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Abstract
This paper investigates the application of the robust control strategy for reducing structural vibrations using the hybrid
protective system in the presence of network abnormalities. It focuses on the designof slidingmode control using a novel sliding
variable and modified reaching law approach in the presence of time-varying transmission delay and matched uncertainties.
The novel sliding variable is designed using compensated state information which nullifies the effect of time-varying or
deterministic transmission delay and ensures finite-time convergence of state variables in the presence of system uncertainties.
Further, the stability analysis of the proposed control algorithm with the closed-loop system in the presence of system
uncertainties is also presented using the Lyapunov approach. The compound equation of motion of the hybrid protective
structural system is formulated and solved in the time domain by the state-space approach. The simulation results are obtained
for a typical massive storage structure equipped with a hybrid protective system under seismic excitation. To prove the efficacy
of the proposed control algorithm, the results are comparedwith the power-rate reaching law and conventional delayed system.
It is observed that the proposed control strategy is quite effective and robust in the presence of system uncertainties.

Keywords Sliding mode control · Transmission delays · MR damper · LNG tank · Lyapunov approach · Stability analysis

1 Introduction

The schemes to control structural vibration against an earth-
quake can be viewed as passive, active, semi-active and
hybrid control. For over three decades seismic isolation tech-
nology and passive control scheme has been recognized as
one of the promising alternatives for protecting the struc-
tures (see e.g. [1–4] and references therein). The active
and semi-active control methods have also found increasing
applications in civil engineering structures. In [5], a hybrid
control method and a combination of passive and semi-active
control systems have received considerable attention due
to their advantages. In hybrid system, base-isolation helps
in reducing superstructure responses where the semi-active
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control devices reduce the displacement at the isolation level.
Several semi-active devices like magnetorheological (MR)
dampers, electrorheological (ER) dampers, variable stiffness
dampers, etc. have gained significant attention in recent years
for the vibration control of structures. Amongst various semi-
active control devices, MR dampers have been investigated
extensively by researchers for its applications for structural
vibration control.
TheMRdamper resembles an ordinary linear viscous damper
except that the cylinder of the damper is filled with a special
liquid consisting of magnetically polarizable micron-sized
particles. Theviscosity of thefluid canbe altered very quickly
from a liquid to a semi-solid and vice versa within 5 to 10
milliseconds by adjusting the magnitude of the magnetic
field which is produced by a coil wrapped around the pis-
ton head of the damper. In absence of current to the coil, an
MR damper behaves like an ordinary viscous damper. On the
other hand, when current is supplied through the coil, liquid
inside the damper changes to semi-solid state and its yield
strength changes depending on the applied current. Since
the damper does not apply the control force directly to the
structure (only resistance of the damper is adjusted), control
instability does not take place. Also theMR damper operates
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at only fewwatts of power hence in case of the failure of con-
trol algorithm it continues to work as a passive device. Thus,
the MR damper has proved to be a fail-safe and a reliable
device.
To command the semi-active devices of hybrid control sys-
tem, several control strategies have been developed like
polynomial control [6,7], LQR [8], H∞ control [9], instan-
taneous optimal control [10], LQG [11], neural [12,13],
acceleration control [14], fuzzy control [15], control based on
Lyapunov stability theory, decentralized bang-bang control
[16], maximum energy dissipation, clipped-optimal control
[17], modulated homogeneous friction, and sliding mode
control [18–23] in the presence of system and model uncer-
tainties.
Among above mentioned controllers, sliding mode control
have received much attention in various applications such as
robotics, networked control system, power electronics and
industrial processes due to its robustness property in the
presence of matched and unmatched disturbances [24–26].
In sliding mode control strategy, the methods for deter-
mining switching function and designing controller may be
changeable for the same control object. Due to advancement
in the network technology the usuage of the communica-
tion medium is increased in various areas such as process
industries, aerospace, military applications, control of struc-
tural vibration system and automobile sectors. The main
reason is that it provides faster data rate transfer between
the shared devices (plant and controller) and reduces the
complexity of wiring as compared to point-to-point com-
munication. Degradation in system performance due to the
presence of communication medium is the major limitation
of network based system. In the case of structural vibration
system, whenever the controller is connected to the plant
through some network medium, it suffers from time-varying
or deterministic communication delay. If these delays are
not handled properly they may lead to the major instability
of the system. Moreover, till date none of the researchers
have tried to design the control strategy for a network-based
structural vibration system that addresses and overcomes the
issues of communication. Thus, there is a need of designing
a novel robust control staregy that overcomes the problem
of communication delay. However, a robust control strategy
having compensation effect of time-varying or deterministic
transmission delay in the sliding variable have not yet been
explored for structural vibration system.

1.1 Motivation

This research gap motivates authors to develop a novel type
of robust control strategy for structural vibration system
that compensates the effect of time-varying or determinis-
tic transmission delay in the sliding variable in the presence
of system uncertainties. The proposed technique results in

an increase in the overall efficiency and performance of the
network-based structural vibration system in the presence of
transmission delays and matched uncertainty.

1.2 Contributions

The paper contributes mainly to the following:

– Mathematical modelling of time-varying transmission
delays using exponential distribution function.

