, � = −0.02  by 
Whitehead’s theory. Saddle-node bifurcations SN1, SN6 
occur at AΩ = −0.0520, 0.0520 respectively which result in 
two peaks bending to the left and right respectively. The 
heights of two peaks are the same. As seen in Fig. 19, the 
other symmetric jumps are presented at  SN2, SN5 respec-
tively for AΩ = −0.0320, 0.0320. Moreover, two saddle-
node bifurcations SN3, SN4 occur at AΩ = −0.0127, 0.008 

respectively and the amplitudes lose the stability through the 
Hopf bifurcation ( HF ) at AΩ = 9.65 × 10−3 . In the range of 
AΩ = 9.65 × 10−3 to AΩ = 6 × 10−3 periodic, quasi-periodic 
or chaotic motions may be occurred.

Figure 20 presents the amplitude as a function of inter-
nal detuning parameter � for 1–1 internal resonance and 
�L = �v + �� �Ω = 2�v + ��, AΩ = 1, � = −0.02 by White-
head’s theory. The fixed points lose stability through saddle-
node bifurcations at SN1, SN2, SN3 respectively for detuning 
parameters � = −0.283,−0.283,−0.283. Moreover, the a2 
amplitude bends to the right and the type of nonlinearity 
is hardening.

Figure 21 presents the amplitude as a function of inter-
nal detuning parameter � for 1–1 internal resonance and 
�L = �v + �� �Ω = 2�v + ��, AΩ = 0, � = −2 by White-
head’s theory. The a2 amplitude bends to the left and the 
nonlinearity type is softening. Jumps occur at SN1, SN2 for 
detuning parameters � = −0.007,−1.09 respectively.

Fig. 18   Variation of the 
response amplitude with the 
internal detuning param-
eter � for AΩ = 1, � = 1.  
(�Ω = 2�

v
+ ��) . (___) stable, 

(---) unstable with at least one 
eigenvalue being positive, SN, 
saddle-node

Fig. 19   Variation of the response amplitude with the amplitude of 
periodic angular velocity AΩ for �

w
= �

v
+ ��∕2 , �

L
= �

v
+ �� 

�Ω = 2�
v
+ ��, � = −0.1, � = −0.02 . (Whitehead’s theory) (___) 

stable, (---) unstable with at least one eigenvalue being positive, SN, 
saddle-node, (….) unstable with the real part of a complex conjugate 
pair of eigenvalues being positive, HF, Hopf bifurcation
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8 � Conclusion

Nonlinear vibration of the rotatory Euler–Bernoulli beam 
with time-varying angular velocity is inquired under aero-
dynamic loads. Nonlinearity comes from varying speed, 
strain–displacement relation and aerodynamic forces. The 
equations describing the flexural and lateral motions of the 
pretwist, presetting rotatory beam are obtained and are trans-
formed to the discrete ones by the Galerkin method. The 
multiple scales method is employed and the four dimen-
sional ordinary averaged equations are obtained for internal 
and primary resonances. The obtained and concluded results 
are as follows:

(1)	 In the subharmonic and 1:1 internal resonance case, 
when the pulsation amplitude of varying speed func-
tion is changed the double-jump phenomenon appears 
in bifurcation diagrams.

(2)	 Bifurcation diagrams are plotted for M = 5 . For other 
Mach numbers from 0 to 5, amplitudes are almost as 
same as amplitudes for Mach 5.

(3)	 Saturation of directly excited mode occurs for 1:1 inter-
nal and subharmonic resonances.

(4)	 Periodic, quasi-periodic or chaotic motions appear 
between Hopf bifurcation points of amplitudes in sub-
harmonic and 1:1 internal resonances.

(5)	 By increasing the external detuning parameter in pri-
mary and suharmonic resonances, amplitude of excited 
mode is zero for the wider range of AΩ.

(6)	 Softening and hardening type nonlinearities appear in 
amplitudes.

