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Abstract
Different control schemes have been implemented over the last decade to suppress the overhead crane payload oscillation in
rest-to-rest maneuvers. But in practice, the crane may not be at rest when a payload transition event is initiated. A generalized
Zero Vibration with non-zero Initial Conditions (ZVIC) shaper is developed to generate optimal shaping commands for
cranes with non-zero initial conditions. For any given set of initial states, this new shaper forces the system to minimize the
residual oscillations. Compared to the conventional open-loop input shaping techniques, the proposed ZVIC can effectively
reject crane vibrations induced by non-zero onset conditions. A comprehensive sensitivity analysis is performed for systems
with different initial conditions and cable length settings. The results confirm that the proposed input shaping technique is
insensitive to the initial states of the system.

Keywords Input shaping · Shaped commands · Overhead crane · Non-zero initial conditions

1 Introduction

Compared to manual cranes, automated crane systems pro-
vide various control features to facilitate safe transportation
of massive or hazardous payloads. Overhead crane systems
are specifically designed to operate in locations where space
is limited. Therefore, it is critical to design a robust, sta-
ble, and user-friendly control scheme capable of minimizing
payload swing in point-to-point maneuvers under different
payload conditions [1,2].

Feedback control strategies have been historically used for
payload oscillation suppression of flexible systems [3,4]. So
far, various closed-loop techniques have been developed and
evaluated for the control overhead cranes. Sliding mode con-
trol [5], adaptive sliding mode control [6], fuzzy logic [7],
and adaptive tracking [8] are among the adopted feedback
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strategies for sway suppression. As a powerful and robust
alternative to conventional closed-loop techniques, Model
Prediction Control (MPC) has been also implemented by
several researchers for overhead crane applications. MPC
enables imposing soft or hard constraints on the states of
the system, and therefore it is ideal for safety-critical control
missions. Smoczek et al. [9] constructed a soft-constrained
MPC tominimize theoscillation angle for a laboratory-scaled
overhead crane. In another work [10], a Nonlinear Model
Predictive Control (NMPC) was proposed to minimize the
tracking error at the end of the preceding prediction hori-
zon. MPC has been also used to optimize the velocity of the
crane cart over the prediction horizon with the objective of
minimizing the payload oscillation [11].

Despite their ability to compute errors and apply correc-
tive actions, the performance of feedback controllers heavily
relies on the availability and accuracy of payload mass and
states measurements. Cranes are designed to carry payloads
with a wide range of characteristics, leading to significantly
different dynamic behaviors. The stability of feedback con-
trollers, however, is strongly compromised by this dynamic
uncertainty. Also, it is usually infeasible and/or very costly
to continuously sense the states of the payload. Due to these
limitations, feedback controllers are not applicable in many
overhead crane setups.
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Input shaping has been traditionally employed as an
alternative control strategy for overhead crane applications
[12–15]. Due to their open-loop nature, input shapers do not
rely on the continuous sensing of the system states. This
independence makes them simpler and less expensive to
implement. However, the lack of feedback can make the sys-
tem more sensitive to initial turbulences. On the other hand,
with input shaping, the human operator hasmore control over
the system behavior because the shapers are driven by the
operators commands [16,17]. Some early implementations of
command shaping, called Zero Vibration (ZV) shapers, were
merely designed to reduce the residual oscillations of the
payloads. Although these shapers were proven to be highly
robust [18], they suffer from slow time responses. Another
category of input shaping techniqueswas developed based on
linear approximation of the system to generate double-step
acceleration profiles needed to suspend an overhead payload
[19]. Other researchers [20,21] explored a single variable
acceleration profile to remove residual vibrations of an over-
head crane. Compared to simple ZV shapers, more intricate
input shaping strategies, including Zero Vibration and Min-
imum Integral (ZVI) and Minimum Vibration and Integral
(MVI), were proven to offer flexibility in maneuver time,
crane cable length, and jib input settings [22]. Zero Vibra-
tion andDerivative Shaper (ZVD)were introduced to address
the sensitivity of ZV shapers to the variations of the cable
length. Although compared to a ZV shaper, ZVD provides a
more robust response, it requires more input steps tomeet the
final system and boundary conditions. ZVDs are formulated
with a standard maneuver time that minimizes the required
number of steps in order to achieve the system requirements
[18]. In a recent work [23], genetic algorithms were used to
optimize the input acceleration profiles of a non-linear input
shaper developed for an overhead crane with motion and
safety constraints. By optimizing the job input in the form of
a continuous acceleration profile, this GA-optimized input
shaper provided faster system response, while adhering to
the system constraints. By simplifying the initial conditions,
most of the existing literature has focused on rest-to-rest
maneuvers. However, this assumption limits the applicabil-
ity of the controller to rest-to-rest maneuvers [24]. However,
in practice, an overhead crane must still be able to carry
loads when the motion begins with an acceptable amount
of initial disturbance. While several research efforts have
been conducted to mitigate the adverse effects of modeling
errors, parameter and process uncertainty on the performance
of the shapers [25–27], there have been limited efforts on
directly improving the sensitivity of the shapers to initial
conditions. Closed-loop signal shapers were used to add
disturbance-rejecting features to input shaping controllers
[28,29]. Although these modified shapers provide stable per-
formance, their implementation is limited by the availability
of the feedback signals. Modified versions of input shaping

