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Abstract
Thiswork is concernedwith the problemof actuator fault detection for the class of linear and nonlinear fractional-order systems
with differentiable time-varying delays using quantized measurement. Our observation is focused on the modelling of non-
fragile fault detection controller which is constructed by using an adaptive fault estimation algorithm to ensure asymptotic
stability of the considered system with suggested H∞ performance. By considering suitable Lyapunov–Krasovskii functional
and using some fractional-order calculus properties for resolvability of labelled problem are derived in terms of linear matrix
inequalities. Finally, the simulation studies are included to demonstrate the validity of proposed control design.
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1 Introduction

The fractional-order calculus is an interesting field of math-
ematics, which deals with differential and integral equations
under a random order, i.e. not only the order of equationmust
be an integer, it can be any real or even complex number. In a
physical or mechanical process, the integer-order derivative
denotes certain attribute at specific time, but fractional-order
derivative is dealt with the whole time domain. Therefore
many of the real world systems can be accurately designed by
fractional-order differential equations [1–3]. In recent years,
tremendous effect has been made on study of solving time-
fractional linear andnonlinear differential equations [4], frac-
tional coupled Burgers equations [5,6] and time-fractional
multi-dimensional diffusion equations [7]. In particular, there
has been rapid growth and significant attention for fractional-
order dynamical systems in various fields of engineering
and biological systems (see [8,9] and references therein).
Some interesting results are developed for the stability anal-
ysis and control design of fractional-order systems(FOS) (see
[10,11]). Trigeassou et al. developed a new technique using
Lyapunov stability theorem for fractional-order nonlinear
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systems [12]. Recently,many authors are using this technique
because of its effectiveness (see [13] and references therein).

On the other hand, designing of controller plays a positive
role in stabilizing the dynamical systems. In the process of
designing the feedback controller, some errors(or uncertain-
ties) may occur in gain, the non-fragile feedback controller
is used to tolerate these kinds of errors. In feedback loop,
suppose internet is considered as a communicative channel,
which leads to face some difficulties during the analysis of
closed-loop system because of its limited or less transforma-
tion capacity. The quantization effect is one of an important
difficulties among them. The observer based problem of
fractional-order nonlinear systems with quantized measure-
ments reported in [14,15] and reference therein. This problem
arises frequently in data fusion and target tracking systems.
Sector bounded is one of the effective methods to handle the
quantization error method (see [16] and reference therein).

In general, the fractional-order control systems may meet
actuator failure when the process of designing the model,
variations in operating conditions and manufacturing tol-
erances [14]. Meanwhile, maintaining the stability of the
closed-loop system is a necessary task to fractional-order
control systems. Hence it is necessary to design such fault-
tolerant control for the fractional-order nonlinear system. In
the past few years, fault-tolerance of integer-order systems
via the fault detection (FD) approach has receivedmore atten-
tions (see [17,18] and reference therein).More generally, fast
adaptive fault estimation algorithm is used to solve the FD
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problems (see [19,20]). Recently, the FD technique for uncer-
tain fractional-order systems with the aid of LMI is reported
in [21] . Our system may meets the external disturbance dur-
ing the processing time, so it is necessary to reject the external
disturbance from the system. In this paper, H∞ performance
(see [22,23] reference therein) is used to reject such external
disturbance. Yet, to the authors knowledge, no work is dealt
with the stabilization of fractional-order nonlinear delayed
system using quantizedmeasurement based on FD approach.
Motivated by this thought, in this paper, the stabilization
problem for fractional-order nonlinear delayed system is dis-
cussed with the incorporation of the FD technique. The vital
contributions of this work are displayed as follows:

(1) Stabilization of fractional-ordermodel subject to actuator
fault, nonlinearities and external disturbances is consid-
ered.

(2) The prescribed controller is designed to stabilize the
fractional-order systems even in the presence of quan-
tization effects.

