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Abstract
This paper proposes a technique to identify nonlinear dynamical systems with time delay. The sparse optimization algorithm
is extended to nonlinear systemswith time delay. The proposed algorithm combines cross-validation techniques frommachine
learning for automatic model selection and an algebraic operation for preprocessing signals to filter the noise and for removing
the dependence on initial conditions. We further integrate the bootstrapping resampling technique with the sparse regression
to obtain the statistical properties of estimation. We use Taylor expansion to parameterize time delay. The proposed algorithm
in this paper is computationally efficient and robust to noise. A nonlinear Duffing oscillator is simulated to demonstrate the
efficiency and accuracy of the proposed technique. An experimental example of a nonlinear rotary flexible joint is presented
to further validate the proposed method.

Keywords Time delay estimation ·Sparse regression ·Algebraic operation ·System identification ·Bootstrapping resampling ·
Nonlinear dynamics

1 Introduction

Time delay exists in many engineering, physics, chemistry,
biology and economics systems. In control systems, time
delay due to sensor and actuator dynamics, signal transmis-
sion, and digital computations is an important factor that
influences the stability and control performance. To make
matter worse, time delay is often unknown. Time delay esti-
mation in a control system is a challenging problem. It is even
more challengingwhen the systemdynamics is nonlinear and
unknown. This paper presents a nonparametric identification
technique to identify nonlinear dynamic systems and esti-
mate time delay introduced by the feedback control.

There have been many studies of time delay identification
of control systems. Richard presented an overview of time
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delay estimation methods in [1]. The time delay estimation
techniques based on pulsed inputs have been developed in
[2,3]. The Padé approximation [4], the modified least square
and recursive methods [5–9] , instrumental variable iden-
tification [10], neural networks [11], algebraic estimation
[12,13], adaptive techniques [14,15], and non-commutative
rings [16] are just a few popular methods for time delay esti-
mation.

Themethods for time delay estimation can be in frequency
or time domain [17,18]. In this paper, our focus is on the
approaches in time domain. Since time delay usually appears
in the system implicitly, themethods for conventional param-
eter estimation of dynamic systems cannot be directly applied
to estimate time delay. Time delay τ usually appears in the
exponential term e−τ s in the transfer function of the system.
The expansion techniques can parameterize it, including the
classical Padé approximation, the Laguerre Fourier series,
theKautz series, the second-order Padé shift and the diagonal
Padé shift. The main concern with the rational approxima-
tion is the truncation error and stability complications. Even
though higher order expansions can reduce the truncation
error, the system can become unstable even when the sys-
tem is linear with a constant time delay [1]. In this paper, we
employ the Taylor expansion. Xu demonstrates that the low
order Taylor expansion gives promising estimation of small
time delay [19].
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The work in [20] presents a nonlinear least square-based
algorithm in which the instrumental variable method esti-
mates the parameters of the transfer function of the system
while an adaptive gradient-based iteration finds the optimal
time delay from the filtered irregularly sampled data. The
main problem with this algorithm is that the proposed cost
function may have several local minima. Therefore, it highly
depends on the initial guess for the parameters and espe-
cially the time delay. To deal with this issue, the authors
use a low-pass filter to widen the convergence region around
the global minimum. Another nonlinear recursive optimiza-
tion algorithm is proposed in [21], which combines the linear
methodofLevenberg-Marquardt to compute the plant param-
eters with a modified Gauss–Newton algorithm to estimate
time delays. A low-pass filter and a binary transformation
are applied to the data corrupted by the white noise to create
the regressor matrix for minimizing a quadratic cost func-
tion of the estimation error. The identification is online and
is demonstrated on a MISO plant with multiple time delays.
Similarly, the algorithm in [9] employs the Gauss–Newton
method to estimate time delay when the simplified refined
instrumental variable (SRI VC) method is used to find the
plant parameters.

The Taylor expansion is used to parameterize the sys-
tem with explicit time delay in [15]. An adaptive law for
the parameter estimation is proposed such that the estima-
tion error is converged. A recursive formula is introduced in
[6] to improve the accuracy and convergency rate of another
recursive algorithm for online estimation in [22]. The strat-
egy in [8] aims at fractional time delay identification for
discrete-time systems. It separates the influence of the sys-
tem structure and the time delay by discretizing the system.
With the help of the Kalman filter, the parameters are esti-
mated recursively. The algorithm in [11] first parameterizes
the system by a polynomial function and trains a neural net-
work to estimate the parameters and time delay. A Schweizer
and Wolff’s σ measure denoted as σSW from the copula the-
ory is introduced to study the relationship of input-output
signals for SISO systems [23]. It is found that the measure
reaches its maximum when the time delay is removed from
the data. This property offers an approach to estimate time
delay without the need of estimation of other parameters.

