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Abstract
In the present study, to attain an approximate feedback linearization based optimal robust control of an under-actuated 
cart-type inverted pendulum system with two-degree-of-freedom (2DOF) having time-varying uncertainties is desirable. 
To reach such a goal, at first, the governing dynamical equations of the cart-type inverted pendulum are presented. Then, 
using an approximate feedback linearization method, the dynamics of the nonlinear system are changed to those of the linear 
one. In order to simultaneously stabilize the both degrees of freedom, a robust sliding mode controller is designed for this 
under-actuated system. Finally, the control law is improved with aid of a novel adaptive approach based on an approximat-
ing function found via a multiple-crossover genetic algorithm so that the system always will be optimally robust against 
time-varying parametric uncertainties. The results are displayed to show how the proposed controller improves the settling 
time and overshoot of the system outputs. In addition, such an improvement in the values of the selected objective functions 
is clearly evident.

Keywords Adaptive optimal control · Feedback linearization · Genetic algorithm · Inverted pendulum · Time-varying 
uncertainty

1 Introduction

It is obvious that uncertainties in various types and forms 
are unavoidable in real control systems. Uncertainties can 
be classified into two categories: Disturbance signals and 
dynamic perturbations. A disturbance is a signal that tends 
to adversely affect the values of the output of the system. If a 
disturbance is generated within the system, it is called inter-
nal, while an external disturbance is generated outside the 
system and regarded as an input. Sensor and actuator noises 
or the changes of the environment are the examples of dis-
turbance signals. Dynamic perturbations are the uncertain-
ties which refer to differences and errors between the actual 
plant and its mathematical model. This type of uncertainties 
may be classified as un-structural uncertainties and struc-
tural uncertainties. Sources of un-structural uncertainties 

include high frequency un-modeled dynamics, neglected 
nonlinearities, the errors due to modelling linearization and 
so on. The structural or parametric uncertainties represent 
any parametric variation in the plant dynamics which may 
take place due to lack of precise knowledge of actual system 
parameters. Each of these uncertainties may be time-varying 
or time-invariant and could be handled by robust control 
methods appeared in the control world around 1980 and has 
been broadly developed [1–8].

To deal with uncertainties of the system model, Zeinali 
and Notash [9] used a new approach to estimate the pertur-
bation from the dynamics of the sliding surface to compen-
sate model uncertainties, unknown external disturbances and 
time varying parameters in a robot manipulator. Chaoui and 
Sicard [10] considered the control and stabilization of an 
inverted pendulum mechanism with unstructured uncertain-
ties by an adaptive fuzzy system. The uncertainty model in 
their paper was related to unknown friction composed of 
Coulomb, viscous and static friction terms. Shojaei et al. 
[11] tried to use an adaptive feedback linearizing controller 
for a nonholonomic wheeled mobile robot in the presence of 
both parametric and nonparametric uncertainties. Ricardez-
Sandoval [12] presents a new methodology for the design 
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and control of systems under random realizations in the 
disturbances. The researcher claims that the key idea in his 
work is to perform a distribution analysis on the worst-case 
variability. Figueroa and Biagiola [13] considered the mod-
elling and characterizing the uncertainties for robust control 
and gave simulation examples to illustrate the method. Li 
et al. [14], in an interesting research, reviewed different types 
of uncertainties and relevant theories to manage the uncer-
tainties and their applications to the fields of economics, 
engineering, ecology and information sciences. Yoon et al. 
[15] discussed adaptive tracking control for the spacecraft 
relative motion with mass and thruster uncertainties. In Ref. 
[16], a novel control strategy was considered for trajectory 
tracking control of a class of multi-input multi-output non-
linear systems including matched uncertainties and input-
state constrains. Petersen and Tempo [17] reviewed some 
of main achievements in the field of the robust control for 
the uncertain systems.

