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Abstract
The present paper purports to examine and analyse the concept of non identical complex chaotic systems of fractional order
with external bounded disturbances and uncertainties. Hybrid projective synchronization has been achieved between fractional
order complex Lu-system (drive system) and complex T-system (slave system). The adaptive sliding mode control technique
has been used to design control law through suitable sliding surface and estimate the uncertainties and external disturbances
in order to establish the stability of controlled system by using allied theorems. Also we have compared our results with prior
published literature results to determine the supremacy of considered methodology. Computer simulations outcomes have
established the efficacy and adeptness of the prospective scheme.

Keywords Fractional order complex chaotic system · Hybrid projective synchronization · Adaptive sliding mode control
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1 Introduction

Chaos can be described as unconditional distraction, ran-
domness or unpredictability. Chaotic dynamics [1] has
become very interesting and attractive area for researchers.
Chaotic dynamical systems are unstable and uncertain. Henri
Poincare discovered a well known intrinsic property of the
chaotic systems, the sensitive dependence on the initial
conditions i.e. two neighbouring points in state space get
isolated very quickly as they emerge in time. In general,
chaos being the intrinsic property of non-linear systems has
numerous applications such as in viscoelasticity [2], dielec-
tric polarization, electromagnetic waves [3], diffusion, signal
processing, mathematical biology and in many more dis-
ciplines. Different techniques are used to investigate the
chaotic behaviour few of them are by plotting phase por-
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traits, poincare section, bifurcation diagram or by finding
Lyapunov exponents. The most reliable and widely used
among the above technique is Lyapunov exponent spec-
trum. If the largest Lyapunov exponent is positive, we say
that the system is chaotic and if more than one Lyapunov
exponents are positive, then the system is said to be hyper-
chaotic.
It was the pioneeringwork of Pecora and Caroll who gave the
concept of synchronization to control and utilize the chaos
in the porper way. Synchronization means the trajectories of
the coupled systems evolve with time to a usual pattern. Var-
ious techniques have been developed by researchers in this
direction during last two decades. Numerous synchroniza-
tion schemes have been proposed such as lag synchronization
[4], complete synchronization [5], phase and anti-phase syn-
chronization [6], anti-synchronization [7], hybrid synchro-
nization [8], projective synchronization [9], hybrid funchtion
projective synchronization [10], generalised synchronization
[11], multi-switching synchronization [12] etc. To achieve
synchronization different techniques have been designed
some of them are adaptive feedback control,optimal con-
trol,linear and nonlinear feedback synchronization [13],
active control [14], sliding mode control [15], adaptive slid-
ingmode technique [16], time delay feedback approach [17],
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tracking control [18], backstepping design method [18] and
so on.
In recent years, a lot of pioneering work has been done in
the field of fractional calculus [19]. It was first suggested by
Leibnitz and L’Hospital in 1675 and they gave the theory of
integrals and derivatives of random order which combines
the concept of integer order differentiation and n-fold inte-
gration. These studies describes the significant work in the
real life systems and have a lot of multidisciplinary applica-
tions. As compared to integer order network the fractional
order system add a degree of freedom by employing frac-
tional derivative. Many types of fractional order chaotic and
hyperchaotic systems have been introduced by researchers
like Lorenz system [20], Chen system [21], Rossler system
[21], Lu-system [22], Lui-system [23], Chua system [24]
etc to explain the various physical processes. hlIn order to
increase the complexity , researchers also introduced numer-
ous fractional order complex chaotic systems like complex
Lorenz system [25], T-sytem [26], Lu-system [27], Chen sys-
tem [25] etc.
Various efforts have been made to synchronize identical
and non-identical systems with different techniques. In this
manuscript we have synchronized the two different fractional
order complex chaotic systems by taking unknown bounded
external disturbances and uncertainties. We have consid-
ered fractional order complex chaotic Lu-system as drive
system and complex chaotic T-system as response system
with external bounded disturbances and bounded uncertain-
ties which has not been discussed in any literature to the best
of our knowledge.The uncertainties and disturbances have a
great impact on chaotic systems, dynamics and synchroniza-
tion action and reduce the act of actual systems.Therefore
to examine the synchronization of chaotic systems with
various kind of disturbances and uncertainties, researchers
have introduced different types of synchronization schemes
[28,29]. Generally sliding mode control technique [30] is
an efficient approach concerning the uncertainty and distur-
bances. In our paper we have used adaptive sliding mode
control scheme [31] to synchronize the considered systems.
To decline their effect we have chosen suitable sliding sur-
face and estimated the disturbances and uncertainties through
adapting control rule.
In [27], author synchronized fractional order complex Lu-
system and complex T-system by active control method. As
we have taken uncertainties and disturbances into consider-
ation, despite of that our methodology shows better results
when compared with the previous work [27]. Numerical sim-
ulations have been done to validate and visualize our results
in the form of plots and demonstrates that our results are in
excellent agreement with the theoretical results.