Most existing methods for time delay estimation rely on
the knowledge of the systemmodel. In this work, we propose
the application of a recently developed nonparametric system
identification technique to the time delay estimation. Brunton
and colleagues proposed a method called the sparse identifi-
cation of nonlinear dynamics (SINDy) in 2016 for creating a
sparse representation of the unknown nonlinear function of
the system [24]. The method has attracted a great attention
from the community. It assumes that only a few important
terms out of a library of functions are needed to describe the
dynamics of the system. It combines machine learning and

sparsity-promoting techniques to find the sparse representa-
tion in the space of possible functions to model nonlinear
dynamical systems. The connection of the SINDy method
to the Akaike information criteria (AIC) for model selection
has been studied in [25]. The promising results for system
identification problems such as hybrid dynamical systems,
chaotic Lorenz system and Burger’s partial differential equa-
tion have been obtained [25,26]. The SINDy method applied
to the model predictive control delivers better performance,
requires significantly less data, and is more computationally
efficient and robust to noise than the neural networks model
[27]. Robustness to noise and requirement for measurements
of derivatives are concerns with the SINDy approach [28].
The total variation regularized derivatives are commonly
used to estimate the derivatives [29,30]. An integral form of
equations of motion in combination with sparse regression is
proposed in [31]. An application to model identification of
nonlinear mechanical systems is reported in [32].

In practical cases, the data is often contaminated with
noise. Fliess and Ramirez proposed a robust and fast alge-
braic identification technique to estimate time invariant linear
systems without time delay [33]. Inspired by the alge-
braic operation, Belkoura in [12] and [13] first investigated
the identifiability conditions for a general class of systems
described by convolution equations. Then, an algebraic for-
mulation is introduced for online estimation of time delay
and parameters of structured and arbitrary input-outputs.

In this paper, we extend the SINDy approach by combin-
ing it with the algebraic signal processing method to deal
with the issue of measurement noise, initial conditions and
derivatives. The algebraic operation generates useful signals
for system identification while filtering out the noise. We
apply the Taylor expansion tomake the time delay appear as a
parameter of themodel to identify.Anonlinear extended state
estimator is adopted for derivative estimation. As a result,
we arrive at a robust sparse regression combined with cross
validation and bootstrapping techniques for nonparamet-
ric system identification. The simulation and experimental
results illustrate that the proposed algorithm can overcome
the following limitations of the existing techniques:

– Multiple local minima Achieving the global minimum is
the main challenging for modified least square methods
with recursive approach. The sparse regression is a con-
vex optimization problem with a global minimum [34].

– Nonparametric nonlinear identificationTheonly assump-
tion of the proposed algorithm about the structure of the
system is that the system is sparse in the space of base
functions. The proposed algorithm relies on the data to
make selection and is not limited to linear and SISO sys-
tems.

– Noise resistant The sparse regression is already robust.
The algebraic operation offers additional filtering of the
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Identification of nonlinear dynamical systems with time delay 15

noise. Furthermore, the proposed algorithm is equipped
with bootstrapping to study the statistics of estimation
such as mean and standard deviations.

– Unstructured entries Many classical strategies are
designed for pulsed entries. The proposed approach ana-
lyzes the input and output data without any frame and
structure assumption for entries.

– Initial conditions Another general assumption in time
delay estimation is that the initial conditions are zero
while in most of practical applications, it is not true. The
algebraic operation and operational calculus make the
proposed algorithm independent of the initial conditions.

The rest of the paper is organized as the follows. Section 2
introduces the assumptions and formulates the mathematical
problem of system identification. The techniques of alge-
braic data preprocessing and derivative estimations, sparse
regression in combination with bootstrapping resampling,
and cross validation are explained in Sect. 3. Section 4
presents an example of a simulated nonlinear mass-spring-
damper system under a proportional control with time delay.
The experimental validation of the proposed algorithm on the
rotary flexible joint made by Quanser is presented in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Problem definition and assumptions

Consider a closed-loop second order system given by,

mẍ + g(x, ẋ) = f (t) + b1 ẋ(t − τ) + b0x(t − τ) (1)

where m > 0 is the mass of the system, the function g(x, ẋ)
represents the nonlinear restoring or internal force of the sys-
tem. The term f (t) contains the reference information aswell
as external disturbances. The control consists of the output
and its first-order derivative with feedback gains b0 and b1,
and a time delay τ . We make the following assumptions in
this study.

Assumptions

1. Only the system response x(t) is measured.
2. The system is exposed to random excitations included in

f (t).
3. The measurement contains Gaussian white noise with

zero mean denoted as εx .
4. The system structure in terms of the function g(x, ẋ) is

unknown.
5. The system is second order.

