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Abstract
This paper proposes a novel two degrees of freedom (2-DOF) fractional order internal model controller (FOIMC) for the
height control of a coupled tank system. Coupled tank systems find applications in the process control industries. The level
control of the coupled tank system is a challenging problem in the control systems because of its nonlinearity and time delay
involved. The level control of the coupled tank system has variable servo tracking and disturbance rejection requirements. 2-
DOF controller achieves better servo tracking and disturbance rejection than a one degree of freedom (1-DOF) controller. The
proposed servo tracking controller is designed using the Bode’s ideal loop transfer function and direct synthesis approach. The
parameters of the Servo tracking controller are tuned using peak overshoot and settling time specifications. The disturbance
rejection controller is designed analytically. A detailed study of the effect of the fractional order on the disturbance rejection
property and stability. Robust stability of the proposed controller is analysed using H∞ norm of the uncertainty bound.
Comparison of the simulation results of the proposed controller with the state of the art showed better performance of the
proposed controller. Frequency domain analysis also indicates the superior performance of the proposed 2-DOF FOIMC.

Keywords 2-DOF controller · Coupled tank system · FOMCON toolbox · FOIMC

1 Introduction

Coupled tank system comprises two or more than two sim-
ilar or dissimilar tanks interconnected for the fluid flow and
storage. The coupled tank system is used in the chemical
industries, water treatment plants etc., and has nonlinear
dynamics. The coupled tank has two modes of operation;
interacting and noninteracting. In the interacting mode, two
tanks are connected by a pipe. In the noninteracting mode,
the two tanks are connected in a cascade. In the present work
two similar cylindrical tanks are interconnected in the inter-
acting mode. To design a controller for the level control of
coupled tank system, a transfer function model is needed.
Modelling and identification of the coupled tank system is
discussed in [1,2].
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As processes are becoming complex day by day, a one
degree of freedom (1-DOF) controller cannot satisfy two
different performance specifications at a time. Hence Two
degrees of freedom (2-DOF) controllers are designed to sat-
isfy more than one performance specifications. A brief study
of the relevant 2-DOF controllers is made. [3,4] are some
tutorial papers which discuss the different configurations
of 2-DOF controllers available, and equivalent relationships
among different 2-DOF configurations. The controllers used
in the 2-DOF configuration can be a proportional integrator
and differentiator (PID), internal model controller (IMC),
fuzzy controllers etc. or a combination of them.

The controller parametersmust be tuned and optimised for
better performance of the closed loop system. Some tuning
methods for the integer order 2-DOF controller are presented
in [5–7]. While [5] proposed a gain margin based tuning,
[6] proposed tuning based on the evolutionary techniques
using integral error. [7] compared the tuning of 2-DOF con-
troller parameters using two evolutionary algorithms. The
coupled tank system in the present work has a first order plus
delay time (FOPDT)model. To compensate for the timedelay
present in the system, Smith predictor based controllers are
normally used. [8,9] discuss the Smith predictor based con-
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trollers. 2-DOF controllers find many industry applications
like power systems, magnetic levitation, and process control
[10–13].

Fractional order controllers (FOC) are widely used from
the last three decades, because of advantages like robust-
ness to system gain variations, wider stability margins, near
infinite gain margin, and more tunable parameters [14–16].
Fractional order operators like s0.5, s1.2 are part of the frac-
tional order controller. IMC is a simple and stable model
based controller [16]. Fractional order internal model con-
troller (FOIMC) combines fractionality with IMC. FOPID
with 2-DOF configuration is discussed in [17]. A new design
method for the fractional order controller optimisation using
frequency domain specifications is proposed in [18]. A DC
motor position control case study is taken for implementa-
tion of the controller. [19] proposed a simple tuning method
for fractional order controllers using Bode’s ideal open loop
transfer function (OLTF). The proposed method uses ratio-
nal functional approximation based pole placement. In [20], a
FOIMC based 2-DOF is designed for the liquid level control
system. The controller design uses frequency domain speci-
fications for tuning the parameters. Application of the IMC
based 2-DOF controller is given in [21]. Oustaloup recursive
approximation is used in the controller tuning.