2 Preliminaries

The fractional order systems is continuation to the integer
order calculus. As compared to integer order network the
fractional order system add a degree of freedom by employ-
ing fractional derivative. Also, fractional order derivatives
show better results when modelling real life processes as
compared to integer order derivatives.The fractional order
derivative can be defined in various forms [19], such as
Riemann–Lioville’s derivative, Grünwald Letnikov’s deriva-
tive, Caputo’s derivative etc.
The Riemann Liouville’s derivative is defined as

t0D
α
t f (t)= dn

dtn

[
1

�(n−α)

∫ t

t0

f (τ )

(t−τ)α−n+1 dτ

]
, t > t0

where α is fractional derivative, n − 1 < α < n, n ∈
N, �(α) = ∫ ∞

0 xα−1e−x is the Gamma function.
The Caputo’s derivative is defined as

t0D
α
t f (t) = 1

�(n − α)

∫ t

t0

f (n)(τ )

(t − τ)α−n+1 dτ, t > t0

The Grünwald Letnikov’s derivative is defined as

t0D
α
t f (t) |t= kh = limh→0

1

hα

� t−c
h �∑

j=0

ω j (α) f (kh − jh)

where h shows the sample time. �.� is the floor function and
the coefficients

ωα
j = (−1) j�(α + 1)

�( j + 1)�(α − j + 1)
, j = 0, 1, 2, . . . , k.

Since the Caputo’s fractional derivative of a constant is
zero,in this paper we choose Caputo’s definition.

3 System description

3.1 Master system

Considering the fractional order complex Lu-system [27]
given by

Dαu′
1 = a1(u

′
2 − u′

1)

Dαu′
2 = a2u

′
2 − u′

1u
′
3

Dαu′
3 = 1

2
(u′

2u
′
2 + u′

1u
′
2) − a3u

′
3 (1)

where u′ = [u′
1, u

′
2, u

′
3]T is the state variable vector, u′

1 =
u1 + iu2, u′

2 = u3 + iu4 are complex variables, u′
3 = u5 is

the real variable and a1, a2, a3 are real constant parameters.
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Separating the real and imaginary parts, we obtain the system
(1) as

Dαu1 = a1(u3 − u1)

Dαu2 = a1(u4 − u2)

Dαu3 = a2u3 − u1u5

Dαu4 = a2u4 − u2u5

Dαu5 = u1u3 − u2u4 − a3u5 (2)

For the values of parameters as a1 = 42, a2 = 22, a3 = 5,
initial conditions as u(0) = [1, 2, 3, 4, 5]T and α = 0.95,
the system is chaotic.

3.2 Slave system

The fractional order complex T-system [26] is

Dαv′
1 = b1(v

′
2 − u′

1)

Dαv′
2 = (b2 − b1)u

′
1 − b1v

′
1v

′
3

Dαv′
3 = 1

2
(v′

1v
′
2 + v′

1v
′
2) − b3v

′
3 (3)

where y′ = [v′
1, v

′
2, v

′
3]T is the state variable vector of the

system,v′
1 = v1 + iv2, v′

2 = v3 + iv4 are complex variables,
v′
3 = v5 is the real variable and b1, b2, b3are real constant
parameters.