This paper is focused on nonparametric identification of
closed-loop nonlinear dynamical systems with a control time
delay.

3 The proposedmethod

For the restoring force g(x, ẋ) with an unknown structure,
there are many candidate functions available to approximate
it, such as polynomial, trigonometric, exponential functions
or a combination of these functions. Because the polynomial
is a popular base function to describe a wide range of dynam-
ical systems, we use regular polynomials of x and ẋ with
time-invariant coefficients to explain the proposed method,

g(x, ẋ) =
N∑

i=0

M∑

j=0

ci j x
i ẋ j (2)

where ci j are the unknown coefficients of the polynomial.
Other functions can also be considered with the proposed
method.

For the system without any prior knowledge, the orders N
and M of the polynomial are unknown. This study develops
an algorithm to identify the polynomial defined in Eq. (2)
from the response data such that it has a minimum number
of terms and with the minimum orders N and M .

3.1 Algebraic operation

Noise robustness has been always an inevitable part of system
identification techniques as the noise is unavoidable in real
data. Time delay caused by sensors and actuators is usually
so small that it is difficult or even impossible to estimate
correct values of time delay from noisy data. In addition to
noise robustness, dynamical system identification methods
require derivatives of time series of the measured response.
Traditional finite difference methods to estimate derivatives
can amplify the noise. To deal with this issue, we propose to
apply the algebraic operation to pre-process the data.

We use a nonlinear oscillator under a proportional control
with gain kp to illustrate the method.

mẍ + c1 ẋ + c2 ẋ x
2 + c3 ẋ

3

+ k1x + k3x
3 − kpx(t − τ) = f (t)

x(0) = x0, ẋ(0) = v0 (3)

wherem denotes mass, c1, c2 and c3 stand for damping coef-
ficients, k1 and k3 are the stiffness coefficients. The system
starts from initial conditions (x0, v0) which are generally
unknown. We introduce several short-hands for the nonlin-
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ear terms.

z1 = ẋ x2, z2 = ẋ3, z3 = x3 (4)

Applying the Laplace transform to Eq. (3), we have

m
{
s2X(s) − sx0 − v0

}

+ c1 {sX(s) − x0} + k1X(s) − kpe
−sτ X(s) = G(s) (5)

where

G(s) = F(s) − c2Z1(s) − c3Z2(s) − k3Z3(s), (6)

X(s) is the Laplace transform of x(t), Zi (s) is the Laplace
transform of zi (t) and F(s) is the Laplace transform of f (t).

Consider the Taylor expansion of the exponential term
e−sτ

e−sτ = 1 − sτ + s2τ 2

2! − s3τ 3

3! + ... (7)

We should point out that keeping toomany higher order terms
may not be beneficial to the identification process. We only
need to keep a sufficient number of terms to generate enough
equations to determine the unknown parameters including
time delay.

As an example, we keep the terms up to the third order
and substitute the Taylor expansion in Eq. (5).

m
{
s2X(s) − sx0 − v0

}
+ c1 {sX(s) − x0}

+ k1X(s) − kp

{
1 − sτ + s2τ 2

2! − s3τ 3

3!
}
X(s) = G(s)

(8)

To eliminate the initial conditions, we differentiate Equa-
tion (8) with respect to s twice. To eliminate the derivative
terms in time domain, we divide the resulting equation by s3.
Back to time domain, we obtain an equation of signals

Pf (t) = kp
τ3

3! P1(t) +
{
m − kp

τ2

2

}
P2(t) + {

c1 + kpτ
}
P3(t)

+ c2P4(t) + c3P5(t) + {
k1 − kp

}
P6(t) + k3P7(t) (9)

where

P1(t) = 6
∫ (2)

x(t) − 6
∫

t x(t) + t2x(t)

P2(t) = 2
∫ (3)

x(t) − 4
∫ (2)

t x(t) +
∫

t2x(t)

P3(t) = −2
∫ (3)

t x(t) +
∫ (2)

t2x(t)

P4(t) =
∫ (3)

t2z1(t), P5(t) =
∫ (3)

t2z2(t)

P6(t) =
∫ (3)

t2x(t), P7(t) =
∫ (3)

t2z3(t)

Pf (t) =
∫ (3)

t2 f (t) (10)

Note that
∫ (n)

φ(t) denotes the multiple integral
t∫

0

σ1∫

0
...