– Compensation of time-varying or deterministic transmis-
sion delay using Padé approximation.

– A design of novel sliding variable using compensated
state information that nullifies the effect of time-varying
or deterministic transmission delay which ensures the
finite-time convergence of state variables in the presence
of system uncertainties.

– A design of sliding mode control using modified reach-
ing law and proposed sliding variable in the presence of
transmission delay and matched uncertainty.

– Stability analysis of closed-loop system using proposed
control algorithm in the presence of system uncertainties.

– Finally, the comprehensive simulation results on MR
damper system with LNG tank test-bed platform under
deterministic and time-varying transmission delay with
system uncertainties.

1.3 Structure of the paper

The paper is organized as follows: Sect. 2 presents the
detailed description ofmagnetorheological damper system in
the presence of time-varying transmission delay. The mathe-
matical modelling of MR damper system with time-varying
transmission delay is presented in Sect. 3. Themain contribu-
tion of the paper designing of compensated sliding variable
using Padé approximation technique in the presence of deter-
ministic or time-varying transmission delay is presented in
Sect. 4. Section 5 describes the design of robust sliding mode
controller with modified reaching law using proposed slid-
ing variable in the presence of system uncertainties. Stability
analysis of the closed-loop system using Lyapunov approach
is presented in Sect. 6. Section 7 describes the detailed simu-
lation results for MR damper system and LNG tank test-bed
platform in the presence of system uncertainties. The con-
cluding remarks of the paper and future possible direction of
proposed control algorithm is discussed in Sect. 8.

2 Magnetorheological damper systemwith
time-varying transmission delay

A magnetorheological (MR) damper is a system with
shock absorber characteristics in which the damper is filled
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Fig. 1 MR damper systemwith transmission delay and matched uncer-
tainty

with magnetorheological fluid. The output of the system is
controlled by a magnetic field through electromagnets that
are connected at the bottom of the MR damper system. Fig-
ure 1 shows the schematic diagram of theMR damper system
with transmission delay and matched uncertainty. The out-
put of the MR damper system is controlled through the
communication network. The path through which the state
information x(t) is transmitted fromplant to controller side is
defined as a feedback channel. While the path through which
the control signal u(t) is transmitted from the controller to
plant is defined as a forward channel. The state information
x(t) would experience the feedback channel transmission
delay τ f b while the control signal u(t) would experience
the forward channel transmission delay τ f . These transmis-
sion delays are either deterministic or time-varying in nature
depending on the characteristics of the network medium and
location of the controller. The disturbance is applied at the
input side of the channel in the formof an earthquakewith dif-
ferent amplitudes which are defined as matched uncertainty.
If these transmission delays and matched uncertainty are not
handled properly it might deteriorate the performance of the
system which even leads to instability. In order to avoid such
a situation, the time delay compensator is connected in the
forward and feedback channel that compensates the effect
of time-varying or deterministic transmission delay in the
presence of matched uncertainty.

3 Mathematical model of MR damper system
with time-varying transmission delay

A simplified mechanical structure of theMR systemwith the
Bouc-Wenmodel is shown in Fig. 2. It is considered as a test-
bed platform for this work. The main reason for considering
this model is that it accurately provides the behavior of the
MR damper system over a broad range of inputs.

Remark 1 It is necessary to note that, this section describes
the state-space model of the MR damper system with
time-varying transmission delay. The detailed mathematical
analysis of the system can be found in [27].
The structure presented in Fig. 2 is based on the response
of a prototype MR damper which is obtained for evaluation

Fig. 2 Simplified mechanical model of MR damper [27]

from the Lord Corporation [27]. The equations governing the
force u(t) predicted by this model [27] are given by

u(t) = c1 ẏ(t) + k01(xd(t) − x0(t)) (1)

ż(t) = −γ | ˙xd(t) − ẏ(t)|z(t)|z(t)|n−1 − β(ẋ(t)

−ẏ(t))|z(t)|n + A′(ẋ(t) − ẏ(t)) (2)

ẏ(t) = 1

c0 + c1
[αz(t) + c0 ˙xd(t) + k0(xd(t) − y(t))] (3)

where z(t) is an evolutionary variable that accounts for the
history dependence of the response, x0(t) is the initial dis-
placement of the spring k01, xd(t) is the final displacement
of the spring k01, c1 is viscous damping coefficient of the
fluid at low velocities, c0 is viscous damping coefficient of
the fluid at large velocities, k01 is the control stiffness of the
accumulator, k0 is the control stiffness at large velocities,
y(t) is the ouput of the system in terms of displacement and
velocity of the MR damper system, α is variable tension of
the system, and γ , β and A′ are user defined parameters of
the model which controls the linearity and smoothness of the
transition from postyeild to preyeild region. In order to val-
idate the model [27] in the presence of fluctuating magnetic
field it is necessary to determine the functional dependence
of parameters α, c0 and c1 on the applied voltage v(t) to the
current driver circuit which is given by,

α = αa + αbw, c1 = c1a + c1bw, c0 = c0a + c0bw (4)

where αa , αb, c0a , c0b, c1a and c1b are the positive real con-
stants that are involved in the MR fluid for reaching at its
rheological equilibrium. w(t) is the output of the first-order
filter which is represented as,

ẇ(t) = −η(w(t) − v(t)) (5)

where η is viscousity of the fluid and v(t) is the voltage
applied to the current driver.