What is presented in the current work in both terms of 
adopted adaptive control and the type of exerted uncertain-
ties is fully different from all above-mentioned papers. In 
more details, at first, the changing domains of the uncer-
tain parameters are specified, and different values for these 
parameters are produced in these domains. After this stage, 
the optimum control gains are found by the multiple-cross-
over genetic algorithm based on the single-objective optimi-
zation theory. It is obvious that each of the obtained control 
gains is optimal only for a specific set of the parameters. 
Finally, an approximating function is designed by the multi-
ple-crossover genetic algorithm which can produce the opti-
mal control gains at any situation according to the changings 
of the parameters.

The rest of this paper is organized as follows. Section 2 
recalls the dynamical equations of the cart-type inverted 

pendulum system. Section 3 combines the approximate 
feedback linearization and sliding mode control to ben-
efit the advantages of the both methods. The multiple-
crossover genetic algorithm optimization is presented in 
Sect. 4. Details of the proposed optimal feedback lineari-
zation based sliding mode control scheme are explained in 
Sect. 5. Simulations of the states of the cart-type inverted 
pendulum system including time-varying uncertainties are 
depicted in Sect. 6. Finally, Sect. 7 concludes the paper, 
briefly.

2  Dynamical modelling of the problem

Consider the cart-type inverted pendulum system illus-
trated in Fig. 1 composed of a cart which is able to move 
left and right on a horizontal rail and a pendulum pivoted 
on the cart that can rotate around a vertical axis. Ignoring 
any types of friction in the system and using Newton’s 
second law, the governing dynamical equations can be 
mentioned as follows:

where, M and m denote the masses of the cart and pendulum, 
respectively. l is the length of the pendulum. z represents the 
lateral displacement of the cart, and � denotes the angular 
displacement of the pendulum. Finally, F is the only input 
applied to the cart in order to control the system. It is obvi-
ous that the pendulum will start to swing when the input F 
makes the cart move back and front.

(1a)ml z̈ cos (𝜑) −
4

3
ml2�̈� + mgl sin (𝜑) = 0

(1b)(M + m)z̈ − ml�̈� cos(𝜑) + ml�̇�2 sin (𝜑) = F

Fig. 1  Mechanical configura-
tion of the considered cart-type 
inverted pendulum system
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3  Combination of approximate feedback 
linearization and sliding mode control

All physical systems as well as their governing differen-
tial equations are nonlinear in nature, and the superposi-
tion principle is not valid for them. In order to control the 
nonlinear systems, two strategies are commonly suggested. 
The first strategy is linearization of the nonlinear equations 
around the equilibrium point and stabilization of the system 
using one of linear control methods. The linearization pro-
cedure is done by expansion of nonlinear equations into the 
Taylor series around the operating point and neglecting the 
nonlinear terms in Taylor series expansion. But this strategy 
has a big limitation that it is to be valid only in the neighbor-
hood of the operating point. The second strategy is to use 
nonlinear control approaches for the nonlinear systems. For 
the reason of the aforementioned limitation for linear con-
trollers, in recent decades, researchers have tried to expand 
the nonlinear control methods and use such techniques to 
stabilize the nonlinear systems. Feedback linearization is 
one of these approaches that uses a change of coordinates 
and nonlinear state feedback to transform the nonlinear 
dynamics into a fully or partially linear one. It is important 
to notice the difference between Taylor linearization and 
feedback linearization. Taylor or Jacobean linearization is 
done on the basis of neglecting nonlinear terms but in feed-
back linearization, in general, we have no type of neglect-
ing. In other words, the feedback linearization approach 
uses transformation of dynamics but the Jacobean lineari-
zation is achieved by approximation of dynamics [18–20].