σn−1∫

0
φ(σn)dσn ...dσ1. Let tk (k = 1, 2, ...nt ) be a set of sampled
times. Define an error at time tk as

e(k) = kp
τ 3

3! P1(tk) +
{
m − kp

τ 2

2

}
P2(tk) + {

c1 + kpτ
}
P3(tk)

+ c2P4(tk) + c3P5(tk) + {
k1 − kp

}
P6(tk)

+ k3P7(tk) − Pf (tk). (11)

Let us introduce an error vector e, a parameter vector c and
a force vector p as follows.

e = [e(1), e(2), ..., e(nt )]T ,

c =
[
kp

τ 3

3! ,m + kp
τ 2

2
, c1 − kpτ, c2, c3, k1 + kp, k3

]T

,

p = [Pf (t1), Pf (t2), ..., Pf (tnt )]T . (12)

Let P(x) be the nt × 7 data matrix determined by the
measurement of x(t) such that its (k, j)th component is given
by Pk, j = Pj (tk). Then, Eq. (11) can be written in the matrix
form as

e(c) = P(x)c − p. (13)

To find the unknown parameters c, we formulate a least
mean square error problem as follows. For the following cost
function,

J (c) = eT e = ‖e‖22 (14)

we find the parameter vector c such that J is minimized. The
solution of the parameters c can be found by either the matrix
inversion or by an iterative search algorithm. In general,when
the numbers of unknown parameters and data points nt are
large, as is the case for multi-degree of freedom systems,
it is better to use a global search algorithm to compute the
parameters.

3.2 Sparse representation

Assume that the displacement measurement x(t) of the sys-
tem in Eq. (3) and external force f (t) are available and
contain random noises. We consider the polynomial model
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Identification of nonlinear dynamical systems with time delay 17

for the restoring force in Eq. (2). Two questions immediately
arise:

What are the minimum orders N and M?
Are all the terms in the polynomial needed?

To investigate answers for these questions, we apply the
methods in statistical learning [35]. One popular way is to
start with big enough orders N and M or a large library of
functions which may contain non-polynomial functions, and
penalize the terms with small coefficients through a sparse
regulator by using the least absolute shrinkage and selection
operator (LASSO) [35]. The recent studies of sparse iden-
tification of nonlinear dynamics (SINDy) have developed a
computationally efficient algorithm to compute the solution
of the sparse regression. LASSO regression proposes to add
an L1 regularization term to the cost function in Eq. (14) to
penalize the nonzero parameters that don’t contribute to the
system’s dynamics

Jλ(c) = ‖e‖22 + λ ‖c‖1
= ‖P(x)c − p‖22 + λ ‖c‖1 (15)

where λ > 0 is a preselected positive number known as the
sparse regulator and ‖c‖1 = ∑

i |ci |. The sparse regression
algorithm in [24] is applied to find the parameter vector c in
order to minimize Jλ in Eq. (15). The algorithm is computa-
tionally efficient and robust to noise. It should be noted that
the optimization problem in the framework of the LASSO is
convex [34], which implies the existence of a unique optimal
solution. The selection of the sparse regulator λ is critical. In
Sect. 3.3, we explain how to employ cross-validation tech-
niques to select a proper regulator value.

The LASSOpenalizes the termswith small coefficients by
regularization and keeps the important terms in the system
model. In real world, time delay is usually small. Moreover,
time delay appears in high order terms of the Taylor expan-
sion. Therefore, the LASSO will penalize these terms, such
as the coefficient of term P1(t) in Eq. (11).

We can recover the terms involving time delay in the
following way. After each sparse regression computed with
the SYNDy algorithm, we keep all the terms involving time
delay as well as the terms selected by the LASSO regulation.
The resulting data matrix denoted by Ps(x) is substituted in
Eq. (15) to compute the updated coefficients c.

3.3 Cross validation and bootstrapping

It is common to use cross-validation techniques from
machine learning to determine the sparse regulation param-
eter λ. The value of λ in an finite interval is sampled.
The cross-validation mean square error MSECV of the
model over the test dataset is computed. The λ value which

minimizes the cross-validation error is selected. The corre-
sponding model is chosen as an optimal model with a proper
balance of complexity and accuracy.

Let Tcv denote the set of time instances of the test signal to
be used for cross validation. For a given regulation parameter
λ, the mean square cross validation error MSECV of the
model over all the validation datasets is defined as

MSECV (λ) = 1

nt
‖P(x(t ∈ Tcv))cλ − p(t ∈ Tcv)‖22 (16)

where cλ denotes the model parameters for the regulation
parameter λ. MSEcv is an implicit function of λ. The SINDy
algorithm attempts to select λ on the Pareto front of themulti-
objective optimization problem with the objectives being
accuracy and complexity of the model. The elbow of the
Pareto front parameterized by λ is often the choice [24].