Along with excellent performance and stability, the con-
troller designed should also have robustness to change in the
system parameters and change in the set point. Robust sta-
bility can be analyzed analytically using the H∞ frequency
norm [22]. A discrete time enhanced sliding mode controller
is proposed for the fractional order system [23]. The distur-
bance rejection and robustness to parametric uncertainty of
the proposed controller are proved. A discrete time model of
the fractional actuator is obtained in [24]. The sliding mode
controller developed for the actuator handles uncertainty and
disturbance in the system. Two different tuning algorithms
are proposed for FOIMC in [25]. They use IMCcontrol struc-
ture and Smith predictor. The proposed controller has good
robustness tomodelling uncertainties. Bode’s integrals based
FO-[PI] controller is designed using the frequency domain
specifications in [26]. Robustness is analysed using the slope
of the Nyquist diagram.

Different tuning methods, both analytical and soft com-
puting based methods for the fractional order 2-DOF IMC
are presented here. FOIMC with 2-DOF configuration is
discussed in [27,28]. Some works like [29–32] discuss the
industrial applications of FOIMC based 2-DOF. Application
of the IMC based 2-DOF controller is given in [33]. Some
recent works discuss the soft computing based tuning of the
2-DOF fractional controllers [34–37]. [38] discussed 2-DOF
FOIMC with analytical tuning of the controller parameters.
Problemswith the surveyed literature are highpeakovershoot
and long settling time in the step response, lack of robustness
and higher control effort [39–43].

Motivation for the work and proposed method: Based on
the previous discussion a need is felt to design a better 2-DOF
controller, and a novel configuration for the 2-DOF FOIMC
is proposed for the coupled tank system. The proposed con-
troller combines the Smith predictor with two fractional
order controllers to form a 2-DOF FOIMC. Bode’s ideal
closed loop transfer function model is used as the reference
and using direct synthesis method, the servo tracking con-
troller is derived analytically. Since coupled tank system has
slowly varying dynamics the servo tracking controller param-
eters are tuned using time domain specifications.Disturbance
rejection controller is tuned by balancing disturbance rejec-
tion and servo trackingpropertieswith stability. The results of
the proposedwork are comparedwith some recent state of the
art literature on 2-DOF configuration (both fractional order
and integer order 2-DOF controllers) [39–43]. In this work,
simulations are done in the MATLAB/SIMULINK using the
fractional order modeling and control (FOMCON) toolbox
[44]. FOMCON tool box is used for the modelling and iden-
tification of fractional order systems and implementation of
the fractional order controllers.

Novelty and main contributions:

1. Proposed a new configuration for the servo tracking con-
troller.

2. Tuned the controllers analytically.
3. Designed both the servo tracking and disturbance rejec-

tion controllers as fractional order controllers.
4. Analysed the time domain and the frequency domain

results.
5. Analysed the robustness of the controller to a change in the

system gain and change in the operating point. Analysed
robust stability of the proposed controller.

Organisation of the paper: The first section gives the intro-
duction to the proposed work and surveys the literature. The
second section states the problem and gives the preliminaries
to the work. The third section gives the dynamics of the cou-
pled tank system. The fourth section discusses the proposed
methodology. The fifth section presents the results and dis-
cusses the findings. Finally, the sixth section concludes the
results got.

2 Problem statement

Design a 2-DOF controller based on the FOIMC; satisfying
both the disturbance rejection and setpoint tracking require-
ments, using the Smith predictor to overcome problems with
large time delays involved in the system. Of the available 2-
DOFstructures, the structure shown inFig. 1 [4] is considered
in this work. In Fig. 1Gc1 is the servo tracking controller and
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Fig. 1 2-DOF configuration implemented

Gc2 is the disturbance rejection controller. R, U and Y are
set point, controller output and system output, respectively.

2.1 Basics of the fractional order control

Fractional calculus is a 300 year old area, but it’s applica-
tions became popular in the past three decades only. There
are three definitions available for the fractional differenti-
ation, Reimann-Liouville, Caputo, and Grunwald-Letnikov.
Among these definitions, Caputo definition is used normally
in the control and engineering applications. G-L definition is
more amenable to digital implementation. The Caputo defi-
nition of the fractional order derivative is given by Eq. (1).