Separating real and imaginary parts, we have

Dqv1 = b1(v3 − v1)

Dqv2 = b1(v4 − v2)

Dqv3 = (b2 − b1)v1 − b1v1v5

Dqv4 = (b2 − b1)v2 − b1v2v5

Dqv5 = v1v3 + v2v4 − b3v5 (4)

For the values of parameters as b1 = 2.1, b2 = 30, b3 = 0.6,
initial conditions as v(0) = [8, 7, 5, 6, 10]T and α = 0.95,
the system is chaotic.

4 Synchronization scheme

The fractional order complex chaotic system (2) is taken as
drive system. The fractional order complex chaotic T-system
(4) with uncertainty and disturbance is taken as response
system given by

Dqv1 = b1(v3 − v1) + �g1(v1, v2, v3, v4, v5)+ω1(t)+�1

Dqv2 = b1(v4 − v2)+�g2(v1, v2, v3, v4, v5)+ω2(t)+�2

Dqv3 = (b2 − b1)v1 − b1v1v5 + �g3(v1, v2, v3, v4, v5)

+ ω3(t) + �3

Dqv4 = (b2 − b1)v2 − b1v2v5 + �g4(v1, v2, v3, v4, v5)

+ ω4(t) + �4

Dqv5 = v1v3 + v2v4 − b3v5 + �g5(v1, v2, v3, v4, v5)

+ ω5(t) + �5 (5)

�gi (v1, v2, v3, v4, v5) are bounded uncertainties, ωi (t) are
bounded disturbances and �i are appropriate control inputs
of the response system for i = 1, 2, 3 which will be designed
later.
Here we assume that | �gi |� �i and | ωi (t) |� υi , where
�i and υi are positive constants.Also �̂i and υ̂i represents
the estimated values of �i and υi respectively.

Now,the error state is defined as

ei = vi − σi ui , i = 1, 2, 3, 4, 5. (6)

where σ = (σ1, σ2, . . . , σm) are scaling factors.

Definition The drive system (2) and response system (5) are
said to be in hybrid projective synchronization, if there exists
suitable controller � = (�1,�2, . . . , �m), such that

lim
t→∞ ‖ e(t) ‖

= lim
t→∞ ‖ vi (t) − σui (t) ‖= 0, i = 1, 2, 3, 4, 5. (7)

The synchronization error is asymptotically stable between
the state variables of drive system (3) and state variables of
response system (2). The error dynamics is obtained as

Dαe1 = b1(e3 − e1) + (b1σ3 − a1σ1)u3 + σ1(a1 − b1)u1

+ �g1 + ω1(t) + �1

Dαe2 = b1(e4 − e2) + (b1σ4 − a1σ2)u4 + σ2(a1 − b1)u2

+ �g2 + ω2(t) + �2

Dαe3 = (b2 − b1)e1 − b1v1v5 − σ1(b2 − b1)u1 − σ3a2u3

+ σ3u1u5 + �g3 + ω3(t) + �3

Dαe4 = (b2 − b1)e2 − b1v1v5 − σ2(b2 − b1)u2 − σ4a2u4

+ σ4u2u5 + �g4 + ω4(t) + �4

Dαe5 = v1v3 + v2v4 − b3e5 + b3σ5u5 − σ5(u1u3 + u2u4)

− σ5a3u5 + �g5 + ω5(t) + �5 (8)

In order to minimize the error,we choose the suitable sliding
surface which is as follows:

si (t) = Dα−1ei (t) + φi

∫ t

0
ei (ξ)dξ (9)

To accomplish the error dynamic system (8) at chosen sliding
surface (13), it is necessary that it should satisfy the following
condition
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si (t) = 0, ṡi (t) = 0, i = 1, 2, 3, 4, 5.