The mathematical model of filter mentioned in Eq. (5)
plays a crucial role in reaching rheological to its equilibrium
state anddriving the electromagnet in theMRdamper system.
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Assumption 1 The forces generated through theMR damper
system are assumed to be sufficient to drive the structure in
the linear region.
Thus, considering a seismically excited structure controlled
with a single MR damper system the equation of motion can
be written as

Ms ẍ(t) + Cs ẋ(t) + Ksx(t) = δu(t) − MsΓ dm(t) (6)

where x(t) is a vector of the relative displacements of the
floors of the structure, dm(t) is a one-dimensional ground
acceleration in the form of disturbance, u(t) is the control
input in the form of measured force which is defined by
Eqns. (1)-(5), Γ is a column vector of ones, and δ is a vector
determined by the position of the MR damper in the struc-
ture. Thus, using Eqs. (1)–(6) the state-space model of MR
damper system is given by

ẋ(t) = Ax(t) + Bu(t) + Dsdm(t) (7)

y(t) = Cx(t) + Du(t) (8)

where x(t) ∈ Rn is system state vector, u(t) ∈ Rm is
control input, y(t) ∈ Rp is system output vector, dm(t)
is the matched uncertainty with an assumption that the
rank(B, Ds) is same and within it’s input range, A ∈ Rn×n ,
B ∈ Rn×m , C ∈ Rp×n , D ∈ Rn×m , Ds ∈ Rn×m are the
matrices of appropriate dimensions.

The closed-loop system defined in Eqs. (7) and (8) repre-
sents the conventional state-space model of the MR damper
system with a single input and multiple outputs (SIMO)
behavior. Depending on the computation of the control
actions the displacement and velocity of the MR damper
system are controlled. However, in order to make control
problemsmore challenging and interesting the system is con-
nected to the networked medium (see Fig. 1). The major
advantageof the schematic diagrampresented inFig. 1 is that,
the point to point cable connections are replaced by commu-
nication networkswhich provide faster data rate transfer with
economical investments. Thus, the system defined in Eqs. (7)
and (8) when connected to the communication network the
systemvariables suffer from internal delays τi , forward chan-
nel transmission delay τ f and feedback channel transmission
delay τ f b. The combination of these delays is defined as total
transmission delay τt . It is represented as

τt = τi + τ f + τ f b. (9)

The transmission delay (τ f , τ f b) in the forward and feed-
back channel can be deterministic or time-varying in nature
depending on the characteristics of the network medium and
the location of the controller. While the internal delays are
always deterministic in nature. The computational delay at
controller side τc, processing delay at the actuator side τa

and processing delay at the sensor side τs combines to form
the internal delay of the closed-loop system. It is given by

τi = τc + τs + τa . (10)

Assumption 2 When the system is connected via real-time
networks it is assumed that the effect of internal delays
is negligible as compared to time-varying or deterministic
transmission delay. So it can be neglected in comparison
with transmission delays as it does not deteriorates the per-
formance of the system.
Thus, satisfying Assumption 2 the total transmission delay
within the system is given by

τt = τ f + τ f b. (11)

Observing Eq. (11), it is noticed that the behavior of total
transmission delay τt depends on the forward and feedback
channel delay. In order to achieve satisfactory and stable out-
put response, it is considered that the total transmission delay
τt is bounded in nature which satisfies the following condi-
tion

τtl ≤ τt ≤ τtu (12)

where τtl and τtu indicates the lower and upper bounds of
total transmission delay.

Remark 2 FromEq. (12), it should be noted that the values of
upper and lower bounds of the total transmission delaywould
depend on the feedback and forward channel transmission
delay which is computed using exponential distribution in
the later section.

Assumption 3 Referring to Fig. 1 it can be noticed that a
slow time-varying disturbance dm(t) applied to the system
is assumed to be known and bounded in nature that satisfies
the following condition

|dm(t)| ≤ 	 (13)

where 	 is a postive constant.

Thus considering the effect of total transmission delay, the
closed-loop system in Eqs. (7) and (8) is given as

ẋ(t) = Ax(t) + Bu(t − τt ) + Dsdm(t) (14)

y(t) = Cx(t) + Du(t − τt ) (15)

where τt is the total transmission delay in continuous-time
domain.
Objective: The main objective of the paper is to design a
robust sliding mode control using novel sliding variable and
modified reaching law in the continuous-time domain for the
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system (14), (15) in the presence of time-varying or deter-
ministic transmission delay and matched uncertainty. The
main advantage of the proposed control algorithm is that it
provides faster convergence, negligible chattering and delay
compensation even in the presence of system uncertainties
such as transmission delay and matched uncertainty.