Dα
t f (t) = 1

Γ (n − α)

∫ t

0

f n(τ )

(t − τ)α−n+1 dτ (1)

In this definition, the function is first differentiated and
then integrated. Fractional derivatives are nonlocal and are
suitable to represent systems involving distributed param-
eters. The fractional controller is first developed by I.
Podlubny [14]. Fractional power gives more flexibility to
the integrator and the differentiator of the PID controller.
Equation (2) represents a general form of the fractional PID
controller.

C(s) =
(
Kp + Ki

sλ
+ Kds

μ

)
(2)

where Kp, Ki , and Kd are proportional, integral, and deriva-
tive gains respectively and λ is the fractional power of the
integrator and μ is the fractional power of the differentiator.

3 Coupled tank system

The coupled tank system in the interacting mode is taken as
a case study and is shown in Fig. 2.

In Fig. 2,

Q1 = Inlet flow rate
Q12 = Flow rate from tank 1 to tank 2

Fig. 2 Block diagram of the coupled tank system

Qd1 = Disturbance flow rate from tank 1
Qd2 = Disturbance flow rate from tank 2
h1 = Variable height of the tank 1
h2 = Variable height of the tank 2
D = Diameter of each tank
A = Cross sectional area of each tank

The control objective is to regulate the height of the tank 2,
by changing the inlet flow rate of the tank 1. The coupled
tank system has nonlinear dynamics because of the valves.
Table 1 shows the coupled tank system parameters.

Equations (3)–(4) represent the dynamics of the two tank
system.

A
dh1
dt

= Q1 − Q12V2 − Qd1 (3)

A
dh2
dt

= Q12V2 − Qd2 (4)

The flow rate through the interconnecting solenoid valve B
is,

Q12 = a12sign(h1 − h2)
√
2g|h1 − h2| (5)

Flow rates through the ball valves A and C are given by,

Qd1 = ad1
√
2gh1 (6)

Qd2 = ad2
√
2gh2 (7)

where

ad1 = Coefficient of discharge for valve A
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Table 1 Parameters of the coupled tank system

Parameter H D A Q1s a12 d ad1 V2 h1s h2s ad2

Value 100 cm 15 cm 176.7 cm2 175 LPH 0.6 1 cm 0.855 0 or 1 17.5 cm 12.5 cm 0.1839

a12 = Coefficient of discharge for valve B
ad2 = Coefficient of discharge for valve C
g = Acceleration due to the gravity (98.4 gm/s2)
V2 = Valve coefficient of valve B
d = Diameter of the interconnecting pipe between the

tanks

In the operating mode considered h1 ≥ h2, hence Eq. (5)
reduces to,

Q12 = a12
√
2g(h1 − h2) (8)

Substituting (6)–(8) in (3), and (4)

A
dh1
dt

= Q1 − V2(a12
√
2g(h1 − h2)) − ad1

√
2gh1 (9)

A
dh2
dt

= V2(a12
√
2g(h1 − h2)) − ad2

√
2gh2 (10)

Linearising Eqs. (9)–(10), around the operating point h1s ,
h2s , Q1s , using the Taylor series expansion,

A
dh1
dt

= Q1s − V2(a12
√
2g(h1s − h2s)) − ad1

√
2gh1s

+ (Q1 − Q1s) + (h1 − h1s)

×
[

− V2a12
√
2g(1/2)(h1s − h2s)

−1/2

− ad1
√
2g(1/2)h1s

−1/2
]

+ (h2 − h2s)

×
[

− a12
√
2g(1/2)V2(h1s − h2s)

−1/2
]

(11)

A
dh2
dt

= V2(a12
√
2g(h1s − h2s)) − ad2

√
2gh2s

+ (h1 − h1s)

×
[
a12

√
2g(1/2)V2(h1s − h2s)

−1/2
]

+ (h2 − h2s)

×
[
V2a12

√
2g(−1/2)(h1s − h2s)

−1/2
]

− (h2 − h2s)