The derivative of (9), yields the following equation

ṡi (t) = Dαei (t) + φi ei (t), i = 1, 2, 3, 4, 5. (10)

Then, by considering the necessary condition ṡi (t) = 0, we
obtain

Dαei (t) = −φi ei (t), i = 1, 2, 3, 4, 5. (11)

Hence, the system (9) is asymptotically stable by using
Matignon theorem [32]. Therefore, the control laws by using
(11), (8) and SMC theory are obtained as follows

�1 = −b1(e3 − e1) − (b1σ3 − a1σ1)u3 − σ1(a1 − b1)u1

− φ1e1 − (�̂1 + υ̂1 + γ1)signs1

�2 = −b1(e4 − e2) − (b1σ4 − a1σ2)u4 − σ2(a1 − b1)u2

− φ2e2 − (�̂2 + υ̂2 + γ2)signs2

�3 = −(b2 − b1)e1 + b1v1v5 + σ1(b2 − b1)u1 + σ3a2u3

− σ3u1u5 − φ3e3 − (�̂3 + υ̂3 + γ3)signs3

�4 = −(b2 − b1)e2 + b1v2v5 + σ2(b2 − b1)u2 + σ4a2u4

− σ4u2u5 − φ4e4 − (�̂4 + υ̂4 + γ4)signs4

�5 = −v1v3 − v2v4 + b3e5 − b3σ5u5 + σ5(u1u3 + u2u4)

+ σ5a3u5 − φ5e5 − (�̂5 + υ̂5 + γ5)signs5 (12)

where sign(.) denotes the signum function and γi are positive
constant parameters. The adaptive parameter update laws are

˙̂�i = mi | si |, i = 1, 2, 3, 4, 5.

˙̂υi = ni | si |, i = 1, 2, 3, 4, 5. (13)

where mi and ni are positive constants and γi are gain con-
stants of the controllers for i = 1, 2, 3, 4, 5.

Theorem 4.1 The fractional order complex chaotic system
(2) and the slave system (5) with uncertain dynamics are
globally and asymptotically stable and synchronized with
adaptive sliding mode control laws (12) and parameter
update laws (13).

Proof To discuss the stability of the fractional order chaotic
systems, we have used Lyapunov’s direct method [33, Ch-5].
Here our main focus is to take a positive definite function V
and would show the derivative of V negative definite which
would imply that our error converges asymptotically to zero.

	


V = V1 + V2 + V3 + V4 + V5 (14)

where

V1 = 1

2
s21 + 1

m1
(�̂1 − �1)

2 + 1

n1
(υ̂1 − υ1)

2

V2 = 1

2
s22 + 1

m2
(�̂2 − �2)

2 + 1

n2
(υ̂2 − υ2)

2

V3 = 1

2
s23 + 1

m3
(�̂3 − ϕ3)

2 + 1

n3
(υ̂3 − υ3)

2

V4 = 1

2
s24 + 1

m4
(�̂4 − �4)

2 + 1

n4
(υ̂4 − υ4)

2

V5 = 1

2
s25 + 1

m5
(�̂5 − �5)

2 + 1

n5
(υ̂5 − υ5)

2 (15)

The dynamics of Lyapunov function is

V̇1 = s1ṡ1 + 1

m1
(�̂1 − �1) ˙̂�1 + 1

n1
(υ̂1 − υ1) ˙̂υ1

V̇2 = s2ṡ2 + 1

m2
(�̂2 − �2) ˙̂�2 + 1

n2
(υ̂2 − υ2) ˙̂υ2

V̇3 = s3ṡ3 + 1

m3
(�̂3 − �3) ˙̂�3 + 1

n3
(υ̂3 − υ3) ˙̂υ3 (16)