Fig. 1 Overhead crane model with a massless slider

were studied for cases when the initial disturbances were
caused by an emergency command or a fully known dis-
turbance source [30–32]. However, these techniques do not
provide a general input shaping scheme insensitive to initial
conditions.

It is desired to implement a control technique that benefits
from the robustness and user-friendly advantages of input
shaping while it also remains insensitive to initial distur-
bances. Therefore, this article expands the previous work
on input shaping and presents new techniques to improve the
performance of an overhead crane controller in the presence
of initial disturbances. A new Zero Vibration with non-zero
Initial Conditions (ZVIC) shaper is introduced, and its per-
formance is compared against other input shaping methods
for different crane configurations and initial disturbances. A
comprehensive sensitivity analysis is also conducted to dis-
cover the advantages and shortcomings of the new approach.

2 Details of method

2.1 Model overview

An overhead crane can be classically modeled as a lumped
mass (m) attached to a massless slider (jib) by a cable with
the constant length of l, as shown in Fig 1. The lumped mass
represents the payload, which is assumed to swing in the x-
y plane with angle θ . The slider receives a piecewise input
acceleration function (ü), and moves in the x-direction.

Based on the kinetic and potential energies of the sys-
tem and following the Lagranges equations, the equation of
angular motion of the system is found as:

θ̈ + ω2
nsin(θ) = ü/l (1)

where ωn = √
g/l is the natural frequency of the system.

Assuming a small swing angle θ , Eq. 1 is linearized and
reduced to:

θ̈ + ω2
nθ = ü/l (2)
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where ü is a constant acceleration input. The system initial
conditions are:

θ(0) = θi , θ̇ (0) = θ̇i (3)

Considering the initial states, the general solution of Eq. 1 is
given by:

θ(t) = θi cos(ωnt) + θ̇i

ωn
sin(ωnt) + ü

g
(1 − cos(ωnt)) (4)

˙θ(t) = −ωnθi sin(ωnt) + θ̇i cos(ωnt) + ωnü

g
sin(ωnt) (5)

The equation of the motion can then be written in the
matrix form as follows:

[
θ(t)
˙θ(t)

]
=

[
cos(ωnt) sin(ωnt)/ωn

−ωnsin(ωnt) cos(ωnt)

] [
θi
θ̇i

]

+
[
(1 − cos(ωnt))/g

ωnsin(ωnt)/g

]
ü

(6)

2.2 ZVIC shaper

ZVIC shaper is introduced to address the shortcoming of
open-loop input shaping methods in the event of non-zero
initial states. Assuming the input function u for N steps,
applied in time increments of �t = τ/N , and substituting
Eq. 6 at the end of the first step, gives:

[
θ(�t)

˙θ(�t)

]
=

[
cos(ωn�t) sin(ωn�t)/ωn

−ωnsin(ωn�t) cos(ωn�t)

] [
θi
θ̇i

]

+
[
(1 − cos(ωn�t))/g

ωnsin(ωn�t)/g

]
ü1

(7)

The solution given by Eq. 7 depends on the initial con-
ditions of the current time step, which is the final condition
of the previous step. Therefore, a recurrence solution for all
time steps needs to be implemented. The extended solution
of Eq. 7 for all time steps, which is the response at the end
of each step is given by:

� = AIC + Bü, �̇ = ȦIC + Ḃü (8)

where the matrix coefficients and acceleration functions are
defined as:

IC =
[
θi
θ̇i

]

ü = [
ü1 ü2 . . . ¨uN

]T (9)

A =
⎡
⎢⎣
cos(ωn�t) sin(ωn�t)/ωn

.