Unfortunately, in most of cases, the elbow of the Pareto
front is ambiguous due to existence of a cluster of candi-
date models near the elbow. The information criteria (IC) for
the candidate models can help to rank and select a model
with a proper trade-off between the accuracy and complexity
[25]. Popular statistical examples of the information crite-
ria include the Akaike information criterion (AIC), Bayesian
information criterion (BIC), deviance information criterion
(DIC) and minimum description length. The work reported
in [25] makes use of a big data matrix P(x). The sparse
regression procedure is repeated over all possible combina-
torial subsets of the data matrix. The resulting models are
ranked through IC scores. The model with the smallest score
is selected.

However, a big data matrix P(x) may not always be avail-
able for real-world applications. In this work, we propose a
search algorithm to determine the sparse representation of
the polynomial in Eq. (2). We start with linear model when
N = M = 1, and increase the polynomial order until the
prediction error of the model over the test dataset reaches an
acceptable low level and begins to increase. The error of the
test dataset is defined as,

MSEtest = 1

nt

∥∥P(x(t ∈ Tcv))ĉ − p(t ∈ Tcv)
∥∥2
2 (17)

where ĉ stands for the estimated vector of coefficients. There
are differentways to generate training and test datasets.When
the SINDy algorithm is applied to simulation examples, we
can generate rich datasets to train and validate the model by
considering the system responses for different initial condi-
tions and excitations. In this work, we assume that the dataset
consists of two long time series of the system response. One
is used for training and another for cross-validation. The data
matrices P(x) are generated for different orders of the poly-
nomial. The SINDy algorithm selects the sparse model built
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18 G. Leylaz et al.

on the training data while the regularization parameter λ is
selected with the help of cross validation on the test dataset.

Real measurements often contain noises, and can have
outliers and missing data. Here, we propose to combine
the sparse regression with bootstrapping in order to develop
robust sparse regression. In particular, we consider K boot-
strap sample vectors containing L elements of the original
data points. Each vector is generated by uniform sampling of
the data with replacement. For each bootstrap sample vector,
the sparse regression is applied to identify themodel. Finally,
the parameters of the model is the average of the K estimated
coefficient vectors ĉl .

c̃ = 1

K

K∑

l=1

ĉl (18)

The standard deviation of estimated coefficient vectors ĉl is
computed to study the variation of parameter estimation.

Algorithm 1 summarizes the procedure.

Algorithm 1 Bootstrapping sparse regression algorithm for
time-delay estimation.
1: procedure Time- Delay Estimation(Xtrain, ftrain, Xtest , ftest ,

N , K , L, λmin, λmax )
2: for PolyOrder ∈ [1, N ; 1, M] do
3: g(x, ẋ) ← x, ẋ, PolyOrder � Generate candidate

polynomial restoring force
4: P(x)train,P(x)test ← library(Algebraic Operation(g(x, ẋ)))
5: ptrain,ptest ← Algebraic Operation( ftrain(t), ftest (t))
6: for k ∈ [1, K ] do � Generate uniformly random sampling

with replacement
7: P(x)k,train,pk,train ← Bootsraping Sampling

(P(x)train,ptest , L)

8: for λ ∈ [λmin, λmax ] do � Search to find the sparse
regulator

9: MSE(λ) ← SINDy(P(x)k,train,pk,train, λ)

10: end for
11: λmin ← min(MSE(λ))

12: Model(PolyOrder , k) ← SINDy(P(x)k,train,pk,train,
λmin)

13: if cτ = 0 then
14: Model(PolyOrder , k) ← OLS(Ps(x)k,train,pk,train)
15: end if
16: end for
17: Model(PolyOrder) ← Average(Model(PolyOrder , k))
18: MSEtest (PolyOrder) ← MSE(Model(PolyOrder),

Ptest (x),ptest )
19: end for
20: Model(c) ← Overall min(MSEtest ) � Select the model with

minimum test error
21: return Model (c)
22: end procedure

Remark 3.1 Some remarks on the estimation error and the
stability of the system are in order. The estimation error of
the coefficients c, in particular, time delay τ , can be attributed

Fig. 1 The cross validation test error for the mass-spring-damper sys-
tem

to two sources: the truncation error of the Taylor expansion
and the regression error.

While keeping more higher order terms of the Taylor
expansion helps to reduce truncation error, we may run the
risk of instability of the truncated model. We have found
that the third order term is a good compromise for accuracy,
complexity and stability.