On the other hand, feedback linearization is divided into 
two general forms; namely, exact feedback linearization 
and approximate feedback linearization. In the following, 
a general explanation about the approximate feedback lin-
earization is represented. In some cases, the control input 
is appeared in the derivative of the output, but it is not 
possible to define a control law according to that because 
the coefficient behind the control input becomes zero at 
the equilibrium point. In these situations, the designed 
controller based on such a law will not be able to sta-
bilize the system in the equilibrium point. A solution to 
overcome this issue is to remove this coefficient and dif-
ferentiate from the relations until the control input appears 
once again. This type of feedback linearization is called 
approximate feedback linearization that has been investi-
gated in details in [20, 21].

In the following of this section, for the considered 
inverted pendulum system, the dynamical modelling is 
simplified by the use of the approximate feedback lineari-
zation, and the desirable control law is extracted by the 
sliding mode control. Ref. [21] has considered this proce-
dure in complete details, and here, only the main relations 
are presented. Regarding the state vector of the governing 
equations as x = [x1, x2, x3, x4]

T = [z, ż, z, ż]T . Where, 
x1 = z is the position of the cart and x2 = ż denotes the 
velocity of the cart. Moreover, x3 = � and x4 = �̇� represent 
the angle and angular velocity of the pendulum, respec-
tively. Then, the state-space equations can be rewritten as 
follows:

If F is selected as F =
(

(M + m) −
3m

4
cos

2(x
3
)
)

u

+mlx2
4
sin(x

3
) −

3mg

4
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3
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3
) , then Eq.  (2) can be 

expressed by:

Calculating adi
f
g, i = 0, 1, 2, 3 , for this model illus-

trates that it is only linearly independent in its definition 
domain and doesn’t have the involutive condition [22]. 
This means that model (3) cannot be input-state lineariz-
able, and it is not possible to find a function for the output 
so that the relative degree of the system becomes full [23]. 
The solution of the above system for the control effort u 
presented in [21] can be stated as:
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Ẋ =

⎛

⎜

⎜

⎜

⎝

ẋ1
ẋ2
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and,

where, saturation function sat is defined as follows.

s(t) indicates the sliding surface of the system obtained by 
the sliding mode theory [21]. Control parameters � , ∅ and k 
are constants that would be found by the multiple-crossover 
genetic algorithm.

4  Genetic algorithm optimization

Optimization can be defined as the selection of the best 
among a given set of finite or infinite alternatives. The opti-
mal solution of an optimization problem is the minimum or 
maximum point of the objective function. The concept of 
optimization may seem straightforward but its implementa-
tion can be quite complicated.

The objective functions could be single-variable or 
multi-variable. These variables called decision variables 
or optimization parameters must be founded and deter-
mined so that the objective functions can be optimized. The 
optimization problems can be expressed in different forms 
from the view point of the number of the objective func-
tions, the characteristics of the objective functions, being 
constrained or non-constrained and other cases. A single-
objective optimization problem includes only one objective 
function as many of engineering problems are so. But many 
others include two or more objective functions which must 
be optimized, simultaneously. In a multi-objective problem, 
often, the objective functions are in conflicting with each 
other. For instance, in transportation systems, minimizing 
both travel time and travel cost is desirable. It is clearly 
evident that the two objectives are completely conflict with 
each other because an increase in one of them will cause a 
decrease in the other. Moreover, an optimization problem 
can be constrained or non-constrained. Constrains allow 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�1 = x1 −
4l

3
ln
�

1+sin (x3)
cos(x3)

�

�2 = x2 −
4l

3

�

x4

cos(x3)

�

�3 = − tan(x3)
�

g +
4lx2

4

3 cos(x3)

�

�4 = −
4l

3

�

2

cos3(x3)
−

1

cos(x3)

�

x3
4
−
�

3g

cos2(x3)
− 2g

�

x4

(5)sat

�

s

�

�

=

⎧

⎪

⎨

⎪

⎩

−1
s

�
s

�
−1 <

s

�
≤ 1

1
s

�
> 1

the optimization parameters to take on certain values but 
exclude others.