[
ad2

√
2g(1/2)h2s

−1/2
]

(12)

At equilibrium, the following relations are obtained,

Q1s − (V2a12
√
2g(h1s − h2s)) − ad1

√
2gh1s = 0 (13)

(V2a12
√
2g(h1s − h2s)) − ad2

√
2gh2s = 0 (14)

Also few constants are defined as,

K1 = V2a12
√
2g(h1s − h2s)−1/2

2A
(15)

K2 = ad1
√
2g(h1s)−1/2

2A
(16)

K3 = ad2
√
2g(h2s)−1/2

2A
(17)

h̃1 = h1 − h1s (18)

h̃2 = h2 − h2s (19)

Q̃1 = Q1 − Q1s (20)

Using Eqs. (13)–(20) in Eqs. (11)–(12),

˙̃h1 = −h̃1(K1 + K2) − h̃2K1 + (Q̃1/A) (21)
˙̃h2 = h̃1K1 − h̃2(K1 + K3) (22)

Taking Laplace transforms on both the sides of Eqs. (21)–
(22),

sH1(s) = −H1(s)(K1 + K2) − H2(s)K1 + (Q1(s)/A)(23)

sH2(s) = H1(s)K1 − H2(s)(K1 + K3) (24)

By solving Eqs. (23)–(24), the transfer function,
G(s) = H2(s)/Q1(s) is obtained as,

G(s) = K1/A

s2 + (2K1 + K2 + K3)s + K1
2 + K1K3 + K2K3

(25)

In the present work, the operating region of the level control
is selected as (5–15) cm. By substituting parameters of the
system from Table 1 into Eq. (25), the analytical model of
the system is obtained as,

G(s) = 6×10−5

s2 + 0.0313s + 0.236×10−3 (26)
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Tuning of the two degrees of freedom FOIMC based on the Smith predictor 1307

Fig. 3 Open loop test results of the level control

But the experimental data from the laboratory setup shows
that a FOPDT model is sufficient instead of the second order
system. The transfer function of this problem is represented
as, h2(s)/Q1(s).

G(s) = h2(s)

Q1(s)
= 0.268e−10s

975s + 1
(27)

Figure 3 shows the plot of open loop test results. Figure 3
is obtained by varying the inlet flow rate, from 50 LPH to
275 LPH in steps of 25 LPH and observing the steady state
heights of the two tanks, h1, h2. Model Eq. (27) is obtained
from the experimental data and is used in this work for the
controller design. The modelling errors between two models
Eqs. (26) and (27) are calculated. The mean absolute error
(MAE) is obtained as 0.007135 and root mean squared error
(RMSE) is obtained as 0.06954.

4 Methodology

Figure 4 shows the proposed configuration of FOIMC based
on the Smith predictor with 2-DOF configuration. This is an
improved structure from [39]. The transfer function of the
system, G(s) in Fig. 4 is of FOPDTmodel given by Eq. (28),
where T is time constant, K is gain and L is time delay.

G(s) = Ke−Ls

T s + 1
(28)

Fig. 4 Proposed 2-DOF FOIMC configuration

In Fig. 4,

Gm(s) = Model of the system
Q(s) = FOIMC controller (disturbance rejection con-

troller)
Gm0(s) =Model of the systemwithout the time delay element
Gc(s) = Set point tracking controller

In the proposed configuration, R(s) is the set point, Y (s) is
the output, U (s) is the controller output, and d(s) is the dis-
turbance at the input side. Assuming that the accurate model
of the system is available, following equations of the closed
loop system with respect to set point tracking Eq. (29), and
disturbance rejection Eq. (30) are obtained.