V̇4 = s4ṡ4 + 1

m4
(�̂4 − �4) ˙̂�4 + 1

n4
(υ̂4 − υ4) ˙̂υ4

V̇5 = s5ṡ5 + 1

m5
(�̂5 − �5) ˙̂�5 + 1

n5
(υ̂5 − υ5) ˙̂υ5

Substituting the values of s′
i s, we obtain

V̇1 = s1(D
αe1 + φ1e1) + 1

m1
(�̂1 − �1) ˙̂�1

+ 1

n1
(υ̂1 − υ1) ˙̂υ1

V̇2 = s2(D
αe2 + φ2e2) + 1

m2
(�̂2 − �2) ˙̂�2

+ 1

n2
(υ̂2 − υ2) ˙̂υ2

V̇3 = s3(D
αe3 + φ3e3) + 1

m3
(�̂3 − �3) ˙̂�3

+ 1

n3
(υ̂3 − υ3) ˙̂υ3

V̇4 = s4(D
αe4 + φ4e4) + 1

m4
(�̂4 − �4) ˙̂�4

+ 1

n4
(υ̂4 − υ4) ˙̂υ4

V̇5 = s5(D
αe5 + φ5e5) + 1

m5
(�̂5 − �5) ˙̂�5

+ 1

n5
(υ̂5 − υ5) ˙̂υ5 (17)
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Fig. 1 Phase portraits of fractional order complex Lu-system for fractional order α = 0.95 a u1 − u2 − u3 b u1 − u3 − u5 c u1 − u4 − u5 d
u2 − u4 − u5 e u1 − u3 f u2 − u5

By substituting the values of Dqei , ˙̂�i and ˙̂υi in (17) , we
obtain

V̇i = s1[�gi + ωi − (�̂i + υ̂i + γi )signsi ]
+ (�̂i − �i ) | si | +(υ̂i − υi ) | si |

� (| �gi | + | ωi |) | si | −(�̂i + υ̂i + γi ) | signsi |

+ (�̂i − �i ) | si | +(υ̂i − υi ) | si |
< (�i + υi ) | si | −(�̂i + υ̂i + γi ) | signsi |

+ (�̂i − �i ) | si | +(υ̂i − υi ) | si |
= −Pi | si |
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Fig. 2 Phase portraits of fractional order complex T-system for fractional order α = 0.95 a v1 −v2 −v3 b v1 −v3 −v4 c v2 −v4 −v5 d v3 −v5 −v2
e v1 − v5 f v2 − v4

Finally, we get

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + V̇5

< −(P1 | s1 | +P2 | s2 | +P3 | s3 | +P4 | s4 | +P5 | s5 |)
(18)

Thus there exist a non negative real number P such that
(P1 | s1 | +P2 | s2 | +P3 | s3 | +P4 | s4 | +P5 | s5 |) > P ,
then (20) becomes

V̇ < −P
√
s21 + s22 + s23 + s24 + s25

< 0 (19)
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Fig. 3 Synchronized state
trajectories of mater system and
controlled slave system a
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Fig. 4 Error converges to zero
at t=1.5 s (approx.)
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Fig. 7 Time response of controllers used to synchronization

Hence, By Lyapunov stability theory ‖ si ‖→ 0 as t →
∞.Thus the error dynamical system (10) asymptotically con-
verges to si = 0. Therefore the trajectories of state variables
of projection of master system and chaotic slave system are
asymptotically and globally adjusted to desired set of points
with control laws (12) and adaptive laws (13).

5 Numerical simulations

Simulations have been performed (using Matlab) to vali-
date and visualize the effectiveness of the proposed scheme
for the synchronization between master system and chaotic
slave system.In simulations we have taken fractional order
α = 0.95 with step size 0.001. The parameter of master sys-
tem are taken as a1 = 42, a2 = 22, a3 = 5, and of slave
system as b1 = 2.1, b2 = 30, b3 = 0.6.Initial conditions for
drive systemand response systemare [1,2,3,4,5], [8,7,5,6,10]
respectively. Figures 1 and 2 show the Phase Portraits
of respective drive and response systems.We have consid-
ered the bounded uncertainties as �g1 = cosπv2,�g2 =
cosπv2, �g3 = 0.1cos

2

3
π(v1 + v5),g4 = 0.1sin

2

3
π(v1 +

v5) and g3 = 0.5cos2πv2, bounded disturbances as ω1(t) =
cosπ t, ω2(t) = sinπ t, ω3(t) = 0.5cos

