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Abstract
In this paper, we have obtained the traveling wave solution for generalized Fisher equation and Lotka–Volterra (L-V) model
with diffusion using hyperbolic function method. The Painleve’ analysis has been used to check both of the system’s integra-
bility. Obtained solutions have also been plotted to represent their spatio-temporal dependence. The three dimensional plot
shows a monotonic profile of the solutions.

Keywords Traveling wave solutions · Hyperbolic function method · Fisher equation · Lotka–Volterra equation ·
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1 Introduction

Nonlinear waves play significant roles in different phe-
nomena related to fluid mechanics [1], plasma physics [2],
biology [3], chemistry [4] etc. Because of the wide applica-
tions, nonlinear wave theory has made a lot of progress. It
has got a new boom with the advancements of computation
as well as the theory of dynamical systems. The reaction–
diffusion (R-D) models are studied extensively in the context
of biological and chemical systems. The interaction of reac-
tion and diffusion together becomes the cause of formation
of traveling waves. Traveling wave solutions in R-D systems
has been found in neurology, chemistry, epidemiology etc
[5].

The exact solution of nonlinear partial differential equa-
tions, if available, facilitates the verification of numerical
solvers and aids in the stability analysis of solutions. It can
also provide much physical information and more insight
into the physical aspects of the nonlinear physical prob-
lem. During the past decades, much effort has been spent
on the subject of obtaining the exact analytical solutions to
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the nonlinear evolution PDEs. Fisher’s equation is one of
the most useful reaction diffusion systems [6]. It is utilized
to display the propagation of genes [7], logistic population
growth [3], flame propagation [8], nuclear reactor theory
[9] etc. There are different strategies to solve this equation,
some of them are inverse scattering method [10], Hirota’s
bilinear methods [11], homogeneous balance method [12],
tanh-functionmethod [13], exp-functionmethod [14], hyper-
bolic function method [15] etc. In recent years, the direct
search for exact solutions of PDEs becomes more and more
attractive partly due to the availability of computer sym-
bolic systems likeMaple orMathematica, which allows us to
perform complicated tedious algebraic calculations on com-
puter. In particular one of the most effective direct methods
to construct exact solutions of PDEs is the hyperbolic func-
tion method. Lin and Ruan [16] have concerned with the
traveling wave solutions of delayed reaction–diffusion sys-
tems. By using Schauder’s fixed point theorem they have
shown that the existence of traveling wave solutions may
be reduced to the existence of generalized upper and lower
solutions. Fan [17] obtained the analytic solution to the
generalized Fisher’s equation with higher degree of non-
linearity. Kudryashov [18] have presented a new approach
to look for exact solutions of nonlinear ordinary differen-
tial equations. He has used a simple nonlinear equation with
general solution in order to express special solution of non-
linear differential equation of higher order. Zhou et al. [19]
have studied the generalized Fisher equation analytically by

using three tools of integration, like: improved tan
(

φ(ξ)
2

)
-
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expansion method, the generalized Kudryashov method and
the extendedG ′/G-expansionmethod. Using thesemethods,
they have derived the bright-like, dark-like and singular-like
solitary wave solutions. Kyrychko and Blyuss [20] studied
traveling wave solutions to the generalized Fisher’s equa-
tion with fourth ordered derivative. Numerically, they have
studied the behavior of travelling waves when the long-range
diffusion coefficient becomes larger. Also, they have found
that starting with some values, solutions of the model lose
monotonicity and become oscillatory.

Among the models on mathematical biology, Lotka–
Volterra model is one of the most famous models. It has been
used in lot of biological models related to predator-prey com-
petition models, cooperative models, diffusive models etc.
Many investigators have used Lotka–Volterra related equa-
tions for ecological modeling and simulations, in an effort to
understand the most basic features of a spatially distributed
interaction [21–24].Dunbar [25], established the existence of
traveling wave solutions for two reaction diffusion systems
based on the Lotka–Volterra model for predator and prey
interactions. Ma and Guo [26], investigated the dynamics of
a class of diffusive Lotka–Volterra equations with time delay
subject to the homogeneous Dirichlet boundary condition in
a bounded domain.