Appendix 1

(A.1)n5 = ∫
1

0

H2(x)dx

(A.2)

n2 = ∫
1

0

−C∞�∞(a − b)[sin(� + �x)][cos(� + �x)]H2(x)dx

(A.3)n61 = ∫
1

0

−(3∕2)H(x)[H�(x)]2H��(x)dx

(A.4)n17 = ∫
1

0

H(x)[IzH
��(x)]��dx

(A.5)

n14 = ∫
1

0

−C∞�∞{P(a[sin2(� + �x)][cos(� + �x)]

− b[cos2(� + �x)][sin(� + �x)]H(x)H�(x) + P�0[−a sin
3(� + �x)]

− b[cos3(� + �x)]H2(x)}dx

(A.6)
n10 = ∫

1

0

[H2(x) + ((1 − x
2)∕2 + R0(1 − x))H(x)H��(x) − (R0 + x)H(x)H�(x)]dx,

(A.7)

n21 = ∫
1

0

−C∞�∞(−a[cos
2(� + �x)] − b[sin2(� + �x)]H2(x)dx,

(A.8)n27 = ∫
1

0

H(x)(IyH
��(x))��dx,

Fig. 20   Variation of the response amplitude with the inter-
nal detuning parameter � for �

w
= �

v
+ ��∕2 , �

L
= �

v
+ �� 

�Ω = 2�
v
+ ��, � = −0.02,AΩ = 1 . (Whitehead’s theory) (___) sta-

ble, (---) unstable with at least one eigenvalue being positive, SN, 
saddle-node

Fig. 21   Variation of the response amplitude with the detun-
ing parameter � for �

w
= �

v
+ ��∕2 , �

L
= �

v
+ �� 

�Ω = 2�
v
+ ��, � = −2,AΩ = 0 . (Whitehead’s theory) (___) stable, 

(---) unstable with at least one eigenvalue being positive, SN, saddle-
node
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Appendix 2

The right hand of Eqs. (44) and (45) are given in Eqs. (B.1) 
and (B.2) as follows

(A.9)

n23 = ∫
1

0

−C∞�∞{P[a sin
2(� + �x)][cos(� + �x)]

− b[cos2(� + �x)][sin(� + �x)]H(x)H�(x)

+ P�0(a[sin(� + �x)][cos2(� + �x)]

+ b[sin2(� + �x)][cos(� + �x)]H2(x)}dx,

(A.10)

n11 = ∫
1

0

−C∞�∞(−a[sin
2(� + �x)] − b[cos2(� + �x)]H2(x)dx,

(A.11)n62 = ∫
1

0

−3H(x)[H�(x)]2H��(x)dx,

(A.12)

n23 = ∫
1

0

−C∞�∞{P[−a sin3(� + �x)]

− b[cos3(� + �x)]H(x)H�(x) + P�0(−a[sin
2(� + �x)][cos(� + �x)]

+ b[sin(� + �x)][cos2(� + �x)]H2(x)}dx,

(A.13)n8 = ∫
1

0

H(x)(IyzH
��(x))��dx,

(A.14)n9 = ∫
1

0

(R0 + x)H(x)dx,

(A.15)

n24 = ∫
1

0

−C∞�∞{P[−a sin(� + �x)][cos2(� + �x)]

− b[sin2(� + �x)][cos(� + �x)]H(x)H�(x)

+ P�0(a[sin
2(� + �x)][cos(� + �x)]

− b[sin(� + �x)][cos2(� + �x)]H2(x)}dx,

(A.16)
n20 = ∫

1

0

[((1 − x
2)∕2 + R0(1 − x))H(x)H��(x)−(R0 + x)H(x)H�(x)]dx,

(A.17)

m11 =(n14 + n8)∕n5, m12 = (n11)∕n5, m21 = (n23 + n8)∕n5,

m22 =m13 = (n2)∕n5,m23 = (n21)∕n5, m14 = (n10)∕n5,

(A.18)

m24 = (n20)∕n5, m16 = (n9)∕n5, m51 = (n61)∕n5, m52 = (n62)∕n5,

�2

v
= (n13 + n17 − n10Ω

2

0
)∕(n5), �2

w
= (n24 + n27 − n20Ω

2

0
)∕(n5),

The modulation equations for case 1:

(B.1)