To solve the optimization problems, numerous algorithms 
have been proposed. In this work, a multiple-crossover 
genetic algorithm is considered to find the control parame-
ters with regarding of an objective function. In the following, 
the used operators in this algorithm are presented. Let �i(t) , 
�j(t) and �k(t) represent three random selected chromosomes 
so that �i(t) has the smallest fitness value among them. The 
following formula is proposed for the multiple-crossover 
operator:

where, �1, �2and �3 ∈ [0, 1] are random values. If Pc is the 
multiple-crossover probability and Np is the population size, 
then Pc×Np

3
 number of chromosomes are selected for enhanc-

ing. Besides, the mutation operator is presented as the fol-
lowing equations.

where, �i(t) is a randomly selected chromosome, � ∈ [−1, 1] 
is a random value, and c is a constant parameter. Moreo-
ver, Pm × Np chromosome(s) are randomly mutated, that Pm 
and Np are the mutation probability and the population size, 
respectively [24, 25].

5  Optimal robust control 
against time‑varying uncertainties

In Eq. (4), a control law based on the approximate feedback 
linearization and sliding mode control was proposed for 
stabilizing the cart-type inverted pendulum system. In this 
section, the control law is modified so that an optimal per-
formance is displayed at any time against the time-varying 
uncertainties.

At first, system parameters M and l are respectively var-
ied in the regions as M ∈ [0.1, 2] kg , l ∈ [0.05, 1]m with the 
steps as 0.1 and 0.05, and 400 ordered pairs of (M, l) could 
be generated. Then, for each pair, the optimum values of the 
control parameters K, � and� would be obtained via the opti-
mization process. The following Objective Function (OF) is 
defined for the optimization process based on the multiple-
crossover genetic algorithm.

(6a)�i(t + 1) = �i(t) + �1
(

2�i(t) − �j(t) − �k(t)
)

(6b)�j(t + 1) = �j(t) + �2
(

2�i(t) − �j(t) − �k(t)
)

(6c)�k(t + 1) = �k(t) + �3
(

2�i(t) − �j(t) − �k(t)
)

(7)�i(t + 1) = �i(t) + � × c

(8)OF = normalized (∫ |z|dt) + normalized (∫ |�|dt) + normalized (max(F))
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The setting values for the multiple-crossover genetic algo-
rithm, i.e. the reproduction probability, multiple-crossover 
probability, mutation probability, population size, maximum 
number of iterations and mutation constant, are regarded as 

0.45, 0.45, 0.1, 1000, 1000 and 1 × 10−7, respectively. The 
found optimum parameters for some values of the defined 
ordered pairs are represented in Table 1.

In the next stage, an approximating function is intro-
duced to produce the optimal control gains at any time 
with the changing of the system parameters. The coef-
ficients of the approximating function are identified via 
an optimization process based on the multiple-crossover 
genetic algorithm. The proposed structure for the approx-
imating function to calculate the control parameters 
( K, � and � ) is as follows.

where, wj j = 1 to 5 are coefficients found by the optimi-
zation algorithm. Further, M and l respectively denote the 
mass of the cart and the length of the pendulum that vary 
over time. Root Mean Squared Error (RMSE) between the 
approximating function ( Capproximating ) and the actual opti-
mum gains ( Cactual ) is considered as the objective function 
for this optimization process that should be minimized with 
respect to wj j = 1 to 5 as the design variables.

where, n is the number of the produced ordered pairs (M, l). 
Figs. 2, 3, and 4 respectively compare the actual control 
gains K, � and � and the related estimated values obtained 
by the approximating function. Table 2 displays the values 
of wj ’s and RMSE found by the multiple-crossover genetic 

(9)Capproximating = w1 + w2M
w3 + w4l

w5

(10)RMSE =

�

∑n

i=1
(Cactual i − Capproximating i)

2

n

Table 1  Objective functions and optimal control parameters found by 
the multiple-crossover genetic algorithm for some system parameters