Tyr (s) = G(s)Gc(s)

1 + Gc(s)Gm0(s)
(Gm(s)≈G(s)) (29)

Tyd(s) = G(s)[1 + Gc(s)Gm0(s) − GcGm(s)]
[1 + Gc(s)Gm0(s)][1 + Q(s)G(s)] (30)

From Eq. (29) it can be seen that in the set point tracking,
the characteristic equation (denominator term) has no time
delay element (neither G(s) nor Gm(s)). The disturbance
rejection controller Q(s) is not appearing in the Eq. (29), so
the set point tracking and disturbance rejection can be tuned
independently. Hence the proposed configuration shown in
Fig. 4, qualifies to be a 2-DOF controller. In the proposed
configuration Gc(s) is a FOIMC and the design is modified
form of FOIMC presented in [43]. The design of both the
controllers Q(s) and Gc(s) is through analytical methods.
To overcome the problems with longer time delays in the
system, the configuration is based on the Smith predictor.

Servo controller design: Many of the 2-DOF controllers
like [38], have common parameters in the two controllers
(servo and disturbance controllers). In the proposed configu-
ration the two controllers are dissimilar in structure. Most of
the controller design methods use frequency domain spec-
ifications like gain margin, phase margin, gain crossover
frequency etc., as the design will be direct and easy. In the
proposed method two time domain specifications peak over-
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shoot and settling time are used for the controller parameter
tuning. The desired closed loop response of the system, with
a fractional order feedback controller is the Bode’s closed
loop transfer function Tnew(s) given by Eq. (31), which gives
robustness to system gain variations (iso-damping property).
Iso-damping property means even though the system gain
varies; the phase of the system remains constant and there-
fore the step response is same over a range of system gain
values. Hence if the model has some uncertainty or the sys-
tem parameters (gain) change over time, it is taken care by
the Bode’s open loop transfer function model.

Tnew(s) =
(
Y (s)

R(s)

)
desired

= e−Ls

τcsγ + 1
(31)

R(s) = Set point of desired magnitude
Y (s) = Output of the closed loop system

γ = Fractional order
τc = Time constant

The set point tracking controller is obtained using the direct
synthesis method, where desired reference closed loop trans-
fer function and actual closed loop transfer function are
compared, and the controller is synthesised. Substituting
G(s) and Gm0(s) in Eq. (29),

Tyr (s) =

(
Ke−Ls

T s+1

)
Gc(s)

1 +
(

K
T s+1

)
Gc(s)

(32)

Equating the right hand sides of Eqs. (31) and (32) and solv-
ing for Gc(s),

Gc(s) = Kc

(
1 + 1

Ti s

)(
1

sγ−1

)
(33)

Proportional gain constant Kc = T
K τc

Integral gain constant Ti = T
Step responses are obtained using the Eq. (31) for dif-

ferent values of γ [43]. By analysing the step responses the
following relations are obtained amongpeak overshoot (Mp),
fractional order (γ ), settling time (ts) and GCF (ωgc).

Mp = 73.9(γ 2 − 1.6739γ + 0.6756) (34)

ts(2%)×ωgc = 0.7885γ − 0.2693

γ − 0.8673
1 < γ < 1.078 (35)

ts(2%)×ωgc = 3.003γ − 2.981

γ 2 − 2.012γ + 1.056
1.078 < γ < 1.486

(36)

ts(5%)×ωgc = 0.812γ − 0.2036

γ − 0.8007
1 < γ < 1.15 (37)

ts(5%)×ωgc = 7.156γ − 7.9

γ 2 − 1.303γ + 0.2578
1.15 < γ < 1.5

(38)

In the Eqs. (35–38) settling times with 2% and 5% tol-
erance band near steady state are shown. Among these four
equationsEq. (35) is usedbecause it gives peakovershoot less
than 3%. In the controller transfer function Gc(s) of Eq. (33)
the unknown tunable parameters are τc, γ . From the desired
time domain specifications of Mp, ts and using Eqs. (34) and
(35) ωgc, γ are obtained. Using the relation τc = 1/ωgc

γ ,
finally τc is also obtained. The time domain design specifi-
cations selected for the design are, Mp < 3%, ts = 1500 s.
From Eqs. (34)–(35), for the coupled tank system level con-
trol, the servo tracking controller parameters are obtained as,

γ = 1.012

ωgc = 2.43 × 10−3rad/s

τc = 441.3s

Kc = 8.24

Gc(s) = 8.24

(
1 + 1

975s

)(
1

s0.012

)
(39)

Disturbance rejection controller design:
The design of Q(s) follows the design of any internal model
controller [39].