RHp = −2
{

[�A1∕�T1][i�v]e
i�vT0 + [�A1∕�T1][−i�v]e

−i�vT0

}

− [m12]
{

A1[i�v]e
i�vT0 + A1[−i�v]e

−i�vT0

}

− [m13]
{

A2[i�w]e
i�wT0 + A2[−i�w]e

−i�wT0

}

− [m11]
{

A2e
i�wT0 + A2e

−i�wT0

}

+ [m14][Ω0][AΩ]
{

A1e
i(�v+�Ω)T0 + A1e

i(�Ω−�v)T0

+A1e
i(�v−�Ω)T0 + A1e

i(−�Ω−�v)T0

}

+ [m14∕4][A
2

Ω
]
{

A1e
i(�v+2�Ω)T0 + A1e

−i(2�Ω−�v)T0

+A1e
i(�v−2�Ω)T0 + A1e

i(−2�Ω−�v)T0

+2A1e
i(�v)T0 + 2A1e

−i(�v)T0

}

− [m52]
{

A
3

1
e
3i�vT0

+3A2

1
A1e

i�vT0 + 3A1A
2

1
e
−i�vT0 + A

3

1
e
−3i�vT0

}

+ [m16][AΩ
][�Ω]

{

[ei�ΩT0 − e
−i�ΩT0 ]∕2

}

,

(B.2)

RHq = −2
{

[�A2∕�T1][i�w
]ei�wT0 + [�A2∕�T1][−i�w

]e−i�wT0

}

− [m22]
{

A1[i�v
]ei�vT0 + A1[−i�v

]e−i�vT0

}

− [m23]
{

A2[i�w
]ei�wT0 + A2[−i�w

]e−i�wT0}

−[m21]{A1e
i�vT0 + A1e

−i�vT0

}

+ [m24][Ω0][AΩ]
{

A2e
i(�w+�Ω)T0 + A2e

i(�Ω−�w)T0

+A2e
i(�w−�Ω)T0 + A2e

i(−�Ω−�w)T0

}

+ [m24∕4][A
2

Ω
]
{

A2e
i(�w+2�Ω)T0 + A2e

−i(2�Ω−�w)T0

+A2e
i(�w−2�Ω)T0 + A2e

i(−2�Ω−�w)T0

+2A2e
i(�w)T0 + 2A2e

−i(�w)T0

}

− [m52]
{

A
3

2
e
3i�wT0 + 3A

2

2
A2e

i�wT0 + 3A2A
2

2
e
−i�wT0 + A

3

2
e
−3i�wT0

}

− [m51]
{

A
2

1
A2e

i(�w+2�v)T0 + A
2

1
A2e

i(�w−2�v)T0

+2A1A1A2e
i(�w)T0 + A

2

1
A2e

i(2�v−�w)T0

+A
2

1
A2e

i(−�w−2�v)T0 + 2A1A1A2e
−i(�w)T0

}

,

(B.3)

D1A1 = −[m12∕2][A1] + i[m51∕�v
][A1][A

2

2
] + i[3m52∕2�v

][A2

1
][A1]

− [m16∕4�v
][�Ω][AΩ][e

i�T1 ] − i[m14∕4�v
][A2

Ω
][A1]

− i[m14∕8�v
][A2

Ω
][A1][e

2i�T1 ],

(B.4)

D1A2 = − [m23∕2][A2] + i[m51∕�w
][A1][A1][A2

]

+ i[3m52∕2�v
][A2

2
][A2] − i[m24∕4�w

][A2

Ω
][A2],

(B.5)A1 = (1∕2)(p1 − iq1)[e
i�T1],A2 = (1∕2)(p2 − iq2),
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The modulation equations for case 2:

The modulation equations for case 3:

(B.6)

p
�
1
= −[�][q1] − [m12∕2][p1] − [m16∕2�v

][AΩ][�� + �
v
]

+ [m51∕4�v
][q1][p

2

2
] + [m51∕4�v

][q1][q
2

2
]

− [m14∕8�v
][A2

Ω
][q1] + [3m52∕8�v

][p2
1
][q1]

+ [3m52∕8�v
][q3

1
],

(B.7)

q�
1
= −[�][p1] − [m12∕2]q1 − [m51∕4�v]p1p

2
2
− [m51∕4�v]p1q

2
2

+ [3m14∕8�v][A
2
Ω
]p1 − [3m52∕8�v]p1q

2
1
− [3m52∕8�v]p

3
1
,

(B.8)

p�
2
= −[m23∕2]p2 − [m24∕4�w][A

2
Ω
][q2] + [m51∕4�w]q2p

2
1

+ [m51∕4�w]q2q
2
1
+ [3m52∕8�w][p

2
2
][q2] + [3m52∕8�w]q

3
2
,

(B.9)

q�
2
= −[m23∕2]q2 + [m24∕4�w][A

2
Ω
][p2] − [m51∕4�w]p2p

2
1

− [m51∕4�w]p2q
2
1
− [3m52∕8�w][q

2
2
][p2] − [3m52∕8�w]p

3
2
,

(B.10)