4 Simulated example

To demonstrate the proposed algorithm, we consider the
second-order oscillatory system with nonlinear stiffness and
damping in Equation (3). The following external forces are
used to generate the training and test datasets.

f (t)Train = 10 sin(4t) + 40 sin(4t2) + ε f (19)

f (t)T est = 10 sin(2t) + 40 sin(8t) + ε f (20)

For the training dataset, the system starts from the initial
conditions x0 = 1 and v0 = 0. For the test dataset, the
initial conditions are x0 = −1 and v0 = 0.5. The excitation
contains a normally distributed random noise ε f with zero
mean and standard deviation σε f = 0.01.We assume that the
sensors havemeasurement noises such that the system output
is given by x(t) + εx where εx is the normally distributed
random noise with zero mean and standard deviation σεx =
0.01.

Table 2 lists the system parameters used in the simulation.
A proportional control with gain kp = 2 is considered. We
employ the third order of Taylor expansion of the time delay
x(t − τ). The order of expansion is selected such that there
are enough equations to solve for the unknown parameters of
the system. Following Algorithm 1, we create the data matrix
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Identification of nonlinear dynamical systems with time delay 19

Table 1 The true and estimated
parameters of the simulation
example

Terms Parameters Exact Value Estimated Standard Deviation ∗10−3

...
x kp

τ 3

6 0.0026667 0.001515 0.0125

ẍ m − kp
τ 2

2 0.96 0.9611 0.0137

x k1 − kp 4 3.9830 0.1612

x2 0 0 0 0

x3 k3 2 2.0041 0.0943

ẋ c1 + kpτ 1.4 1.3922. 0.2896

ẋ2 0 0 0 0

ẋ3 c3 1 0.9973 0.0432

x ẋ 0 0 0 0

x ẋ2 0 0 0 0

x ẋ3 0 0 0 0

x2 ẋ c2 1 1.0074 0.0961

x2 ẋ2 0 0 0 0

: : : : :

x3 ẋ3 0 0 0 0

P(x) with polynomials of orders from 1 to 6 and N = M .
For each polynomial model, 30 bootstrapping samples with
the ratio of 50 percent of the total data are selected. 50 values
of λ are sampled logarithmically in the range from 10−6 to
100.

Because the first term includes the time delay, we con-
strain the LASSO algorithm to keep it from being penalized
and removed in the process of searching for sparse repre-
sentation. The average of sparse polynomials out of all the
bootstrapping samples is taken as the final result.

Figure 1 shows the variation of the cross validation error
MSEcv as a function of the order N of the polynomial. It
is seen from the figure that the cross validation error has a
large drop when approaching N = 3 and stays at the same
range for N = 4 and starts increasing from N = 5. We
choose N = 3 as the optimal order of the polynomial when
the minimum validation error occurs and the order is mini-
mum. Table 1 lists the estimated coefficients of the signals
in Eq. (9). The proposed algorithm has successfully detected
the sparse terms and precisely estimated the coefficients. The
time delay and parameters of the original system are calcu-
lated and listed in Table 2 together with the known values.
The accuracy of the estimated parameters is quite acceptable.

Remark 4.1 A remark on small values of the standard devia-
tion in Table 1 is in order. This fact is an indication that the
randomness of the data is not significant so that the bootstrap-
ping samples are not sufficiently different. We have checked
the results several times to confirm this observation.

Table 2 The parameters of themass-spring-damper system for the sim-
ulation example

Parameters Selected value Estimated value

m 1 0.9885

k1 6 5.9830

k3 2 2.0041

c1 1 1.0609

c2 1 1.0074

c3 1 0.9973

τ 0.2 0.1656

Fig. 2 The flexible joint set up by Quanser [36]

5 Experimental example

In this section, we employ a flexible joint experimental setup,
made by Quanser, to prove the efficiency of the method
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20 G. Leylaz et al.

Table 3 The parameters of the rotary flexible link provided by Quanser
[37]

Symbol Description Value

Jl Link moment of inertia 0.0038 kgm2

Jeq Equivalent moment of inertia 9.76 × 10−5 kgm2

Bl Flexible link torsional damping Not available

Beq Equivalent torsional viscous damping 0.015Nm/rad/s

ks Link torsional stiffness 1.3 Nm
rad

kg High gear total gear ratio 70

kt Motor current torque constant 7.68 × 10−3 Nm
A

km Motor back-emf constant 7.68 × 10−3 v rad/s

Rm Motor armature resistance 2.6Ω

ηg Gearbox efficiency 0.9

ηm Motor efficiency 0.69

for experimental data from a single-input-multiple-outputs
(SIMO) dynamical system. The joint is connected to the base
through two springs with equal stiffness ks and the base is
fixed to the servo motor as Fig. 2 shows. The servo motor
with input voltage Vm generates a torque M to turn the base
with a rotation angle θ . The deflection angle of the joint rel-
ative to the base is α. The moment of inertia of the base is
Jeq . The viscous damping coefficient of the base is Beq . Jl
stands for the moment of inertia of the joint. The equations
of motion for the system can be derived as,