4 Sliding variable with time-varying
transmission delay

In the control system, Taylor series [28], All pole approxima-
tion [29] and Padé approximation [30] techniques are widely
used for processing of time delay in continuous-time domain.
The major drawback of the Taylor approximation technique
[28] is that it can approximate the lower range of delays that
are deterministic.While in the case of all pole approximation
technique [29] it generates smaller overshoots by adjusting
time both in first and second-order of large delayed system.
Thus to overcome these drawbacks, it is better to use the
Padé approximation technique [30] as it approximates the
time delay by rational models.
The effect of deterministic or time-varying transmission
delay in the feedback channel is compensated at the slid-
ing variable. The main advantage of this approach is that
the reaching condition required for finite-time convergence
of state variables is not affected even in the presence of
transmission delay. The detailed analysis is presented in
Lemma 1.

Lemma 1 The compensated sliding variable s(t) in the
presence of deterministic or time-varying feedback channel
transmission delay τ f b and matched uncertainty is given by,

s(t) = Cg(x
′(t) − x(t)) (16)

where Cg is the sliding gain computed using LQR approach,
x ′(t) is the parameter to tackle feedback channel trans-
mission delay τ f , and x(t) is the state information signal
available from sensor side.

Proof In sliding mode control, the design of a sliding vari-
able mainly depends on the computation of sliding gain and
information signal available from the sensor. The state infor-
mation signal x(t) processed at the sensor side experiences
the feedback channel transmission delay τ f b. Thus, the slid-
ing variable s(t) at the controller side is given as

s(t) = Cgx(t − τ f b) (17)

where x(t − τ f b) is the delayed state information signal. ��
Remark 3 It is considered that deterministic transmission
delay in forward and feedback channels is constant over an

infinite interval of time. On the other hand, the time-varying
transmission delay is random and unknown. So without loss
of generality, it is necessary to model time-varying transmis-
sion delay using a stochastic approach in the continuous-time
domain.

Remark 4 In the stochastic approach, the exponential distri-
bution computes the randomnumber based on the continuous
generation of events in the process. However, in the proposed
work it is considered that the state and control information
signal is continuously received at the controller and plant
side. So, considering this information signal in the form
of event, the exponential distribution is the best suitable
approach for modeling the time-varying transmission delay
occurring in both sides of the channel.

Thus, the time-varying feedback channel transmission delay
τ f b modeled using exponential distribution [31] with proba-
bilities is given by

Pr{τ f b = dv} = E{dv} = βv; v = 1, 2, . . . , q (18)

where βv is the positive scalar quantity, v is the event, E{dv}
is the expectation of the stochastic variable dv .
The mathematical representation of βv with exponential dis-
tribution is given by,

βv = λ − e−λr (19)

where λ is the rate parameter with λ > 0, r is the random
variable uniformly distributed over the interval [0,1] and e is
the exponential term.
Using Padé approximation technique [30] and takingLaplace
transform, the delayed state information signal in Eq. (17) is
represented as

L{x(t − τ f b)} = e−τ f bs L{x(t)}. (20)

Applying first order approximation, the above Eq. (20) is
written as

L{x(t − τ f b)} ≈ 1 − τ f bs
2

1 + τ f bs
2

L{x(t)} (21)

where L{x(t)} is Laplace transform of x(t) and s is the
Laplace variable. Then the following variable x ′(t) is defined
as

L{x ′(t)} − L{x(t)} = 1 − τ f bs
2

1 + τ f bs
2

L{x(t)}. (22)

where x ′(t) is the parameter to tackle time-varying or deter-
ministic feedback channel transmission delay τ f b.
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Further solving Eq. (22), we get

L{x(t)} − L{x(t)}τ f bs

2
= L{x ′(t)} + τ f bs

2
L{x ′(t)}

−L{x(t)} − L{x(t)}τ f bs

2
. (23)

Applying Inverse Laplace transform to above Eq. (23), we
get

x(t) − ẋ(t)τ f b

2
= x ′(t) + ẋ ′(t)τ f b

2
− x(t) − ẋ(t)τ f b

2
. (24)

On further simplification the above Eq. (24) is expressed in
the form of ẋ ′(t) as

ẋ ′(t) = −ζ x ′(t) + 2ζ x(t) (25)

where ζ = 2
τ f b

.
UsingEqs. (22) and (25), the compensated sliding variable

at the controller side in Eq. (17) is expressed as

s(t) = Cg(x
′(t) − x(t)) (26)

where x ′(t)=
∫
(−ζ x ′(t) + 2ζ x(t))dt .

Remark 5 The parameter x ′(t) is introduced in the sliding
variable (26) which eliminates the effect of feedback channel
transmission delay at the controller side.

5 Slidingmode control for MR damper
systemwith time-varying transmission
delay

Theorem 1 The non-switching type sliding mode control law
for the system (14), (15) in the presence of feedback channel
transmission delay τ f b and matched uncertainty dm(t) is
given as

u(t) = −(CgB)−1[Cg Ax(t) − Cgẋ
′(t) − χs(t)

−k2sgn[s(t)] + cnd
′
m(t)] (27)

where k1, k2, s0 are positive contants, k2 ≥ cn	 and cn =
CgDs.