.

.
.
.
.

AN ,1 AN ,2

⎤
⎥⎦

Ȧ =
⎡
⎢⎣

−ωnsin(ωn�t) cos(ωn�t)
.
.
.

.

.

.

ȦN ,1 ȦN ,2

⎤
⎥⎦

B =
⎡
⎢⎣

(1 − cos(ωn�t))/g 0 0 0
.
.
.

. . .
.
.
.

BN ,1 BN ,2 . . . BN ,N

⎤
⎥⎦

Ḃ =
⎡
⎢⎣

ωnsin(ωn�t)/g 0 0 0
.
.
.

. . .
.
.
.

ḂN ,1 ḂN ,2 . . . ḂN ,N

⎤
⎥⎦

(10)

Ai, j = Ai−1, j cos(ωn�t) + Ȧi−1, j sin(ωn�t)/ωn

Ȧi, j = −Ai−1, jωnsin(ωn�t) + Ȧi−1, j cos(ωn�t)
(11)

Bi, j =

⎧⎪⎨
⎪⎩
Bi−1, j cos(ωn�t) + Ḃi−1, j sin(ωn�t)/ωn j < i

(1 − cos(ωn�t))/g, j = i

0, j > i

Ḃi, j =

⎧⎪⎨
⎪⎩

−Bi−1, jωnsin(ωn�t) + Ḃi−1, j cos(ωn�t) j < i

ωnsin(ωn�t)/g j = i

0 j > i

(12)

� = [
θ(�t) θ(2�t) . . . θ(τ )

]T
�̇ = [

θ̇ (�t) θ̇(2�t) . . . θ̇ (τ )
]T (13)

System final conditions at the end of maneuver (τ ) are
given by:

θ(τ ) = θ̇ (τ ) = 0
u̇(τ ) = v f

(14)

where v f is the desired final constant speed of the slider at the
end of the maneuver. The satisfaction of all three final condi-
tions of the system given by Eq. 14 implies three piecewise
input steps to the system, each with a duration of �t = τ/3.
Therefore, setting N = 3 in Eqs. 9–12, is enough to meet
the three conditions given in Eq. 14. Considering the final
state of the system (t = τ ) from Eqs. 9–12, and substituting
Eq. 14 yield:

FC = M1 IC + M2ü

FC = [
0 0 3v f /τ

]T

M1 =
⎡
⎣AN ,1 AN ,2

ȦN ,1 ȦN ,2

0 0

⎤
⎦

M2 =
⎡
⎣BN ,1 BN ,2 BN ,3

ḂN ,1 ḂN ,2 ḂN ,3

1 1 1

⎤
⎦

(15)

Thus, the input acceleration piecewise function ü to the
slider can be found as:

ü = M3 = M4 IC (16)
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where:

M3 = M−1
2 FC

M4 = M−1
2 M1

(17)

Differentiating Eq. 16 with respect to IC gives:

dü

d IC
= −M4 (18)

Equation 16 is a linear function of the initial conditions.
Thus, its constant matrix derivative (Eq. 18) cannot be solved
in terms of inputs. This implies that the systemhas no optimal
input that can eliminate the vibration amplitude at the end of
the maneuver. Therefore, the system with non-zero initial
conditions is sensitive to disturbances in the initial states of
the system. However, increasing the number of input steps
provide additional flexibility for the controller to minimize
system sensitivity to the initial conditions [22]. By adding
more inputs, M2 (originally defined in Eq. 17) needs to be
reformatted as:

M ′
2 = [

M2 M2i
]

M2i =
⎡
⎣BN ,4 BN ,5 . . . BN ,3+k

ḂN ,4 ḂN ,5 . . . ḂN ,3+k

1 1 . . . 1

⎤
⎦ (19)

where k is the total number of additional inputs. These extra
inputs are independent and can be optimized to decrease the
system sensitivity, while the first fundamental three inputs
remain dependent in order to satisfy the final conditions.
Thus, we can rewrite the inputs as:

FC = M1 IC + M2üd + M2i üi
üd = [

ü1 ü2 ü3
]T

üi = [
ü4 ü5 . . . ü3+k

]T (20)

where üd and üi are the vectors of the dependent and inde-
pendent inputs, respectively. Hence,

üd = M5 − M6 IC − M6üi
M5 = M2

−1FC
M6 = M2

−1M1

M7 = M2
−1M2i

(21)

Finally, the complete input vector ü can be written as:

ü =
[
üd
üi

]
(22)

Substituting Eq. 21 into Eq. 22 gives:

ü = M8 − M9 IC − M10üi

M8 =
[
M5

Z1

]
, M9 =

[
M6

Z2

]
, M10 =

[
M6

I1

]
(23)

where Z1,Z2, and I1 are zero matrices and identity matrix,
respectively. Differentiating Eq. 23 with respect to IC yields:

dü

d IC
= −M9 (24)

Similar to Eq. 18, Eq. 24 indicates that adding extra inde-
pendent inputs does not alter the system sensitivity, i.e., it
does not result in optimality.

2.3 MVIC shaper

The Minimum Vibration with non-zero Initial Conditions
(MVIC) shaper is introduced to minimize the vibrations at
the end of themaneuver. Applying this shaper does not elimi-
nate the residual sway at the end of themaneuver, but instead,
it reduces the amplitude of the vibrations. MVIC shaper is
formulated to address the case when the system experiences
a deviation from its designated initial condition. In this case
and if the deviations remain in a limited range, although sys-
tem conditions in Eq. 14 are violated, the input condition can
be satisfied by introducing one dependent input and N inde-
pendent inputs. These extra terms optimize the input function
intending to minimize the final vibration amplitudes over a
discrete range of permissible initial conditions. The input
condition in can be satisfied by setting the dependent input
üd as:

üd = Nv f τ − �N
i=1ui (25)

where ui for i = 1 to N are the independent inputs. For every
different set of initial conditions, the final angular position
and angular velocity are given by:

θ f = [
AN ,1 AN ,2

]
IC + [

BN ,1 BN ,2 . . . BN ,1+N
] [

üd
üi

]

θ̇ f = [
ȦN ,1 ȦN ,2

]
IC + [

ḂN ,1 ḂN ,2 . . . ḂN ,1+N
] [

üd
üi

]

(26)

Substituting Eq. 25 into Eq. 26 and considering a discrete
deviation range containing m number of different initial con-
dition sets give:

� f = Q1 + Q2üi
θ̇ f = Q̇1 + Q̇2üi

(27)

where:

Q1 = α IC + α′
Q̇1 = α̇ IC + α̇′

i, j
(28)

Q2i, j = B(i)
N , j − B(i)

N ,1, Q̇2i, j = Ḃ(i)
N , j − Ḃ(i)

N ,1
i = 1, 2, . . . ,m, j = 2, 3, . . . , 1 + N

(29)
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αi, j = A(i)
N , j , α

′
i, j = Nv f B

(i)
N ,1/τ

˙αi, j = Ȧ(i)
N , j , α̇

′
i, j = Nv f Ḃ

(i)
N ,1/τ

i = 1, 2, . . . ,m, j = 1, 2

(30)

At this point, a set of final angular positions and angular
velocities are determined to correspond to the given set of
initial conditions. The cost function J that needs to be mini-
mized includes all final amplitudes from a designated range
of initial conditions. This cost function is given by:

J = �m
k=1(θ

2
f + θ̇2f /ω

2
n)k = �T

f � f + �̇T
f �̇ f /ω

2
n (31)

Substituting Eq. 30 into Eq. 31 gives:

J = (QT
1 Q1 + Q̇′T

1 Q̇′
1) + 2(QT

2 Q1 + Q̇′T
2 Q̇′

1)üi
+üTi (QT

2 Q2 + Q̇T
2 Q̇

′
2)üi

(32)

where

Q̇′
i = Q̇i/ωn, i = 1, 2

d J
düi

= 2(QT
2 Q1 + Q̇′

2 Q̇
′
1) + 2(QT

2 Q2 + Q̇′T
2 Q̇′

2)üi
(33)

Now, setting d J
düi

= 0 gives:

üi = −(QT
2 Q2 + Q̇′T

2 Q̇′
2)

−1(QT
2 Q1 + Q̇′T

2 Q̇′
1) (34)

where üi is the optimal independent system input vector.
Substituting Eq. 34 into Eq. 25 results in the dependent input
üd . Subsequently, substituting üi and üdd into Eq. 22 gives
the optimal input acceleration piecewise function to the slider
such that it satisfies the system final conditions, while at the
same time it minimizes the final vibration amplitudes.