GIMC (s) = F(s)

Gm0(s)
(40)

F(s) = 1

1 + λsα
(41)

F(s) = Fractional filter
λ = Tunable parameter of IMC
α = Fractional order

Q(s) = GIMC (s)

1 − GIMC (s)Gm(s)
(42)

Derivation of set point and disturbance rejection controllers
assumes that a suitable model of the system is available.
Using Eqs. (40) and (42),

GIMC (s) =
(
T s + 1

K

)(
1

1 + λsα

)
(43)

Q(s) = T s + 1

Kλsα
= T

Kλ
s1−α + 1

Kλsα
(44)

When 0 < α < 1, Q(s) is a Fractional Integrator Frac-
tional Differentiator (FIFD). When 1 < α < 2, Q(s) is a
Fractional Integrator Fractional Integrator (FIFI). Selecting
λ between T /3 to T /2 ensures a balance between set point
tracking and robustness to model uncertainty [16]. To select
the proper value of the fractional order α, a comparison of
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Fig. 5 Comparison of disturbance rejection with different fractional
orders

disturbance rejection property with different values of α is
made and shown in Fig. 5. Fromwhich it is found thatα value
of 1.9 gives the best disturbance rejection property. The Bode
plots of the sensitivity transfer function Tyd(s) for different
values of α are shown in Fig. 6. From Fig. 6 it is observed
that corresponding to α value of 1.9, the Bode plot has the
lowest magnitude plot in low frequency range, which gives
good disturbance rejection. Hence the choice of α value of
1.9 is ideal. But such an extreme value of the fractional order
near the stability margin is giving highly transient response
in step response simulation. During the detailed simulation
studies, it is found that the best value of α is near 1. To ver-
ify the effect of the fractional order α on the disturbance
rejection controller Q(s), the Bode plots of Eq. (44), Q(s)
are given as a function of alpha in Fig. 7. From Fig. 7 it is
clear that the for values of α lower than 1, the controller is
not rejecting the high frequency noise. Based on the above
discussion, the disturbance rejection controller, Q(s) param-
eters are selected as,

λ = 330

α = 1.1

Finally Q(s) is obtained from Eq. (44) as,

Q(s) = 11.02s + 0.011

s1.1
(45)

Fig. 6 Comparison of Bode plots of sensitivity with different fractional
orders

Fig. 7 Bode plots of disturbance rejection controller

4.1 Robust stability analysis

The designed controller has to perform reasonably well for
a change in the operating point. The closed loop system is
robustly stable, if the following equation is satisfied [22].

20log10(|TC ( jω)||GΔ( jω)|) < 0dB (46)

Where TC (s) is the complementary sensitivity transfer func-
tion of the closed loop system given by,

TC (s) = G(s)Gc(s)

1 + Gc(s)Gm0(s)
= e−Ls

τcsγ + 1
(47)
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1310 S. K. Vavilala, V. Thirumavalavan

Let the transfer function of the system at a different operating
point be,

G1(s) = K1e−L1s

T1s + 1
= −K1L1s + K1

T1s + 1
(48)

Uncertainty in the plant transfer function GΔ(s) is defined
as,

GΔ(s) = G1(s) − G(s)

G(s)
(49)

Substituting Eqs. (28) and (48) in Eq. (49),GΔ(s) is obtained
as shown in Eq. (50).

(K LT1 − K1L1T )s2 + (K (L − T1) − K1(L1 − T ))s + K1

−K LT1s2 + (KT1 − K L)s + K
(50)

In this work, the controller’s robustness is verified by oper-
ating it in an adjacent operating region of (16-30) cm. The
transfer function of the new region is Eq. (51).

G1(s) = 0.3e−20s

1095s + 1
(51)

GΔ(s) and TC are obtained as,

GΔ(s) = −2915.4s2 − 4.28s + 0.032

−2934s2 + 290.78s + 0.268
(52)

TC (s) = −10s + 1

441.3s1.012 + 1
(53)

The maximum value of |TC ( jω)||GΔ( jω)| is obtained as
−18.45 dB, hence Eq. (46) is satisfied. The closed loop sys-
tem with the proposed 2-DOF FOIMC is robustly stable,
when operated in the operating region (0–15) cm and it’s
neighbouring region (16–30) cm only, i.e. the uncertainty in
the setpoint should lie within (16–30) cm.