In this paper, exact solutions have been obtained to diffu-
sive Lotka–Volterra equations by using hyperbolic function
method. Bai [27] proposed hyperbolic functionmethod to get
exact solutions for nonlinear partial differential equations.
In this paper, we apply this method to solve Fisher’s equa-
tion and diffusive Lotka–Volterra equations for predator-prey
models.

The general form of a partial differential equation is
f (v, vx , vt , vxx , vxt , vt t , . . .) = 0, where f is a function. To
get the traveling wave solution we introduce a new variable
ξ such that ξ = k(x − λt + c) and v(x, t) = v(ξ), where k,
λ are constants and c is an arbitrary constant. With this sub-
stitution the general form of a partial differential equation
transforms to an ordinary differential equation as:

f (v, v
′
, v

′′
, . . .) = 0, (1)

where v
′ = dv

dξ
. Integrating Eq. (1) we shall get the solution

and the solution v(x, t) = v(ξ) is written in the form,

v(ξ) =
n∑

i=1

sinhi−1 ω(ai coshω + bi sinhω) + a0, (2)

with

dω

dξ
= sinhω, (3)

where, ai , bi , i = 1, 2, . . . , n and a0 are constant. Balanc-
ing the highest-order nonlinear term and the highest-order
partial derivative term in the given Eq. (1), we shall get the
value of the parameter ‘n’. After this, we substitute Eq. (2)
into the Eq. (1) and to replace ξ byωwe use Eq. (3). Equating
the coefficients of different terms of the form sinhk ω coshl ω
equals to zero and solving we shall get the value of the con-
stants k, λ, ai and bi , i = 1, 2, . . .

Integrability plays a crucial role in the study of nonlinear
differential equations. The integrability of a differential equa-
tion provides a lot of interesting and vital properties of that
equation: its behavior near movable singularity, existence of
infinitely many conserved quantities, its Bäcklund transfor-
mations etc [28,29]. Here an important thing is how one can
check whether a nonlinear differential equation is integrable
or notwithout finding its general solution. Painlevé test [29] is
an powerful tool to check this. An ordinary differential equa-
tion (ODE) is said to have the Painlevé property if its solution
does not have any movable singularity other than pole. ie.
the solution of that differential equation can be expressed
in Laurent series near movable singularity (if there be any).
Ablowitz et al. [30] conjectured that every exact reduction
in case of integrable nonlinear partial differential equation
(NPDE), to ODE gives rise to an ODE having the Painlevé
property. Contrapositively, we can say that if we can find an
ODE by exact reduction from a NPDE such that the ODE
does not has the Painlevé property then we conclude that this
PDE is not integrable.

The paper is organized into several sections. In Sect. 2,
we have considered the generalized Fisher’s equation and
sinh function method has been used to get the travel-
ing wave solution. Diffusive Lotka–Volterra equation for
predator-prey model has been considered in Sect. 3. Here
also, using sinh function method, the solutions of the diffu-
sive Lotka–Volterra predator-preymodel have been obtained.
We perform the Painleve’ test to check the integrability
for both the models (Fisher’s equation and Lotka–Volterra
equation) in Sect. 4. Finally, in Sect. 5, the paper has been
completed with the discussion of the obtained results.

2 Fisher’s equation

Fisher’s equation belongs to the class of reaction–diffusion
equations: in fact, it is one of the simplest semilinear
reaction–diffusion equations, the one which has the inho-
mogeneous term

g(u, x, t) = ru(1 − u)

which can exhibit traveling wave solutions that switch
between equilibrium states given by g(u) = 0. Such
equations occur, e.g., in ecology, physiology, combustion,
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crystallization, plasma physics, and in general phase transi-
tion problems [18]. Fisher proposed this equation in his 1937
paper. It is used to study thewave of advance of advantageous
populations in the context of population dynamics to describe
the spatial spread of an advantageous species and explored
its traveling wave solutions [31]. For every wave speed
c ≥ 2

√
r D, (c ≥ 2 in dimensionless form) it admits traveling

wave solutions of the form v(x, t) = v(x±ct) ≡ v(z), where
v is increasing and limz→−∞ v(z) = 0, limz→∞ v(z) = 1,
that is, the solution switches from the equilibrium state u = 0
to the equilibrium state u = 1.