Proof The compensated sliding variable in (26) should sat-
isfy following ′Δ′ reaching condition (28) that ensures the
finite time convergence to s(t) = 0. It is given by,

s(t)ṡ(t) < −Δ|s(t)|.Δ > 0,∀t . (28)

The reaching law proposed in [32] that satisfy condition (28)
is given as,

ṡ(t) = −χs(t) − k2sgn[s(t)] + cndm(t) (29)

where χ = k1s0
s0+|s(t)| .

Observing Eq. (29) it is noticed that, the disturbance term
dm(t) suffers from feedback channel transmission delay τ f b

as it is applied from the plant side. Thus, the modified reach-
ing law is represented as

ṡ(t) = −χs(t) − k2sgn[s(t)] + cndm(t − τ f b). (30)

According to Lemma 1, the term dm(t − τ f b) is transformed
as

dm(t − τ f b) = (d ′
m(t) − dm(t)) (31)

where d ′
m(t)=

∫
(−ζd ′

m(t) + 2ζdm(t))dt . ��

Remark 6 In order to tackle time-varying or determinis-
tic feedback channel transmission delay τ f b the delay-
dependent parameter d ′

m(t) is introduced in (31) which
eliminates the effect of feedback channel transmission delay
at the controller side. Thus, it is noticed that the variabled ′

m(t)
varies depending on the feedback channel transmission delay
τ f b.

Substituting Eq. (31) into Eq. (30) we have,

ṡ(t) = −χs(t) − k2sgn[s(t)] + cnd
′
m(t) − cndm(t). (32)

Remark 7 Equations (32) indicates the modified form of Eq.
(29) in which the sliding variable and disturbance signal is
replaced to the compensated signal. Thus, it is extended that
in the presence of communication medium the reaching law
in Eq. (29) would not hold with time delay compensation.

Using Eq. (26), the reaching law in Eq. (32) is expressed
as

Cg(ẋ
′(t) − ẋ(t)) = −χs(t) − k2sgn[s(t)] + cnd

′
m(t)

−cndm(t). (33)

Substituting the value of ẋ(t) the above Eq. (33) is written as

Cgẋ
′(t) − Cg[Ax(t) + Bu(t − τt ) + Dsdm(t)]

= cnd
′
m(t) − χs(t) − k2sgn[s(t)] − cndm(t). (34)

Remark 8 It is noticed from Eq. (26), that the feedback chan-
nel transmission delay τ f b is compensated at the sliding
variable. While forward channel transmission delay τ f is
compensated at the plant side. So, the effect of feedback
channel transmission delay is not observed at the controller
side for computing the control signal. Thus without loss of
generality, the control signal in Eq. (34) is represented as

u(t − τt ) = u(t). (35)
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Thus using Eq. (35), Eq. (34) is written as

Cgẋ
′(t) − Cg Ax(t) − CgBu(t) − CgDsdm(t)

= cnd
′
m(t) − χs(t) − k2sgn[s(t)] − cndm(t). (36)

Thus, the control law computed at the controller side in the
presence of feedback channel transmission delay is given as

u(t) = −(CgB)−1[Cg Ax(t) − Cgẋ
′(t) − χs(t)

−k2sgn[s(t)] + cnd
′
m(t)]. (37)

The control law computed in Eq. (37) generates the control
actions for driving the current driver circuit at the plant side.
These control actions suffer from forward channel transmis-
sion delay τ f which is given by

ua(t) = u(t − τ f ). (38)

Thus using Padé approximation technique [30], the compen-
sated control signal computed at the plant side is given by

ua(t) = u′(t) − u(t) (39)

u′(t) =
∫

−ρu′(t) + 2ρu(t)dt (40)

where ρ = 2
τ f

and u′(t) is a delay-dependent parameter
that tackles time-varying or deterministic forward channel
transmission delay τ f .

6 Stability analysis

For a given time-varying or deterministic total transmission
delay τt satisfying condition (12) and matched uncertainty
dm(t) satisfying (13), the trajectories of the closed-loop sys-
tem (14), (15) drives towards the designed sliding variable
(26) for a designed controller (37)within a finite-time conver-
gence such that the following condition in (41) must exists.

Θ > 0 (41)

where Θ = χs(t) + k2sgn[s(t)] + cn(dm(t) − d ′
m(t)).

Proof Consider the Lyapunov function as

Vs(t) = 1

2
s2(t). (42)

Taking first order derivative of Eq. (42) we have

V̇s(t) = sT (t)ṡ(t). (43)

Substituting the value of ṡ(t), the above Eq. (43) can be writ-
ten as

V̇s(t) = sT (t)Cg(ẋ
′(t) − ẋ(t)). (44)

Futher substituting the value of ẋ(t) we have

V̇s(t) = sT (t)Cg(ẋ
′(t) − [Ax(t) + Bu(t − τt ) + Dsdm(t)]).

(45)

On simplification of Eq. (45), we get

V̇s(t) = sT (t)[Cgẋ
′(t) − Cg[Ax(t) + Bu(t) + Dsdm(t)]].