5 Simulation results

To compare the performance of the proposed controller, three
recent state of the art 2-DOF controllers are designed for the
coupled tank system. First one is a fractional filter and integer
order PI controller proposed by Chekari [40].

C1(s) = 5 + 0.01

s
(54)

C2(s) = s + 1

29s1.33 + 1
(55)

Fig. 8 Comparison of Disturbance rejection of 1-DOF and 2-DOF con-
trollers

Second one is fractional filter based FOIMC proposed by Jia
[41].

C(s) = 975s + 1

0.181s1.0039 + 10s
(56)

F(s) = 0.676s1.0039 + 1

0.02s1.0039 + 1
(57)

Third one is an integer order IMCwith 2-DOF Smith predic-
tor proposed by Li [42].

Gc(s) = 36.38 + 0.037

s
(58)

Q(s) = 200090s2 + 5690s + 3.73

105625s2 + 650s + 1
(59)

Comparison of 1-DOF and 2-DOF results:
Before proceeding to the actual work, a comparison of the
servo tracking and disturbance rejection properties of 1-DOF
and 2-DOF controllers is made to stress the need of the 2-
DOF controller. Consider the disturbance rejection controller
Q(s) alone as 1-DOF disturbance rejection controller. Now
R(s) ismade zero and a step disturbance d(s) of 5 cm is given
at the input side. Fig. 8 shows the comparison of the distur-
bance responses of 1-DOFand2-DOFcontrollers (Y (s)/d(s)
with set point R(s) = 0). Both the controllers gave good dis-
turbance rejection property.

Figure 9 compares the servo tracking performance of 1-
DOF (Q(s)) and 2-DOF (Gc with Q(s)) controllers. Figure 9
shows that the 1-DOF designed for disturbance rejection is
not at all giving servo tracking ability, but 2-DOF showed
better servo tracking than 1-DOF controller. Figure 10 shows
the Bode plots of the closed loop system with 1-DOF and 2-
DOF controllers. 2-DOF controller has higher bandwidth and
more robustness compared to 1-DOF controller.
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Fig. 9 Comparison of Servo tracking of 1-DOF and 2-DOF controllers

Fig. 10 Comparison of Bode plots of 1-DOF and 2-DOF FOIMC

The setpoint for the second tank height in the coupled
tank system is chosen as 10 cm. Figure 11 shows the step
responses of different controllers to a setpoint of 10 cm. Fig-
ure 11 also shows the control effort (in %) required by the
controllers. FromFig. 11 it is observed that the proposed con-
troller has the zero steady state error, zero peak overshoot,
and least settling time. Also, the control effort is within the
saturation limits and reached steady state quickly. The pro-
posed controller gave less control effort when compared to
other controllers. Figure 12 shows the regulatory responses

Fig. 11 Step responses of the system with different controllers

Fig. 12 Regulatory responses of the system with different controllers

to a disturbance of 5 cm at 5000 s. From Fig. 12, the dis-
turbance rejection is faster than the remaining controllers.
Figure 13 shows the servo responses with time varying step
input of [5 15 10] cm at [0 5000 10,000] s. From Fig. 13
the proposed controller performed well with varying set-
point requirements. Whenever there is a change in the set
point, there is a spike in the control effort to track that change
quickly. Figure 14 shows the robustness verification of the
controllers at a different operating point of 20 cm. The new
transfer function given by Eq. (51) is used for verification of
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Fig. 13 Servo responses of the system with different controllers

Fig. 14 Robustness verification of the systemwith different controllers

robustness to change in the set point. From Fig. 14 the pro-
posed controller has less settling time and peak overshoot
compared to other controllers when operated in a different
operating region with different set point.