The generalized fisher equation is given by

ut = Duxx + pu(1 − ur )(q + ur ), (4)

where D is the diffusion coefficient. If q = 0, r = 1, Eq. (4)
reduces to Huxley equation and for r = 1, q = −θ1, Eq. (4)
reduces to Fitzhugh–Nagumo equation [32]. Here we have
assumed the case for q �= 0 and r = 1

2 ∈ (0, 1). Let ξ =
k(x −λt + c) and u(x, t) = φ(ξ), here k and λ are constants
that need to be determined and c is an arbitrary constant.
Thus, the Eq. (4) becomes

Dk2φξξ + kλφξ + pφ
[
q + (1 − q)φr − φ2r

]
= 0. (5)

Now φ(ξ) is expressed in terms of hyperbolic functions as

φ(ξ) =
n∑

i=1

sinhi−1 ω(ai coshω + bi sinhω) + a0. (6)

Since there are two non-linear terms, so, n = 2. Thus,

φ(ξ) = a1 coshω + b1 sinhω + a2 sinhω coshω + b2 sinh
2 ω + a0,

(7)

dω

dξ
= sinhω. (8)

Differentiating Eq. (7) with respect to ξ and using Eq. (8) we
get-

φξ = a1 sinh
2 ω+b1 sinhω coshω+2a2 sinh

3 ω+a2 sinhω

+ 2b2 sinh
2 ω coshω, (9)

φξξ = 2a1 sinh
2 ω coshω + 2b1 sinh

3 ω + b1 sinhω

+ 6a2 sinh
3 ω coshω + a2 sinhω coshω

+ 6b2 sinh
4 ω + 4b2 sinh

2 ω. (10)

From Eq. (5), using Eqs. (7), (8), (9) and (10), then simplify-
ing and equating the coefficients of sinhl ω coshm ω to zero,

we have a set of solutions given in “Appendix-A” and solv-
ing them we get D = D, a0 = 1

2 , a1 = ± 1
2 , a2 = 0, b1 =

0, b2 = 0, k = k, p = 8Dk2, q = 1, λ = ±2Dk(2q + 1).
From Eq. (8), we get

sinhω = −cosechξ, (11)

coshω = −cothξ, (12)

where the integration constant is taken zero. Thus, from
Eq. (7) we get

u = φ(ξ) = a1 coshω + a0, (13)

where

ξ = k(x − λt + c). (14)

Thus, the solution which satisfies the boundary conditions,
u(−∞) = 0, u(∞) = 1, is

u = 1

2
(cothξ + 1) , (15)

where

ξ = k(x ∓ 6Dkt + c). (16)

3 Application to diffusive Lotka–Volterra
equation for predator-preymodel

One of the dominant themes in both ecology and mathemati-
cal ecology is the dynamic relationship between predators
and their prey due to its universal existence and impor-
tance in population dynamics. From a biological perspective,
individual organisms are distributed in space and typically
interacting with the physical environment and other organ-
isms in their spatial neighborhood [33]. The prey-predator
system exhibits such a phenomenon: predator pursuing prey
while prey escaping the predator [34]. In the same manner,
there is a tendency that the predators would get closer to the
preys and the chase velocity of predators may be propor-
tional to the dispersive velocity of preys [35]. This is often
done in terms of diffusion which also models ecological pro-
cesses such as searching for food, escaping high infection
risks, etc. [36]. For examples, individuals tend to diffuse in
the direction of lower density of population, where there are
more resources; individuals may move along the gradient of
infectious individuals to avoid higher infections [37]. In our
work, we would include diffusion processes in both prey and
predator. The model is as follows:
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ut = D1
∂2u

