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Stoneley waves in a vicinity of the Wiechert condition

A. V. Ilyashenko1

Received: 9 March 2020 / Revised: 18 March 2020 / Accepted: 22 March 2020 / Published online: 3 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In various areas of the acoustic NDT starting from nano and micro scales to geophysical scales, the high frequency Stoneley
waves can give essential information on the physical properties of the adjacent layers along with information on possible
interfacial cracks and other defects. The Wiechert condition imposed on the relation between bulk wave velocities of the
contacting layers, play an important role in acoustic analyses, especially at analyzing high-frequency Stoneley waves arising
and propagating along the interfaces. The present study concerns with a non-propagating condition for Stoneley waves at the
vicinity of the Wiechert condition.
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1 Introduction

In various areas of the acoustic NDT starting from nano
and micro scales to geophysical scales, the high frequency
Stoneley waves can give essential information on the physi-
cal properties of the adjacent layers along with information
on possible interfacial cracks and other defects. TheWiechert
condition imposed on the relation between bulk wave veloci-
ties of the contacting layers, play an important role in acoustic
analyses, especially at analyzing high-frequency Stoneley
waves arising and propagating along the interfaces. The
present study concerns with a non-propagating condition for
Stoneley waves at the vicinity of the Wiechert condition.

In the original paper [1] Stoneley deduced an equation for
finding speed of propagation of an interface surface wave
travelling along the interface between two elastic isotropic
halfspaces in mechanical contact

P(c) ≡ c4
(
(ρ1 − ρ2)

2 − (ρ1A2 + ρ2A1)(ρ1B2 + ρ2B1)
)

+ 2Kc2(ρ1A2B2 − ρ2A1B1 − ρ1 + ρ2)

+ K 2(A1B1 − 1)(A2B2 − 1) � 0, (1)
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where c is the desired Stoneley wave velocity; ρ1, ρ2 are the
material densities of the halfspaces; and

K � 2
(
ρ1β

2
1 − ρ2β

2
2

)
, Ak �

√
1 − c2

α2k
,

Bk �
√
1 − c2

β2k
, k � 1, 2. (2)

In Eqs. (2) αk, βk are respectively longitudinal and shear
bulk wave velocities in the corresponding halfspaces:

αk �
√

λk + 2μk

ρk
, k �

√
μk

ρk
, k � 1, 2, (3)

where λk and μk are Lame constants.
The main attention in Stoneley’s work was paid to the

important in geophysics case when elastic properties of both
media satisfy the Wiechert condition [2]:

α1

α2
� β1

β2
� 1. (4)

Stoneley’s asymptotic analysis of Eq. (1) based on Tay-
lor’s expansions of expressions for Ak , Bk at small c allowed
him to conclude that at the condition (4) there is the unique
real root of Eq. (1):

Im(c) � 0. (5)
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Fig. 1 Region of existence of Stoneley waves at Poisson’s condition (7)
[3]

Stoneley also asserted that such a root satisfies the follow-
ing condition

β ≥ c ≥ 0. (6)

Note that at condition (4) there is no need in indices of the
bulk wave velocities.

The Eq. (1) was numerically analyzed by Sezawa and
Kanai [3] for the case of Poisson’s media, when

λk � μk, k � 1, 2. (7)

The condition (7) is satisfied at Poisson’s ratios νk �
1
4 , k � 1, 2. Numerical analysis of Eq. (1) at condition
(7) gave the following range of the Stoneley wave existence
[3]

In Fig. 1 dashed diagonal line corresponds to the media
satisfyingWiechert condition (4); and the region of existence
is the narrow part between two curves; while curves corre-
spond to the limiting cases of existing real and positive roots
of Eq. (1) that satisfy the following relation

c ≤ min
k�1,2

(βk). (8)

Note that relation (8) ensures real coefficients of Eq. (1).
The plots initially obtained through numerical analysis by
Sezawa and Kanai [3] were also (numerically) confirmed by
Cagniard [4] and Scholte [5, 6].

Despite quite a large number [7–21] of studies on Stoneley
waves propagating in isotropic and anisotropic media, exis-
tence of Stoneley waves at the vicinity of the point A (see
Fig. 1), where both contacting media have identical physi-
cal properties, has not been questioned. However, it will be
demonstrated below that not only a singular point A, but

also it’s open vicinity does not belong to the region of exis-
tence.The fact of nonexistenceofStoneleywaves in a broader
range at the vicinity of point A, can have various applications
starting from non-destructive testing of stratified composites
containing micro and nano layers to geophysics.

2 Theoretical considerations

Consider point A, where according to theWiechert condition
Eq. (4) and Poisson’s relation (7):

λ1 � λ2 � μ1 � μ2; ρ1 � ρ2. (9)

Thus, acoustically both contacting media become identi-
cal, so the two halfspaces eventually form a single homoge-
neous space without any interfaces. But, in a homogeneous
space no surface waves can propagate [22], so at least one
point A should be excluded from the region of existence.

Moreover, direct verification reveals that Eq. (1) at condi-
tion (9) yields

4ρ2c4

√
1 − c2

α2

√
1 − c2

β2
� 0, (10)

where in view of (9) indices at ρ, α, β are omitted. Now,
Eq. (10) has eight roots

c1,2,3,4 � 0, c5,6 � ±α, c7,8 � ±β, (11)

none of which satisfies conditions for the propagating Stone-
ley wave.

Now, it is necessary to show that alongwith the point A, an
open vicinity of that point should also be excluded from the
region of existence. To prove that consider the left-hand side
of Eq. (1) which can be considered as a continuous function
of the c variable:

P(c) : C → C, (12)

C is the complex plane. In view of continuity of P(c), solu-
tions of Eqs. (1), (5) and (6) form a closed subset B ⊂ C.
Thus, the region of existence should be closed, however,
exclusion point A from B makes the solution subset B\A
being not closed, but the latter means that an open vicinity
of the point A should also be excluded.

3 Numerical analysis

Computing the roots of Eq. (1) obeying conditions (5), (6)
for Poisson’s media satisfying condition (7) and other media
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Fig. 2 Region of existence of Stoneley waves marked in grey at Pois-
son’s ratios: a 0.0; b 0.25; c 0.499

with equal Poisson’s ratios, yields the following results for
the region of Stoneley wave existence, presented in Fig. 2.

The plots in Fig. 2 clearly indicate that along with point A
with coordinates (1; 1) a vicinity of that point also does not
belong to the region of existence of Stoneley waves for the
studiedPoisson’s ratios.Computationsweremadeusingmul-
tiprecision algorithms [23] with long mantissas up to~1000
decimal digits tominimize possible round of errors in finding
roots of Eq. (1).

4 Concluding remarks

Both theoretical and numerical analyses revealed a more
complicated structure of the Stoneley wave region of exis-
tence. In particular, for contacting halfspaces with Poisson’s
ratios varying from 0.0 to 0.499, the corresponding regions
of existence are doubly connected, see Fig. 2.

The obtained resultmay be relevant in various geophysical
applications, since in the pioneeringworks [1–5], and in quite
a large number of the subsequent studies in theoretical and
applied geophysics and wave dynamics [6–22, 24–30] it was
implicitly assumed that the region of existence for Stoneley
waves is simply connected with point (1;1) belonging to that
region.
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