(Jeq + Jl)θ̈ + Jl α̈ + Beq θ̇ = τM ,

Jl α̈ + Jl θ̈ + Bl α̇ + ksα = 0,

τM = ηgkgηmkt (Vm − kgkm θ̇ )

Rm
≡ a · Vm + b · θ̇ ,

a = ηgkgηmkt
Rm

, b = −ηgkgηmktkgkm
Rm

, (21)

where torque τM is linearly dependent on the servo motor
voltage Vm and θ̇ . We assume that the motor parameters are
known. Table 3 lists the parameters of the motor and joint
provided by Quanser. We should point out that these num-
bers may not be exactly the same as the physical system
parameters. Therefore, we should treat these numbers as a
reference.

A proportional control with gain kp adjusts themotor volt-
age tomake the joint follow the desired trajectory of the angle
θ while the deflection angle α stays minimum. The control
is given by

Vm = kp ∗ (θd − θ) (22)

The control is implemented in Simulink/MATLAB. The out-
puts of the system are θ and α. A time delay is introduced in
the feedback signal θ .

In this example,we employ the secondorderTaylor expan-
sion of the time delay term.

θ(t − τ) = θ(t) − τ θ̇(t) + τ 2

2
θ̈ (t) (23)

Fig. 3 The system response to
track a sinusoidal trajectory θd
with amplitude 2 radian and
frequency 0.66 Hz
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Fig. 4 The system response to a
square-wave signal θd with
amplitude 1 radian and
frequency 0.66 Hz

Fig. 5 The cross-validation error of the rotary flexible joint

The closed-loop system can be written as,

(
Jeq + akp

τ 2

2

)
θ̈ + (Beq − akpτ)θ̇ − Bl α̇ − ksα

= akp(θd − θ) + bθ̇ , (24)

Jeq α̈ − akp
τ 2

2
θ̈ + (akpτ − Beq)θ̇ + Bl(Jl + Jeq)

Jl
α̇

+ ks(Jl + Jeq)

Jl
α = −akp(θd − θ) − bθ̇ . (25)

We should point out that the tracking performance of the
closed-loop system will not be as good as we would like to
have. This is because the proportional control alone is not
adequate and the time delay further deteriorates the perfor-
mance. The purpose of choosing this control with time delay
is simply for generating the data in a stable manner.

To generate the training dataset, we select a desired tra-
jectory θd as

θd = 2 sin 2π f1t (26)

where the frequency f1 = 0.66Hz is for the desired trajec-
tory θd . To generate the test data, we choose a square-wave
signal for the desired trajectory θd with the same amplitude
and frequency as in Equation (26). We introduce a 0.2s delay
in the control such that the closed-loop system is stable.

Figures 3 and 4 show the motor input voltage Vm and the
sample responses of θ and α, The time series is one minute
long with a sample time 0.001s. For simplicity, we assume
that for each coordinate θ and α, the restoring force can be
represented by a sumof four polynomials of a single variable,
i.e. θ i , θ̇ i , α j , and α̇ j , together with a friction term related to
θ̇ , without considering the cross-product terms. The second
coefficient in Equation (25), akp τ 2

2 , includes the time delay.
We apply the constraint to the LASSO algorithm to keep it
from being penalized and removed.

Some signals in the matrix P(x) contain the first order
derivative of the angles θ̇ and α̇. Recall that the real mea-
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Table 4 The θ and α terms,
their coefficients and the
standard deviations of the
estimation for the rotary flexible
joint

Terms in θ-equation Estimated Standard Deviation Terms in α-equation Estimated Standard Deviation