∂x2
+ Au − Buw,

wt = D2
∂2w

∂x2
− Cw + Euw. (17)

Here we use the transformation U = Eu
C ,W = Bw

A , t ′ =
At, x ′ = x√

D2
A

, D = D1
D2

, ρ = C
A . The system of Eqs. (17)

transform to:

Ut = DUxx +U (1 − W ), (18)

Wt = Wxx + ρW (U − 1). (19)

For traveling wave solution, we take, U = φ(ξ),W = ψ(ξ)

where ξ = k(x − λt + c) with the boundary conditions
U (−∞) = 0,U (+∞) = 1,W (−∞) = 0,W (+∞) = 1.
Here k, λ are constants that will be determined and ′c′ is an
arbitrary constant.

Now U (x, t) = φ(ξ),W (x, t) = ψ(ξ), then from
Eqs. (18) and (19) we get,

Dk2φξξ + kλφξ + φ(1 − ψ) = 0, (20)

k2ψξξ + kλψξ + ρψ(φ − 1) = 0, (21)

where,

φ(ξ) =
n∑

i=1

sinhi−1 w(bi sinhw + ai coshw) + a0, (22)

ψ(ξ) =
m∑
j=1

sinh j−1 w(Bj sinhw + A j coshw) + A0, (23)

dw

dξ
= sinhw. (24)

By equating the highest nonlinear terms and the highest order
partial derivative term in Eqs. (18) and (19) we get n = 2 =
m. Therefore,

φ(ξ) = a1 coshw + b1 sinhw + a2 sinhw coshw

+ b2 sinh
2 w + a0,

ψ(ξ) = A1 coshw + B1 sinhw + A2 sinhw coshw

+ B2 sinh
2 w + A0. (25)

Now,

φξ = b1 sinhw coshw + a1 sinh
2 w + 2b2 sinh

2 w coshw

+ 2a2 sinh
3 w + a2 sinhw,

φξξ = 6b2 sinh
4 w + 2b1 sinh

3 w + 6a2 sinh
3 w coshw

+ 4b2 sinh
2 w + 2a1 sinh

2 w coshw

+ b1 sinhw + a2 sinhw coshw,

ψξ = B1 sinhw coshw + A1 sinh
2 w+2B2 sinh

2 w coshw

+ 2A2 sinh
3 w + A2 sinhw,

ψξξ = 6B2 sinh
4 w + 2B1 sinh

3 w + 6A2 sinh
3 w coshw

+ 4B2 sinh
2 w + 2A1 sinh

2 w coshw

+ B1 sinhw + A2 sinhw coshw. (26)

Substituting Eqs. (25) and (26) into Eqs. (20) and (21) and
simplify the expression by using Mathematica. Equating the
coefficients of sinhp w coshq w to zero, we obtain a set of
equations given in “Appendix-B” and solving those system
of equation we get the solutions as: a0 = A0 = 1

2 , a1 =
A1 = − 1

2 , a2 = b1 = B1 = 0, ρ = −1, D = 1, b2 =
3
2 , B2 = 1, b1 = B1, a2 = A2, λ = 5

6k a1, k = 1
2 .

Using Eqs. (11) and (12), the solutions of Eqs. (20) and
(21), which satisfies the boundary conditions, are

U = φ(ξ) = 3

2
cosech2ξ + 1

2
coth ξ + 1

2
, (27)

W = ψ(ξ) = cosech2ξ + 1

2
coth ξ + 1

2
, (28)

where

ξ = 1

2

(
x − 5

6
t + c

)
. (29)

4 Painleve′ analysis

4.1 Painleve′ analysis on Fisher’s equation

To check whether Eq. (4) possesses the Painlevé property, we
perform Painlevé ODE test on the reduced ordinary differ-
ential Eq. (5). Collecting the leading terms from Eq. (5), we
get

Dk2φξξ − pφ2r+1 ≈ 0. (30)