D1A1 = − [m12∕2]A1 + i[m51∕�v
]A1A2

A2

+ i[3m52∕2�v
]A2

1
A1 − i[m14∕4�v

][A2

Ω
][A1],

(B.11)

D1A2 = −[m23∕2]A2 + i[m51∕�w
]A1A2

A1 + i[3m52∕2�w
]A2

2
A2

− i[m24∕4�w
][A2

Ω
][A2]

− i[m24∕8�w
][A2

Ω
][A2]e

2i�T1 ,

(B.12)A1 = (1∕2)(p1 − iq1),A2 = (1∕2)(p2 − iq2)e
i�T1 ,

(B.13)

p
�
1
= −[m12∕2]p1 − [m14∕4�w

][A2

Ω
][q1]

+ [m51∕4�v
]q1p

2

2
+ [m51∕4�v

]q1q
2

2

+ [3m52∕8�v
]p2

1
q1 + +[3m52∕8�v

]q3
1
,

(B.14)

q
�
1
= −[m12∕2]q1 − [m14∕4�v

][A2

Ω
]p1

− [m51∕4�v
]p1p

2

2
− [m51∕4�v

]p1q
2

2

− [3m52∕8�v
]p1q

2

1
− [3m52∕8�v

]p3
1
,

(B.15)

p
�
2
= −[�][q2] − [m23∕2]p2 + [m51∕4�w][p

2

1
][q2] + [m51∕4�w][q

2

1
][q2]

− [m24∕8�w][A
2

Ω
][q2] + [3m52∕4�w]q2p

2

2
+ [3m52∕8�w]q

3

2
,

(B.16)

q
�
2
= −[�][q2] − [m23∕2]q2 − [m51∕4�w

]p2p
2

1

− [m51∕4�w
]p2q

2

1
+ [3m24∕8�w

][A2

Ω
][p2]

− [3m52∕8�w
]p2q

2

2
− [3m52∕8�w

]p3
2
,

The modulation equations for case 4:

(B.17)

D1A1 = −[m12∕2]A1 + i[m51∕�v
]A1A2A2

− i[m14∕2�v
][Ω0][AΩ]A1e

i�T1

+ i[3m52∕2�v
]A2

1
A1 − i[m14∕4�v

][A2

Ω
][A1],

(B.18)

D1A2 = − [m23∕2]A2 + i[m51∕�w
]A1A2

A1

+ i[3m52∕2�w
]A2

2
A2 − i[m24∕4�w

][A2

Ω
][A2],

(B.19)A1 = (1∕2)(p1 − iq1)e
i�T1 ,A2 = (1∕2)(p2 − iq2),

(B.20)

p
�
1
= −[�∕2]q1 − [m12∕2]p1 + [m14∕2�v

][Ω0][AΩ]q1

− [m14∕4�v
][A2

Ω
][q1] + [m51∕4�v

]q1p
2

2

+ [m51∕4�v
]q1q

2

2
+ [3m52∕8�v

]p2
1
q1 + +[3m52∕8�v

]q3
1
,

(B.21)

q
�
1
= −[�∕2]p1 − [m12∕2]q1 + [m14∕2�v

][Ω0][AΩ
]p1

+ [m14∕4�v
][A2

Ω
]p1 − [m51∕4�v

]p1p
2

2

− [m51∕4�v
]p1q

2

1
− [3m52∕8�v

]p3
1
,

(B.22)

p�
2
= −[m23∕2]p2 − [m24∕4�w][A

2
Ω
][q2] + [m51∕4�w][p

2
1
][q2]

+ [m51∕4�w][q
2
1
][q2] + [3m52∕4�w]q2p

2
2
+ [3m52∕8�w]q

3
2
,

(B.23)

q
�
2
= −[m23∕2]q2 + [3m24∕8�w][A

2

Ω
][p2] − [m51∕4�w]p2p

2

1

− [m51∕4�w]p2q
2

1
+ −[3m52∕8�w]p2q

2

2
− [3m52∕8�w]p

3

2
,

(B.24)