θ̈ 0.0061 0. θ̈ 0.0012 0.0001

α̈ − − α̈ −0.0061 0

θ 0.0625 0.0026 θ −0.0603 0.0029

θ2 0.0003 0.0026 θ2 0.0003 0.0018

θ3 −0.0254 0.0009 θ3 0.024 0.0010

θ4 −0.0004 0.0006 θ4 0.0003 0

θ5 0.0019 0.0034 θ5 −0.0019 0

θ̇ −0.0922 0.0002 θ̇ 0.0920 0.0036

θ̇2 0.0002 0 θ̇2 −0.0002 0.0002

θ̇3 0.0004 0 θ̇3 −0.0004 0

θ̇4 0 0 θ̇4 0 0

θ̇5 0 0 θ̇5 0 0

α −1.1976 0.0139 α 1.2483 0.0128

α2 0.9040 0.0896 α2 −0.9458 0.0991

α3 −2.3784 0.2446 α3 2.4237 0.2634

α4 −0.7031 0.2916 α4 0.6930 0.3149

α5 8.9105 0.5177 α5 −9.0823 0.5629

α̇ −0.0650 0.0005 α̇ 0.0644 0.0008

α̇2 −0.0215 0 α̇2 0.0216 0.0005

α̇3 0.0001 0 α̇3 −0.0001 0

α̇4 0.0004 0 α̇4 −0.0004 0

α̇5 0 0 α̇5 0 0

fc 0.0516 0.0083 fc −0.0477 0.0084

surements contain noises.Weuse the nonlinear state observer
from the control studies to estimate the first-order derivatives
without amplifying the noise in the computation [38,39]. The
second order observer with gains β1 and β2 is defined by the
following state equations.

ż1 = z2 − β1e,

ż2 = −β2fal(e, α, δ) (27)

where

fal(e, α, δ) =
{

|e|α · sign(e), |e| > δ
e
δα , |e| ≤ δ

(28)

and the error e = z1 − θ . We have chosen α = 0.5, δ =
0.05, β1 = 100 and β2 = 900. According to [38,39], the
estimation error e converges to zero quickly. Consequently,
by definition, z2 is an accurate estimate of the first order
derivative θ̇ . Figures 3 and 4 show the plot of estimated θ̇

and α̇ for both training and test dataset.
To train the model, we consider 10 bootstrapping samples

with the length of 50 percent of the training dataset and search
the polynomial order from 1 to 7. For the sparse regulator,

100 values of λ are sampled logarithmically in the range from
10−10 to 100.

Figure 5 shows the variation of the cross validation error
as a function of the order of polynomials. The results suggest
that for both coordinates θ and α, the polynomial order N =
5 leads to the minimum cross validation error. This is the
optimal order for the polynomials.

Table 4 lists the polynomial terms and the corresponding
coefficients and associated standard deviation for the trained
model of polynomial order N = 5. We should mention that
the reported results have been round to 10−5. The estimated
value of Coulomb friction fc is not negligible. It can play an
important role in the system dynamics. We should point out
that the linear model in Eq. (21) does not include the friction
term, although the actual device always has friction. The
friction is the primary reason for the discrepancy between the
predicted response by Eq. (21) and the actual measurements.

Figures 3 and 4 indicate that the responses of the closed-
loop system are not really tracking the references accurately.
This is partly due to the effect of time delay and also the poor
control design, as discussed earlier. The oscillatory responses
of the closed-loop system are obviously responsible for the
high order terms of the polynomials, particularly for the
deflection angle α, as can be seen in Table 4. This highlights
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Table 5 The nominal and estimated values of the parameters of the
rotary flexible link by Quanser [37]

00 Symbol Nominal values Estimated values

Jeq + akp
τ 2

2 0.0102 0.0061

Beq − akpτ −0.0662 −0.0922

ks 1.3 1.1976

Jeq 0.00208 0.0012

Bl Small unknown 0.0650

akp
τ 2

2 0.008121 0.0061

akpτ − Beq 0.0662 0.0920
ks (Jl+Jeq )

Jl
2.0501 1.2483

Bl (Jl+Jeq )

Jl
Small unknown 0.064

τ 0.2 0.1734

the ability of the proposed system identification algorithm to
estimate the time delay and to identify the nonlinearities in
the system when the linear models are no longer adequate.

The motor parameter a is known and kp is the given con-

trol gain. Hence, from the coefficient−akp
τ 2

2 , the time delay
can be calculated and is listed in Table 5 in comparison with
the time delay we introduced to the control. The values of
the parameters in Table 5 fall in a wide range from 0.002
to 2. Hence, the parameters can be serval order of magni-
tudes apart, which makes it difficult to accurately estimate
all the parameters in the presence of unwanted noises. This
experimental study strongly demonstrates the robustness of
the proposed algorithm to noises.

6 Conclusions

In summary, we have demonstrated that the proposed algo-
rithm is effective to obtain governing equations of nonlinear
dynamical systems with time delay from noisy experimental
data. It can accurately estimate the time delay in the feed-
back control. For the first time, this study extends the sparse
regression to nonlinear dynamical systems with time delay.
We have equipped the sparse regression with an algebraic
signal pre-processing and a nonlinear state observer. These
operations are essential to compute the needed derivatives of
measured time series and other signals without the need to
know initial conditions, and to filter noises due to random
excitations and measurements. Both simulation and experi-
mental results have been used to validate the algorithm. The
algorithm demonstrates excellent performances in identifi-
cation.

The codes and all the data are available at: https://github.
com/gleylaz/TimeDelay_SysID.
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