Controller gains Objective function System 
parameters

� � K OF M l

109.9955 1.147735 100.0043 0.081495 0.1 0.05
105.4623 3.394977 179.3849 0.552858 2 0.05
109.999 1.065581 100.0024 0.092856 0.1 0.1
109.9972 2.633827 137.4677 0.679485 2 0.1
109.9474 1.013 100.0085 0.104893 0.1 0.15
109.9939 2.290603 119.9291 0.783547 2 0.15
109.9997 1.000004 100.0011 0.117575 0.1 0.2
109.9984 2.030598 106.4495 0.873566 2 0.2
109.9953 1.000033 100.0006 0.130976 0.1 0.25
109.9537 1.903295 100.0509 0.95564 2 0.25
109.9958 1 100.0033 0.144829 0.1 0.3
109.9999 1.777438 100 1.036363 2 0.3
109.9575 1 100.2119 0.159255 0.1 0.35
109.9998 1.695049 100 1.113184 2 0.35
109.9957 1.000002 100.0017 0.173709 0.1 0.4
109.995 1.584404 100.0007 1.18626 2 0.4
109.998 1.000014 100.0016 0.18863 0.1 0.45
109.9991 1.490364 100.0004 1.256277 2 0.45
109.9981 1.000002 100.0012 0.203835 0.1 0.5
109.9979 1.432867 100.001 1.323582 2 0.5
109.9966 1.000016 100.0007 0.219324 0.1 0.55
109.9988 1.356083 100.0003 1.388474 2 0.55
109.9922 1.000041 100.0036 0.235087 0.1 0.6
109.9956 1.307629 100.0049 1.451278 2 0.6
95.38873 1.000133 100.0499 0.272089 0.1 0.65
109.9973 1.26418 100.0013 1.512335 2 0.65
109.9464 1.000266 100.0065 0.267469 0.1 0.7
110 1.204059 100.0117 1.571719 2 0.7
109.9999 1 100 0.283863 0.1 0.75
109.9994 1.167401 100.0003 1.629417 2 0.75
109.8788 1.006192 100.134 0.302077 0.1 0.8
109.9993 1.132298 100.0001 1.68573 2 0.8
109.9361 1.000122 100 0.317796 0.1 0.85
109.9997 1.099855 100.0015 1.740892 2 0.85
109.9435 1.000127 100.0042 0.335051 0.1 0.9
108.3765 1.045749 100.0086 1.799615 2 0.9
109.9999 1 100.0136 0.352473 0.1 0.95
109.9936 1.040329 100.0007 1.8477 2 0.95
109.9842 1.000039 100.0005 0.370258 0.1 1
109.9999 1.013275 100 1.899386 2 1
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Fig. 2  Actual and estimated values for the control gain K 
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algorithm and corresponding control gains K, � and � . 
Figure 5 depicts the block diagram of this adaptive opti-
mal controller in order to control and stabilize the system 
with time-varying parametric uncertainties. It is worth 

mentioning that the proposed adaptive optimal controller 
will be able to adapt itself to any new conditions imposed 
by uncertainties and then present not only a robust control 
but an optimal one.

6  Result and discussions

In order to produce the time-varying parametric uncer-
tainties, M and l would be timely changed as the step 
and trapezoidal functions as illustrated in Fig. 6. After 
simulation, Figs. 7, 8, 9, and 10 are shown to depict the 
responses of the state variables of the system against the 
time-varying parametric uncertainties. These diagrams 
display the obtained results in two cases; first, the control 
law (4) uses the approximating function (10) to obtain the 
optimal amounts for control gains K, � and � . Second, the 
control law 4 utilizes the optimal constants K = 109.9651, 
λ = 1.2849 and � = 100.0004 obtained by multiple-
crossover optimization method for M = 1 kg, l  = 0.5 m 
and m = 0.05 kg. The initial conditions are also fixed at 
z(0) = 0 , ż(0) = 0,�(0) = −�

3
 and �̇�(0) = 0 for all situations.