(46)

Using Eq. (37), the above Eq. (46) is represented as

V̇s(t) = sT [−χs(t)−k2sgn[s(t)]−cn(dm(t)−d ′
m(t))] < 0.

(47)

The term V̇s(t) is definitely negative as k1, k2 and s0 are
positive constants as well as χ > 0 and cn(d(t) − d ′(t)) <

χs(t) + k2sgn[s(t)]. So, the closed-loop system is asymtot-
ically stable in the presence of time-varying or deterministic
total transmission delay τt and matched uncertainty dm(t).

Thus observing Eq. (47), the ’Δ’ reachability condition
for finite-time convergence for proposed compensated slid-
ing variable (26) and designed control law (37) that satisfies
condition (28) is given by

0 < Δ < Θ. (48)

This completes the Proof . ��

7 Application onMR damper test-bed
platformwith LNG tank system

To prove the efficacy of the proposed robust control algo-
rithm, a Liquefied Natural Gas (LNG) storage tank system
of 165 million liters capacity, a massive storage structure as
shown in Fig. 3 is considered as a test-bed. The LNG tank is
structurally modeled into two layers. The outer portion of the
tank ismodeled based onDunkerley’s simplifiedmodelwhile
the inner portion ismodeled based on themechanical analogy
proposed in [2]. To reduce structural responses, the LNG tank
is mounted on the High Damping Rubber Bearing (HDRB)
type base-isolation system with a 2.0 s isolation period and
10% damping. The base-isolation system, however, reduces
structural responses at the cost of inducing large displace-
ments at the isolation level. Such a large isolator displacement
will lead to very large isolators, costly flexible connections
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Fig. 3 Structure of network-based liquefied natural gas (LNG) storage
tank system with MR damper
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for utilities, and might even cause instability of the structure.
Therefore, control of isolator displacement is of great con-
cern. Semi-active hybrid control using MR damper is one of
the promising technologies to reduce isolator displacement
(which is used in the study). To present the dynamics of MR
damper, the mechanical phenomenological model proposed
in [33,34] is used. The properties of MR damper considered
are listed in “Annexure-I”. To command theMR damper sys-
tem in the presence of network abnormalities, sliding mode
control (SMC) designed in this article using modified non-
switching reaching law is validated. The proposed controller
calculates a vector of desired control forces, based on mea-
sured structural response and applied force on the structure
in the presence of system uncertainties. The 1940 Imperial
Valley earthquake recorded at El Centro is considered as seis-
mic input (peak ground acceleration=0.349g) to perform test
simulations.

The simulation results discussed are presented in three
sections (i) Figs. 4, 5, 6 shows the results of state variables,
sliding variable, and control signal with time-delay compen-
sation for the MR damper system. The results are compared
with power-rate reaching law to show the efficiency of the
proposed control algorithm, (ii) Figs. 7, 8, 9 show the results
of systemvariableswithout time delay compensation and (iii)
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Figs. 10, 11, 12, 13, 14, 15 show the response LNG storage
tank system in the terms of displacement of convective mass
(upper portion of the liquid which is free to move during
vibration), impulsive mass (lower portion of the liquid that
remains adhered with the tank wall during vibration) and
isolation displacement under deterministic and time-varying
transmission delay. The comparative analysis is shown in the
absence of delay, presence of delay, and time delay compen-
sation technique.
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7.1 Results of state variables, sliding variable and
control signal for MR damper system

In this section, the effectiveness of non-switching type sliding
mode control law is discussed with time-delay compensation
in the terms of state variables, sliding variable, and control
signal for the MR damper system. The results are compared
with SMC designed using power-rate reaching law. Thus,
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Fig. 11 Displacement history at isolation level for LNG system with
time-varying transmission delay

Time (sec)
0 5 10 15 20 25 30

D
is

pl
ac

em
en

t a
t c

on
ve

ct
iv

e 
m

as
s 

le
ve

l

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

displacement of conventional LNG system
displacement of LNG system with fixed time delay
displacement of LNG system with delay compensation

Fig. 12 Displacement history at convective mass level for LNG system
with deterministic transmission delay
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Fig. 13 Displacement history at convective mass level for LNG system
with time-varying transmission delay

using Theorem 1 the sliding mode control law derived using
power-rate reaching law [35] is expressed as

u(t) = −(CgB)−1[−Cgẋ
′(t) + Cg Ax(t) +

k|s|ς sgn[s(t)] − CgDsdm(t)] (49)

where A, B, C , and Ds are the system matrix, control
input matrix, output matrix and disturbance matrix (refer
Annexure-II). In this section as the non-regulatory problem
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of MR damper system is considered, the system matrices

A, B, and Ds are given as A =
[

0 1
−9.86 −0.6283

]

, B =
[

0
−0.4327e − 08

]

, Ds =
[
0

−1

]

.