2.4 Shaper simulations and discussions

Numerical simulations are conducted to assess the perfor-
mance, sensitivity, and responsivity of the proposed control
scheme for different crane system configurations under var-
ious initial disturbance conditions. The controller properties
are compared against other common input shaping methods
to determine the functional domain, stability, and shortcom-
ings of the implemented ZVIC shapers.

Figure 2 compares the overhead crane model predictions
for different cable length and initial condition settings. The
system requirements are met by applying the ZVIC step
inputs. As the plots suggest, changing the initial conditions
affects the total time that the system needs to reach its final
states. The reason behind this behavior is that the initial
conditions of the system determine the total energy that the
system needs to dissipate throughout the maneuver. Also, for
a fixed cable length, the amplitude of the first phase of the
motion (acceleration) is a function of the initial conditions.

However, the third phase (deceleration) is independent of the
initial condition settings because the motions start from the
same conditions at the end of the cruising phase.

Figure 3 shows how the minimum maneuver time is
affected by the initial conditions. For a constant vibration
amplitude, different initial conditions result in the different
minimum required time to finish the maneuver depending on
the correlation between the direction of the payload motion
during the maneuver and the direction of the initial condi-
tions. The minimum maneuver time is decreased when the
initial conditions take the same direction as the motion. So,
for a positive motion and with similar vibration amplitude,
+θ0 and +θ̇0 conditions will decrease the time because they
are applied in the same direction as the motion, but when the
initial conditions are reversed, i.e.−θ0 and−θ̇00 , the system
will need more time to suppress the sway. Therefore, it is
possible for a case with higher maximum vibration ampli-
tudes to yield shorter maneuver time. This implies that if it
is not possible to adequately suppress the initial vibrations
at the beginning of a maneuver, it may be more effective to
delay the suppression to a later time in the maneuver when
the direction of motion is aligned with the direction of the
initial conditions.

Figure 4 compares ZV, ZVD, and ZVIC shapers generated
for systems with identical non-zero initial conditions and
different cable length settings. Regardless of the cable length
and initial states, theZVICcanfinally bring the system to rest,
while the systems controlled by ZV and ZVD shapers suffer
from residual vibrations when the maneuvers end. However,
ZVIC can result in slightly higher vibration peaks throughout
the maneuver. Thus, ZV or ZVD may perform better than
ZVIC when the initial conditions are close to zero.

ZVIC shapers are designed for a known range of initial
conditions. Therefore, if the system takes initial conditions
that are outside its pre-set domain, the generated shaping
commands cannot completely cancel the oscillations and
non-zero final states will not be achieved. Figure 5 shows
how the final vibration amplitude of the system changes by
changing the initial vibration amplitude. Amplitude ratio is
defined as the ratio between the initial vibration amplitude
of the system and the pre-set initial amplitude defined for the
ZVIC shaper. Changing the initial conditions from the pre-set
conditions increases the final vibration amplitude. Chang-
ing the initial conditions while maintaining the same initial
vibration amplitude increases the final amplitude aswell. The
plot is generated using 2000 random initial conditions. The
black line depicts the average final vibration amplitude for
all initial condition settings with a similar amplitude, and the
green line represents the zero initial angular velocity cases.
Comparing these results to the ZV shaper (red line), it is evi-
dent that the red line is in the middle of the blue area, which
means that ZV shaper has a smaller final amplitude than half
of the cases. This suggests that if the initial conditions are
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Fig. 2 Payload angle versus
time for different initial
conditions and cable lengths
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Fig. 3 Maneuver time versus
initial conditions

300.4
20-10

0.6

10-5

Initial angular velocity  (deg/s)
0

0.8

Initial angle  (deg)

0 -10

M
an

eu
ve

r t
im

e 
 (s

)

1

5 -20

1.2

-3010

1.4

explicitly known or can be measured before the maneuver,
then it is recommended to implement a ZVIC shaper as it
can effectively cancel the sway. Otherwise, if only the initial
amplitude is known, a ZV shaper should be used.