D1A1 = − [m12∕2]A1 + i[m51∕�v
]A1A2A2

+ i[3m52∕2�v
]A2

1
A1 − i[m14∕4�v

][A2

Ω
][A1],

(B.25)

D1A2 = −[m23∕2]A2 + i[m51∕�w]A1A2
A1 + i[3m52∕2�w]A

2
2
A2

− i[m24∕2�w][Ω0][AΩ
][A2]e

i�T1 − i[m24∕4�w][A
2
Ω
][A2],

(B.26)A1 = (1∕2)(p1 − iq1),A2 = (1∕2)(p2 − iq2)e
(i�T1∕2),

(B.27)

p
�
1
= −[m12∕2]p1 + [m14∕4�v][A

2

Ω
][q1] + [m51∕4�v]q1p

2

2

+ [m51∕4�v]q1q
2

2
+ [3m52∕8�v]p

2

1
q1 + [3m52∕8�v]q

3

1
,

(B.28)

q
�
1
= −[m12∕2]q1 + +[m14∕4�v][A

2

Ω
]p1 − [m51∕4�v]p1q

2

2

− [m51∕4�v]p1q
2

2
− [3m52∕8�v]p

3

1
− [3m52∕8�v]p1q

2

1
,

(B.29)

p
�
2
= −[�∕2]q2 − [m23∕2]p2 − [m24∕2�w

][Ω0][AΩ][q2] − [m24∕4�w
][A2

Ω
][q2]

+ [m51∕4�w
][p2

1
][q2] + [m51∕4�w

][q2
1
][q2] + [3m52∕8�w

]q3
2
,
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The modulation equations for case 5:

The modulation equations for case 6:

(B.30)

q
�
2
= [�∕2]p2 − [m23∕2]q2 + [m24∕2�w

][Ω0][AΩ]p2

+ [m24∕4�w
][A2

Ω
][p2] − [m51∕4�w

]p2p
2

1

− [m51∕4�w
]p2q

2

1
− [3m52∕8�w

]p2q
2

2
− [3m52∕8�w

]p3
2
,

(B.31)

D1A1 = −[m12∕2]A1 − [m13�w
∕2�

v
]A2e

i(�T1∕2) + i[m51∕�v
]A1A2A2

+ i[m11∕2�v
]A2e

i(�T1∕2) + i[m51∕2�v
]A1A

2

2
e
i(�T1∕2)

+ i[3m52∕2�v
]A2

1
A1 − i[m16∕4�v

][A
Ω
][�Ω]e

i(�T1)

− i[m14∕4�v
][A2

Ω
][A1]

− i[m14∕8�v
][A2

Ω
][A1]e

i(2�T1),

(B.32)

D1A2 = −[m23∕2]A2 − [m22�v
∕2�

w
]A1e

−i(�T1∕2)

+ i[m51∕�w
]A1A2

A1 + i[m21∕2�w
]A1e

−i(�T1∕2)

+ i[m51∕2�w
]A2

1
A2e

−i(�T1) + i[3m52∕2�w
]A2

2
A2

+ −i[m24∕4�w
][A2

Ω
][A2] − i[m24∕8�w

][A2

Ω
][A2]e

i(2�T1)e
−i(�T1),

(B.33)
A1 = (1∕2)(p1 − iq1)e

(i�T1),A2 = (1∕2)(p2 − iq2)e
(i[�−�∕2]T1),

(B.34)

p
�
1
= −[�][q1] − [m12∕2]p1 − [m16(�� + �v)∕2�v][AΩ]

− [m13(��∕2 + �v)∕2�v]p2

+ [m11∕2�v]q2 + [m51∕4�v]p1p2q2

− [m14∕8�v][A
2

Ω
][q1] + [3m52∕8�v]p

2

1
q1

+ [m51∕8�v]q1p
2

2
+ [3m52∕8�v]q

2

2
q1 + [3m52∕8�v]q

3

1
,

(B.35)

q
�
1
= −[�][q1] − [m12∕2]q1 − [m13∕2�v]p2 − [m13(��∕2 + �v)∕2�v]q2
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The coefficients of Eqs. (49) and (50) are
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A1 = (1∕2)(p1 − iq1)e
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