The sliding gainCg is calculated using continuous-time LQR
method in order to have better optimal control with Q =
diag(1000, 1000) and R = 1 having Cg = [−0.0110 −
0.1896]. To justify the concept of the proposed control
algorithm with time delay compensation, the non-regulatory
behavior of the MR damper is studied in the presence of sys-
tem uncertainties. So, in both the cases initial conditions are
x(t) = [1 − 0.5]T respectively. The system variables shows
proper response for the values of k1 = 2, cn = 0.18,	 =
1, k2 = 1, ς = 0.5, k = 1 and s0 = 10 in the case of both
the reaching laws. It is assumed that at regular time inter-
val the state and control information signal is received at
the controller and plant side with parameter λ = 0.001. So
according to exponential distribution, the time-varying trans-
mission delay in the forward channel is 0.1 s≤ τ f ≤ 0.35s
and the feedback channel is 0.1 s≤ τ f b ≤ 0.35s. Thus,
the total time-varying transmission delay occurring within
the communication medium is 0.2 s≤ τt ≤ 0.7s satisfying

condition (12). The slow time varying matched disturbance
applied to the system is dm(t) = 0.02sin(0.086t).

Figure 4 shows the response of state variables for the spec-
ified initial conditions. It can be noticed that in both cases
the state variables are computed from t = 0 (mentioned in
the magnified window) and converges to the origin even in
the presence of feedback and forward channel transmission
delay. Thus it can be extended that in both cases, the con-
trol algorithm designed using a time delay approximation
approach accurately compensates the effect of time-varying
transmission delay in both the channels. Moreover, it can
also be noticed that the convergence rate and oscillations in
the state variables for power-rate reaching are comparatively
high as compared to non-switching reaching law. This proves
the robustness of the proposed control algorithm derived
using modified non-switching reaching law in the presence
of system uncertainties.

Figure 5 shows the response of the compensated sliding
variable computed at the controller side for both the cases.
It can be noticed that the sliding variable at the controller
side is computed at t = 0 even in the presence of time-
varying feedback channel transmission delay τ f b. Thus it
can be referred that, the delay-dependent parameter x ′(t)
designed in (26) tackles the time-varying transmission delay
τ f b occurring in the feedback channel effectively. Moreover,
it can also be noticed that the state variables in both the cases
converge to sliding surface s(t) = 0 in the finite-time sat-
isfying condition (26) and remains within its manifold even
in the presence of system uncertainties. However, the con-
vergence rate of non-switching reaching law is faster than
the power-rate reaching law with negligible chattering. This
indicates that the proposed control algorithm designed using
novel sliding variable and modified reaching law is the most
suitable approach for real-time applications where chatter-
ing and time-varying transmission delay are considered to be
major concerns for the degradation of system performance.

Figure 6 shows the result of the control signal computed at
the plant side for both the cases. The control information sig-
nal computed at the controller side based on the compensated
sliding variable suffers from time-varying forward channel
transmission delay. It can be observed that for both cases,
the effect of this transmission delay is compensated at the
plant side as the control signal is computed from t = 0.
Thus it can be noticed that the delay-dependent parame-
ter u′(t) designed at the plant side compensates the effect
of time-varying transmission delay τ f precisely even in the
presence of system uncertainties. Moreover, the convergence
rate of the control signal computed using the proposed con-
trol algorithm is much better than power-rate reaching law
with negligible chattering. This results in the improvement
of transient response analysis in the time domain for the MR
damper system and reduction of the heat losses in the current
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driver circuit which is used to drive the output of the MR
damper system.

Figures 7, 8, and 9 show the response of state variables,
sliding variable, and control signal at the plant side for
both the cases without time delay compensation technique.
Observing the results in the magnified window, it can be
noticed that the system variables (plant states, sliding vari-
able and control signal) are computed after a while due to
which the response of the system becomes more oscillatory
as compared to a compensated system which even leads to
degradation in the output performance of the system.
So from the above analysis, it is noticed that the control law
derived using modified reaching law with novel sliding vari-
able proves to be more robust than a conventional system and
power-rate reaching law as it provides faster convergence and
negligible chattering in the system output performance. This
increases the efficiency of the MR damper system even in
the presence of time-varying transmission delay in both the
channels and matched uncertainty.

7.2 Results of LNG storage tank systemwith
deterministic and time-varying transmission
delay

In the previous section, a hypothetical example of the MR
damper system is used to have better clarity of time delay
compensation technique in the presence of system uncertain-
ties. In this section, a real-time example of the MR damper
test-bed platform with an LNG tank system is considered
to examine the robustness of the proposed control algorithm
with the same delay parameters in the presence of system
uncertainties. The system matrices of the MR damper sys-
tem with a real-time LNG tank testbed platform are given in
Annexure-III. In this case, the sliding gain is computed to be
Cg = 1.0e − 0.6∗
[−0.0205 0.0108 0.0110 −0.0017 −0.0172 −0.0001 −
0.3722 − 0.4628]
for Q = diag(10, 10, 10, 10, 10, 10, 10, 10) and R = 2.