3

2
π t, ω4(t) =

0.5sin
3

2
π t , and ω5 = sign(cosπ t) initial condition for esti-

mating the parameters as �̂ (0) = (0.1, 0.1, 0.1), υ̂(0) =
(0.1, 0.1, 0.1) and designed control parameters as m1 =
m2 = m3 = m4 = m5 = 0.1, n1 = n2 = n3 = n4 =
n5 = 0.5, γ1 = 8.5, γ2 = 11, γ3 = 13.5, γ4 = 14.5 and
γ5 = 18.5 and φ1 = 4.5, φ2 = 6, φ3 = 7.3, φ4 = 8.5
and φ5 = 9. Figure 3 exhibits the trajectories of drive
system and controlled response system behaving alike and
also Fig. 4 shows that the synchronization error becomes
zero as time increasing. The scaling factors are taken as
σ1 = 2, σ2 = −2, σ3 = −1, σ4 = 0.5, σ5 = 3 . By choos-
ing different scaling factors, we can synchronize the given
systemupto desired level. Figure 5 shows that the chosen slid-
ing surface converges to s=zero and hence stable. Figure 6
shows the estimated values for bounds of uncertainties and
disturbances. Figure 7 shows the time response of controllers
used for synchronization in present scheme and Figs. 8 and 9
shows the ratios of controllers with the corresponding uncon-
trolled slave system and master system signals respectively.
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Fig. 8 Ratios of the controllers
and the uncontrolled slave
system signal a �1/v1 b �2/u2
c �3/u3 d �4/u4 e �5/u5
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Fig. 9 Ratios of the controllers
and the master system signal a
�1/u1 b �2/u2 c �3/u3 d
�4/u4 e �5/u5
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Fig. 10 Synchronization error
for complex Lu-system and
T-system at a α = 0.7 , b
α = 0.85, and c α = 1
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Fig. 11 Trajectories for secure
communication based on
additive encryption masking
scheme a information signal
NT = cos(0.5t) b encrypted
signal PE = NT + u1 c
decrypted signal
PR = PE − v1/σ1 d error
between decrypted signal and
original signal PR − NT
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5.1 Comparison of given synchronization with
previous published literature

In [27], author studies active control technique to synchronize
fractional order complex Lu-system and T-system. For α =
0.7, α = 0.85, and α = 1 the synchronization is achieved at
t = 4 s(approx .), t = 5 s(approx .) and t = 6 s(approx .)
respectively whereas in present scheme we achieve synchro-
nization at t = 0.3 s(approx .), t = 0.9 s(approx .) and
t = 3.5 s(approx .) respectively given in Fig. 10 which is
much lesser than the synchronization time of [27]. There-
fore, our results are far better than the results obtained by the
previous author.

5.2 Applications in secure communications

As chaos synchronization has great application in secure
communication. The main reason behind the process is that,
in order to transmit the original containing some secret mes-
sage, we add this message into a chaotic signal which is
transmitted to a prescribed receiver that would recover the
original message from the chaotic signal.
In order to demonstrate our scheme, we explain it by taking
a simple additive encryption masking scheme which is given
below.

Here we choose periodic function NT = cos(0.5t)as
an information signal and the chaotic carrier as u1. The
encrypted information is PE = NT +u1. To recover the orig-
inal information, hybrid projective synchronization between
master system and slave system can be attained by controller
�1 by using the above methodology. So, the recover signal
is PR = PE − v1/σ1. The results are shown in Fig. 11 .

6 Conclusion

In this paper, an adaptive sliding mode technique has been
consigned.Hybrid Projective synchronization has been used
to synchronize different fractional order complex chaotic
systems. We have chosen the suitable sliding surface and
designed parameters by update laws to achieve desired syn-
chronization and to decline the consequence of external
uncertainties and disturbances and chattering problem.Since
the synchronization of fractional order complex chaotic sys-
tem in the presence of uncertainties and disturbances has not
been examined in the prior literature, we have interrogated,
and synchronized the considered fractional order complex
Lu-system and complex chaotic T-systems in the presence
of uncertainties and disturbances. Also we have compared
our results with previous published literature results which
have established that our scheme gives better synchroniza-
tion time than the used technique in prior literature.Although
we have taken complex system with uncertainties and dis-

turbances but still our synchronization results are better.
Also,this scheme will perform significant role to enhance
security in communication. Computational methods evalu-
ate the efficiency of the considered scheme.
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