It is necessary to mention that the results are presented 
for the following cases of the uncertainties as:

(a) Both M and l change steply over time (Fig. 7),
(b) M changes steply but l changes trapezoidally over time 

(Fig. 8),
(c) M changes trapezoidally but l changes steply over time 

(Fig. 9),
(d) Both M and l change trapezoidally over time (Fig. 10).

As it is observable from these figures, the use of the 
adaptive optimal controller could substantially decrease 
the maximum overshoots and settling times of all 
responses. Besides, Table 3 illustrates the values of objec-
tive function (9) when M and l change over time for two 
cases, (1) the control law implements the optimum control 
gains produced by the approximating function, and (2) it 
utilizes the constant optimum control gains. The results 
show that the use of the suggested strategy significantly 
improves the objective function (9) for all cases.
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Fig. 3  Actual and estimated values for the control gain �
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Table 2  Obtained values of 
wj’s and RMSE for control 
parameters K, � and �

Parameter w
1

w
2

w
3

w
4

w
5

RMSE

k 110.0305 − 0.0920 1.5786 − 1.6003 × 10 − 5 − 3.9393 0.7862
λ 5.3627 − 6.2571 − 0.0328 1.8963 − 0.2129 0.1550
� 95.1876 3.4663 1.1792 0.3508 − 1.6115 6.6458
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Moreover, in order to challenge the performance of the 
proposed controller, an impulse disturbance having value 
D = −10 N at t = 10 s is implemented on the inverted pen-
dulum system in the z direction. The time responses of the 
states of the system having the disturbance is depicted in 
Fig. 11. In these figures, the comparative simulations are 
conducted for the time-varying parametric uncertainties, 
M and l are timely changed as the step and trapezoidal 
functions. These results demonstrate the effectiveness and 
robustness of the approximate feedback linearization based 
optimal robust control strategy.

7  Conclusions

The present paper considers the stabilization problem of 
a cart-type inverted pendulum system with time-varying 
uncertainties as a well-known benchmark in the control 
engineering. The work proposes an adaptive optimal con-
troller in order to display a robust control against time-
varying uncertainties at any moment of time. It means 
that the adaptive optimal controller tries to adapt itself to 
the current conditions of the system at any moment and 
present not only a robust control against the uncertainties 

Fig. 5  Block diagram of the proposed adaptive optimal control
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but also an optimal control. The proposed algorithm is 
tested to control the state variables of the system includ-
ing cart’s position and velocity as well as pendulum’s 
angular position and velocity when the system is exposed 
to various combination of cart’s mass and pendulum’s 

length variations. The simulations have demonstrated that 
the introduced strategy is able to handle the considered 
inverted pendulum system with the especial conditions and 
significantly modify the performance in comparison with a 
non-adaptive but optimal version of the controller.
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Fig. 7  Response of state variables for both M and l change steply a cart position, b cart velocity, c pendulum angle and d pendulum angular 
velocity
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Fig. 8  Response of state variables for M changes steply and l changes trapezoidally (a) cart position, (b) cart velocity, (c) pendulum angle and 
(d) pendulum angular velocity
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Fig. 9  Response of state variables for M changes trapezoidally and l changes steply a cart position, b cart velocity, c pendulum angle and d pen-
dulum angular velocity
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Fig. 10  Response of state variables for both M and l change trapezoidally a cart position, b cart velocity, c pendulum angle and d pendulum 
angular velocity

Table 3  Improvement of 
objective function (9) when 
using the adaptive optimal 
control

Step � & step � Step � & 
trapezoidal �

Trapezoidal � 
& step �

Trapezoidal � 
& trapezoidal �

f (optimal control) 0.9501 1.0007 2.4867 2.5476
f (adaptive optimal control) 0.5888 0.7077 1.4996 1.6137
Percentage improvement in 

objective function (f)
38.03% 29.28% 39.70% 36.66%
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