Let us put φ = a0ξ−m , where m is a natural number, in
Eq. (30) and get

a0 =
[
(1 + r)Dk2

pr2

] 1
2r

, m = 1

r
. (31)

We have to choose r in such a way that 1
r belongs to the set

of all naturals.
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Therefore, the first term in the Laurent series expansion
of the solution of Eq. (5) is

[
(1 + r)Dk2

pr2

] 1
2r

(ξ − ξ0)
− 1

r . (32)

To find the Fuch’s indices [30,38] we put

φ ≈
[
(1 + r)Dk2

pr2

] 1
2r

(ξ − ξ0)
− 1

r + a j (ξ − ξ0)
j− 1

r , (33)

in Eq. (30) and collect the coefficients of a j and make them
equal to zero. Thus we get

j = −1, 2

(
1 + 1

r

)
, (34)

as the Fuch’s indices. We shall discuss the case when 1
r = 1.

Then the Fuch’s indices are j1 = −1, j2 = 4. To pass the
Painleve

′
test the coefficient a4 of the Laurent series expan-

sion of the solution of Eq. (5) must be arbitrary. To check this
we put the expression

φ ≈
[
(1 + r)Dk2

pr2

] 1
2r

(ξ − ξ0)
− 1

r + a1 + a2(ξ − ξ0)

+ a3(ξ − ξ0)
2 + a4(ξ − ξ0)

3

i.e. φ ≈
(
2Dk2

p

) 1
2

(ξ − ξ0)
−1 + a1 + a2(ξ − ξ0)

+ a3(ξ − ξ0)
2 + a4(ξ − ξ0)

3, (35)

in Eq. (5) and equate the coefficients of the same powers of
ξ − ξ0 to zero. We obtain that the coefficient a4 can not be
chosen arbitrary. Hence, Eqs. (4), (5) fail to pass the Painleve′
test for the case r = 1. We have also checked it for r = 1

2 ,
in these case j = −1, 6. So in order to pass the Painlevé test
the coefficient a6 in the corresponding Laurent series must
be arbitrary. But we found that a6 can not be chosen arbitrary.
So, theEq. (4) fails to possess thePainlevé poperty in this case
also. However, for the other values of r , the integrability of
Eq. (4) may be checked. Here, we have omitted those cases.

4.2 Painleve′ analysis on diffusive Lotka–Volterra
equation

To examine the Painlevé property of Eqs. (20), (21)we follow
the procedure used by Kudryashov and Zakharchenko [39].
We reduce the system of Eqs. (20) and (21) into a single
ordinary differential equation as

Dk4φ2φξφξξξ − Dk4φ3φξξξξ − (Dk4 − 3k3λ)φ2φξφξξ

− 2k3λφφ3
ξ + (Dk4 − k3λ − Dk3λ)φ3φξξξ + (Dk3λ

− k2λ2 + Dk2ρ)φ3φξξ + k2λ2φ2φ2
ξ + ρφ5

− Dk2ρφ4φξξ − kλφ4φξ − φ4 + kλφ3φξ = 0 (36)

Collecting the leading terms from Eq. (36) we have

Dk4φ2φξφξξξ − Dk4φ3φξξξξ − Dk2ρφ4φξξ = 0

⇒ k2φ2φξφξξξ − k2φ3φξξξξ − ρφ4φξξ = 0. (37)

By putting φ = a0
ξ p [30,38] in Eq. (37) we get

k2a40ξ
−4p−4 − k2a40ξ

−4p−4 − ρa50ξ
−5p−2 = 0. (38)

Since a0 �= 0, then from Eq. (38), we take ρ = 0 and p = 2.
Therefore, the first term in the Laurent series expansion of
the solution of Eq. (36) is

a0
(ξ − ξ0)2

. (39)

Now we are going to find the Fuchs indices [30,38] and so
we put

φ ≈ a0
(ξ − ξ0)2

+ a jξ
j−2, (40)

in Eq. (37). Then equating the coefficients of a j to zero we
get the Fuchs indices as

j1 = 3 + 1

2

√
1

3
(2 + α + β)