Figure 6 compares MVIC shapers with one (MVIC1),
two (MVIC2), and three (MVIC3) independents to ZVIC
shaper. The initial condition settings and the maneuver times
achieved by these four shapers for the three studied cases
are listed in Table 1 for comparison purposes. MVIC shaper

minimizes the final vibration amplitude over a range of initial
conditions.MVIC1 that has one independent is not enough to
yield zero final states at any initial condition within the pre-
set range. However, adding one or more independent inputs
decreases the final vibration amplitude to zero for the ini-
tial condition in the middle of the pre-set range. MVIC2 and
MVIC3 are identical, whichmeans addingmore independent
inputs (steps) does not affect the sensitivity of the system to
the initial conditions. Also, MVIC2 and MVIC3 are identi-
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Fig. 4 Maneuver time versus
initial conditions
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Fig. 5 Final oscillation amplitude of the system versus the amplitude
ratio of one independent input (IC = [5π/180 0])

cal to ZVIC. This means that minimizing the final vibration
amplitude over a range of initial conditions is equivalent to
applying a ZVIC shaper, which minimizes the final ampli-

Table 1 Initial conditions and maneuver times of shapers compare in
Fig. 6

Case Range of
initial angle
(deg)

Initial angu-
lar velocity
(rad/s)

Maneuver time (s)

a MVIC1 [−8 4] 0 0.48

MVIC2 0.96

MVIC3 1.00

ZVIC 0.96

b MVIC1 [1 5] 0.1 0.58

MVIC2 0.75

MVIC3 0.76

ZVIC 0.75

c MVIC1 [−6 0] −0.1 0.58

MVIC2 0.99

MVIC3 1.04

ZVIC 0.99

tude of the system at an initial condition in the middle of that
range.

123



A robust input shaper for trajectory control of overhead cranes with non-zero initial states 237

Fig. 6 Final amplitude of
vibration versus a range of
initial angles of different shapers
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Fig. 7 Final amplitude of vibration achieved by ZVIC over a range of
initial angles for different cable lengths and maneuver times

Figure 7 shows the effect of maneuver time on the sensi-
tivity of the system to the initial conditions for different cable
lengths. For a fixed set of cable length and initial conditions,
the system final amplitude does not change by increasing
the maneuver time. Increasing the maneuver time generally
decreases the amplitude of the step inputs, but it does not
make the system less sensitive to the initial conditions.

Different initial conditionsmay be considered tominimize
the required maneuver time. Figure 8a shows how the mini-
mum maneuver time changes by changing the initial swing
angle while maintaining zero initial angular velocity. Start-
ing with a small positive initial swing angle decreases the

minimum maneuver time, while on the other hand, a small
negative initial swing angle increases the maneuver time.

Figure 8b shows how the system maneuver time changes
by changing the initial conditions while maintaining a con-
stant initial vibration amplitude. This case is practically
identical to a swinging pendulum that has a constant vibra-
tion amplitude. As illustrated in this figure, starting the ZVIC
shaper with a small positive swing angle (aligned with the
motion) can decrease the total maneuver time. On the other
hand, starting from a negative initial swing angle increases
the maneuver time. Generally, systems with smaller cables
tend to need shorter maneuver times. This is because the
systems with short cables have higher natural frequencies,
which leads to shorter periodic times. However, for systems
with long cable, it is still possible to decrease the maneuver
time by introducing a positive swing angle increase.

3 Conclusions

This article presented a new input shaping approach to
address the control of overhead cranes with non-zero initial
states. Insensitivity to initial conditions is achieved through
the introduction of new sets of shaping inputs. This technique
allows for the initial disturbance cancelation of a human-
operated crane systemwithout the need for a feedback control
setup. The proposed command shaping method is numeri-
cally compared against other methods, and its behavior is
extensively studied for a different system and initial condi-
tion settings.

123



238 A. Mohammed et al.

Fig. 8 Minimum maneuver
time versus a range of initial
angles for systems with different
lengths with different settings: a
θ̇i = 0, and b Constant vibration
amplitude
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