The time variation of displacement at the isolation level
(which is directly connected to the MR damper commended
by the control algorithm) of the LNG tank system is shown
in Figs. 10 and 11 under deterministic and time-varying
transmission delay respectively. The comparative analysis
is shown in the absence of delay, presence of delay, and
time delay compensation technique. From the results, it is
observed that the response is amplified if the transmission
delay is not taken into account explicitly and thereby the
effectiveness of the controller is reduced. The amplifica-
tion in response is more for the system with time-varying
transmission delay as compared to deterministic time delay.
Further, it is also seen that the isolator displacement history
of the conventional LNG tank system (in absence of delay)
and LNG tank systemwith time delay compensationmatches

closely. This shows the effectiveness of the time delay com-
pensation technique and robustness of the proposed control
scheme when it is connected through wired or wireless com-
munication networks or when the controller is located at the
geographical distance from the system.

The superstructure responses i.e., convective and impul-
sive displacements are plotted in Figs. 12, 13, 14, 15 for both
type of delays. It is interesting to observe that the amplifica-
tion of response due to negligence of transmission delay is
relatively smaller. Comparing Figs. 12 and 13, the amplifica-
tion of response is found to be the same for the system with
time-varying and deterministic transmission delay. A simi-
lar trend is observed for an impulsive response as shown in
Figs. 14 and 15. This shows that the superstructure response
is relatively less sensitive to the effect of transmission delay
of any type.

8 Conclusion

In this paper, the designing of the robust sliding mode con-
trol strategy using modified reaching law and a novel sliding
variable in the presence of time-varying or deterministic
transmission delay and matched uncertainty is presented.
The novel sliding variable is designed using the concept
Padé approximation technique while time-varying transmis-
sion delay is modeled using an exponential distribution. The
designed sliding variable uses compensated state informa-
tion that nullifies the effect of transmission delay and ensures
finite-time convergence of state variables in the presence of
system uncertainties. The proposed control algorithm is also
analyzed for its stability in the presence of system uncertain-
ties by the Lyapunov approach. The compound equation of
motion of the hybrid protective structural system is formu-
lated and solved by the Runga-Kutta method for a typical
massive storage structure under seismic excitation. From the
simulation results, the following conclusions are drawn

1. Neglecting time-varying transmission delay for a real-
time system in the presence of the communication
medium, the effectiveness of the controller reduces sig-
nificantly.

2. The degradation of system performance is more for the
systemwith time-varying transmission delay as compared
to deterministic time delay,

3. The superstructure response is found less sensitive to the
effect of transmission delay.

4. The proposed control algorithm designed using modi-
fied reaching law is found a most suitable approach for
real-time application where chattering and time-varying
transmission delay is considered as major concerns for
the degradation of system performance.
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5. The control law derived using modified reaching lawwith
the novel sliding variable is observed more robust than a
conventional system and power-rate reaching law. The
robustness is attributed to the faster convergence, trans-
mission delay compensation, and negligible chattering in
the system performance.

In the future, the proposed control strategy can be extended
for single and multiple packet loss in the presence of system
uncertainties.

8.1 Annexure-1

The specifications of MR damper system are: α0a =
8.7kN/m/V; γ = 496m−2; α0b = 6.40 kN/m/V ; β =
496m−2; c0a = 50.30 kN s/m; η = 195 sec−1; c0b =
8.3 kN s/m/V ; k0 = 0.0054 kN/m; c1a = 8106.2 kN s/m;
k1 = 0.0087 kN/m; c1b = 7807.9 kN s/m/V ; x0 =
0.18m; Ad = 810.50; n = 2.

8.2 Annexure-II

A =
[ [0] [I ]
−[Ms]−1[Ks] −[Ms]−1[Cs]

]

, B =
[

0
[Ms]−1{δ}

]

,

C =
[ [I ] [0]
−[Ms]−1[Ks] −[Ms]−1[Cs]

]

, D =
[ {0}
[Ms]−1{δ}

]

,

Ds =
[

0
−{Γ }

]

where [Ms], [Ks], [Cs] are the mass, stiffness and damping
matrices of the LNG tank system. {δ} is vector of location of
control devices and {Γ } is the influence coefficient vector.

8.3 Annexure-III

A =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1.0000 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 1.0000

−491.1092 −44.5056 −0.1119 9.8696 −2.5715 −0.1326 −0.0018 0.6283
−126.3822 −224.7526 −0.1119 9.8696 −0.6618 −0.6696 −0.0018 0.6283
−126.3822 −44.5056 −0.5139 9.8696 −0.6618 −0.1326 −0.0081 0.6283
126.3822 44.5056 0.1119 −9.8696 0.6618 0.1326 0.0018 −0.6283

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B = 1.0e−08∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

0.6600
0.6600
0.6600

−0.6600

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,D = 1.0e−08∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0
0

0.6600
0.6600
0.6600

−0.6600

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ds =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0 0 0 0 0 0 0
0 1.0000 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0
0 0 0 1.0000 0 0 0 0
0 0 0 0 1.0000 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 1.0000

−491.1092 −44.5056 −0.1119 9.8696 −2.5715 −0.1326 −0.0018 0.6283
−126.3822 −224.7526 −0.1119 9.8696 −0.6618 −0.6696 −0.0018 0.6283
−126.3822 −44.5056 −0.5139 9.8696 −0.6618 −0.1326 −0.0081 0.6283
126.3822 44.5056 0.1119 −9.8696 0.6618 0.1326 0.0018 −0.6283

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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