− 1

2

√√√√4

3
− α

3
− β

3
− 48√

1
3 (2 + α + β)

,

j2 = 3 + 1

2

√
1

3
(2 + α + β)

− 1

2

√√√√4

3
− α

3
− β

3
− 48√

1
3 (2 + α + β)

,

j3 = 3 − 1

2

√
1

3
(2 + α + β)

− 1

2

√√√√4

3
− α

3
− β

3
+ 48√

1
3 (2 + α + β)

,

j4 = 3 − 1

2

√
1

3
(2 + α + β)

+ 1

2

√√√√4

3
− α

3
− β

3
+ 48√

1
3 (2 + α + β)

, (41)
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whereα= 1729
3
√

12959+72i
√
964662

,β = 3
√
12959 + 72i

√
964662.

To pass the Painleve′ test all the Fuchs indices must be an
integer. But here all the Fuch’s indices are imaginary. Thus
we can say that Eq. (36) and hence the system of ordinary
differential Eqs. (20) and (21) do not pass the Painleve

′
test.

Therefore, the system of Eqs. (20) and (21) fails to satisfy
the Painleve

′
property. So, Eq. (17) does not satisfy Painleve

′

test.

5 Results and discussions

The generalized Fisher equation models a system which
is subjected to reaction and diffusion simultaneously. The
Lotka–Volterra diffusion model and their extensions have
been applied to understand the spreadof population, spreadof
diseases etc. Our results may help to identify the key param-
eters which govern the dynamics of the system. Hyperbolic
function method has been used to obtain exact solutions for
generalized Fisher’s equation and diffusive Lotka–Volterra
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Fig. 4 For different values of D, U and W are plotted in a and b
respectively

equations. The obtained solutions are made to satisfy appro-
priate boundary conditions. Painleve’ test has been carried
out to check their integrability. Finally, the obtained analyti-
cal solutions have been plotted. Equation (15) represents the
solution for the generalized Fisher’s equation and Eqs. (27)
and (28) correspond to the solution for Lotka–Volterra equa-
tion.

123



500 S. Kundu et al.

Fig. 5 Plot of the solution (13) with respect to the change of time and
‘x’

Fig. 6 A three dimensional diagram has been plotted with respect to
the change of time and ‘x’ for the solution U , i.e., diagram for U has
been plotted

In Fig. 1, for different values of the time t , the solution
Eq. (15) has been plotted with the variable x . In this figure
we can see that for different times, initially we have different
u, but as x increases form negative to positive all the u values
coincide at u = 1. Also, as t increases u(x, t) increases.

In Fig. 2, for different values of the time t , the solution
Eq. (27) has been plotted with the variable x . In this figure
we can see that for different time, initially we have different
U , but as x increases formnegative to positive all theU values
coincide at U = 1. Here, for fixed x , U (x, t) increases as t
increases. Similar result can be found in Fig. 3 for the solution
Eq. (28).

Also, increasing D = D1
D2

with x , it is found that the num-
ber of preys and the predators decreases (Fig. 4).

In addition to these, three dimensional diagram for the
solutions Eqs. (13), (27) and (28) have been plotted in Figs. 5,
6 and 7 respectively, with respect to the change of ‘x’ and
time (t). Here the figures show the solutions to bemonotonic.

Fig. 7 A three dimensional diagram has been plotted with respect to
the change of time and ‘x’ for the solution W
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Appendix-A

3a22b2 p + b32 p = 0, (A.1)

3a22b1 p + 6a1a2b2 p + 3b1b
2
2 p = 0, (A.2)

a22 p − 3a0a
2
2 p − 6a1a2b1 p − 3a21b2 p + b22 p

− 3a0b
2
2 p − 3a22b2 p − 3b21b2 p

− a22 pq − b22 pq + 6b2Dk2 = 0, (A.3)