Table 2 compares the integral performance indices of the
controllers and Table 3 compares the time domain specifica-
tions of the step responses obtainedwith different controllers.
From Table 2 it is observed that the proposed controller has
least IAE, ITAEamong all the controllers. The control energy
indicated by the integral of control effort squared, is the low-
est for the proposed controller. From Table 3, it can be seen

Table 2 Integral time domain indices

Parameter Proposed Chekari Jia Li

IAE 4286 5751 4015 5375

ISE 2.233×104 2.985×104 1.727×104 2.042×104

ITAE 1.738×106 3.968×106 2.953×106 4.389×106

ITSE 1.117×108 1.492×108 8.637×107 1.021×108∫
u2 9.002×106 9.013×106 1.117×107 9.044×106

Table 3 Time domain performance specifications

Controller tr Mp ts(2%) ess

Proposed method 750 0 1400 0

Chekari method 1000 8 3000 0

Jia method 400 20 2500 0

Li method 1750 0 3000 0

Fig. 15 Robustness to +20 % gain change

that the proposed controller has least settling time, and peak
overshoot. Also, the specifications of the controller design,
Mp < 3% and ts = 1500 s are met. Figure 15 shows the
step responses of the system with different controllers when
there is a +20 % change in the system gain K . The proposed
controller showed good robustness to change in the system
gain. Similarly, Fig. 16 shows the step responses for a −20
% change in the system gain. The proposed controller is best
among all the controllers, whether it is a positive or negative
change in the gain.

123



Tuning of the two degrees of freedom FOIMC based on the Smith predictor 1313

Fig. 16 Robustness to −20 % gain change

Observations: 1. The design of the proposed controller is
simple, effective, novel and robust.
2. Tutorial papers like [3–4] are useful in the design of the

proposed controller.
3. Both the servo tracking and disturbance rejection con-

trollers are of fractional order and tuned independently.

Frequency domain analysis:
Figure 17 shows the Bode plots of loop transfer functions of
the systemwith different controllers. The proposed controller
shows flat phase response throughout the entire frequency
range. Figure 18 shows the Bode plots of loop transfer func-
tions with different controllers at new set point 20 cm with
new transfer function (Eq. 51). At the new setpoint also the
proposed controller had good flat phase response. Figure 19
shows the Bode plots of the system with the proposed con-
troller at two set points. Themagnitude and phase plots of the
controller are very close. This indicates the robustness prop-
erty of the proposed controller. Figure 20 shows the Bode
plots of the system with and without the proposed controller.
The system with the proposed controller has flatter phase
response than the uncontrolled system at low frequencies of
the order 10−3 to 10−4 Hz. From the Fig. 20 it is observed
that, at high frequencies of order kHz, the magnitude drops
to −30 dB, hence the proposed controller effectively rejects
the high frequency noise.

6 Conclusion

In this work, a 2-DOF FOIMC is developed for the cou-
pled tank system. Both the servo tracking and disturbance
rejection controllers are of fractional order and are designed
analytically for the FOPDT model of the coupled tank sys-

Fig. 17 Bode plot of loop TF with different controllers

Fig. 18 Bode plots of open loop TF at a different set point

tem. Simulation results indicate that the proposed controller
has good servo tracking and disturbance rejection properties
than the other controllers. The proposed controller gave set-
tling time 44% less than Jia and 53.3% less than Chekari
method and Li methods. Similarly, the peak overshoot of the
step response with the proposed method is 20% less than Jia
method and 8% less than Chekari method.

The proposed controller is also compared with a 1-DOF
FOIMC and performance of the 2-DOF FOIMC is found to
be better than the 1-DOF FOIMC. The system gain is var-
ied by ±20%, and the proposed controller showed better
robustness to the change in the system gain. The controllers
are operated in the neighbouring region of 16–30 cm and
the proposed controller showed better set point tracking in
a different operating region. Analytical proof of robust sta-
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Fig. 19 Controller at two different set points

Fig. 20 Bode plots with and without proposed controller

bility to a change in the set point is given. Comparison of
the Bode plots indicated more flatter phase responses (iso-
dampingproperty)with the proposed controller than theother
controllers. Finally it can be concluded that the proposed
2-DOF FOIMC gives superior time domain and frequency
domain performance compared to state of the art.
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