2a1a2 p − 6a0a1a2 p − 3a21b1 p − 3a22b1 p − b31 p

− 6a1a2b2 p + 2b1b2 p

− 6a0b1b2 p − 2a1a2 pq − 2b1b2 pq + 2b1Dk2

+ 2a2kλ = 0, (A.4)

a21 p − 3a0a
2
1 p + a22 p − 3a0a

2
2 p − 6a1a2b1 p + b21 p

+ 3a0b
2
1 p + 2a0b2 p − 3a20b2 p

− 3a21b2 p − a21 pq − a22 pq − b21 pq + b2 pq

− 2a0b2 pq + 4b2Dk2 + a1kλ = 0, (A.5)

2a1a2 p − 6a0a1a2 p + 2a0b1 p + 3a20b1 p − 3a21b1 p

− 2a1a2 pq + b1 pq

− 2a0b1 pq + b1Dk2 + a2kλ = 0, (A.6)

2a0a1 p − 3a20a1 p − a31 p + a1 pq − 2a0a1 pq = 0, (A.7)
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2a0a2 p − 3a20a2 p − 3a21a2 p + 2a1b1 p − 6a0a1b1 p

+ a2 pq − 2a0a2 pq

− 2a1b1 pq + a2Dk2 + b1kλ = 0, (A.8)

− a31 p − 3a1a
2
2 + 2a2b1 p − 6a0a2b1 p − 3a1b

2
1 p

+ 2a1b2 p − 6a0a1b2 p

− 2a2b1 pq − 2a1b2 pq + 2a1Dk2 + 2b2kλ = 0, (A.9)

− 3a21a2 p − a32 p − 3a2b
2
1 p + 2a2b2 p − 6a0a2b2 p

− 6a1b1b2 p − 2a2b2 pq + 6a2Dk2 = 0, (A.10)

3a1a
2
2 p + 6a2b1b2 p + 3a1b

2
2 p = 0, (A.11)

a32 p + 3a2b
2
2 p = 0, (A.12)

a20 p − a30 p + a21 p − 3a0a
2
1 p + a0 pq − a20 pq − a21 pq = 0.

(A.13)

Appendix-B

6b2Dk2 − b2B2 − a2A2 = 0, (B.1)

2b1Dk2 +2a2kλ−b1B2 −a1A2 −b2B1−a2A1 = 0, (B.2)

4b2Dk2+a1kλ−b1B1−a1A1+b2−b2A0−a2A2−a0B2 = 0,

(B.3)

b1Dk2+a2kλ+b1−b1A0−a1A2−a2A1−a0B1 = 0, (B.4)

a2Dk2+b1kλ−b1A1−a1B1+a2−a2A0−a0A2 = 0, (B.5)

2a1Dk2 +2b2kλ−b1A2 −a1B2 −b2A1−a2B1 = 0, (B.6)

6a2Dk2 − b2A2 − a2B2 = 0, (B.7)

a1 − a1A0 − a0A1 = 0, (B.8)

a0 − a0A0 − a1A1 = 0, (B.9)

6B2k
2 + b2B2ρ + a2A2ρ = 0, (B.10)

2B1k
2 + 2A2kλ + b2B1ρ + b1B2ρ + a2A1ρ + a1A2ρ = 0,

(B.11)

4B2k
2 + A1kλ + ρb1B1 + a0B2ρ − B2ρ + A0b2ρ

+ a1A1ρ + a2A2ρ = 0, (B.12)

B1k
2+A2kλ+a0B1ρ−B1ρ+A0b1ρ+a2A1ρ+a1A2ρ = 0,

(B.13)

A2k
2+B1kλ+a1B1ρ+b1A1ρ+a0A2ρ−A2ρ+A0a2ρ = 0,

(B.14)

2A1k
2 + 2B2kλ + a2B1ρ + b2A1ρ + a1B2ρ + b1A2ρ = 0,

(B.15)

6A2k
2 + a2B2ρ + b2A2ρ = 0, (B.16)

a0A1ρ − A1ρ + A0a1ρ = 0, (B.17)

a1A1 + a0A0 − A0 = 0. (B.18)
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