(3) Fault detection technique is utilize to derive the sufficient
conditions for stabilization of fractional-order systems.

2 Problem formulation and preliminaries

This section contains the construction of the closed-loop sys-
tem. Let us consider the fractional-order nonlinear system
with time-varying delay of commensurate order 0 < α < 1
with quantized measurement,

Dαx(t) = Ax(t) + Adx(t − d(t)) + g(x(t))

+ Bu(t) + Ba f (t) + Dω(t),

y(t) = Cx(t),

Q(y(t)) = Q(Cx(t)), (1)

where state-space is denoted by x(t) ∈ �n ; control input is
denoted by u(t); f (t) is actuator failure; y(t) ∈ �m is output;
A, Ad , B, Ba and C are system parameters with suitable
dimensions; d(t) is time-varying delay satisfying 0 ≤ d1 ≤
d(t) ≤ d2 and ḋ(t) ≤ μ; Q(y(t)) is quantized measurement
which is defined as follows,

Q(y(t)) =

⎧
⎪⎨

⎪⎩

ciΔ0i , if
ciΔ0i
1+ψi

< y(t) ≤ ciΔ0i
1−ψi

0, if y(t) = 0

−Q(−y(t)), if y(t) < 0

(2)

where Δ0i is density, ψi = 1+Δ0i
1−Δ0i

, Q(y(t)) = (I +
��(t))y(t),� = diag{ψ1, ψ2, . . . , ψn}with�T (t)�(t) ≤
I . The fractional-order state observer with fault estimation
for the system (1) is considered as,

Dα x̂(t) = Ax̂(t) + Ad x̂(t − d(t))

+ Bu(t) + Ba f̂ (t) + L[ŷ(t) − Q(y(t))],
ŷ(t) = Cx̂(t). (3)

By substituting the value of quantizer as Q(y(t)) = (I +
��(t))y(t) into the observer system (3), we can get the
following equation:

Dα x̂(t) = Ax̂(t) + Ad x̂(t − d(t)) + Bu(t) + Ba f̂ (t)

+ LC(x̂(t) − x(t)) − L��(t)Cx(t),

ŷ(t) = Cx̂(t), (4)

where x̂(t) is observer state-space; f̂ (t) is estimated fault; L
is observer gain; ŷ(t) is output of the observer. In practical
systems, gain fluctuations may arise during the designing
process of controller. So, let us construct the non-fragile fault-
tolerant control in the following form,

u(t) = (K + δK (t))x̂(t) − B+Ba f̂ (t), (5)

where B+ is Penrose–Moore inverse of B, K is the con-
troller gain, the fluctuation δK (t) = MF(t)N in which
FT (t)F(t) ≤ I . By substituting the control (5) into the sys-
tem Eq. (1), we get,

Dαx(t) = Ax(t) + Adx(t − d(t)) + g(x(t))

+ B(K + δK (t))x̂(t) − Ba f̃ (t) + Dω(t),

y(t) = Cx(t), (6)

where f̃ (t) = f̂ (t) − f (t). Let the error system be e(t) =
x̂(t) − x(t). Then from (4) and (6) we have,

Dαe(t) = Ae(t) + Ade(t − d(t)) − g(x(t))

+ LCe(t) − L��(t)Cx(t) + Ba f̃ (t) − Dω(t),

ey(t) = Ce(t). (7)

To derive the required theoretical result, we consider the fol-
lowing assumptions, definition and lemmas:

Assumption 1 Dα f (t) is norm bounded. i.e. ||Dα f (t)|| ≤
f1 where 0 ≤ f1 < ∞.

Assumption 2 Rank(CBa) = r , where r is the rank of Ba .

Assumption 3 Invariant zeros of (A, Ba,C) lie in open left
plane.

Assumption 4 (Lipchitz condition) The nonlinear function
g(x(t)) satisfies the following condition ||g(x(t))|| ≤
||Hx(t)||.
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Definition 1 [10] An integral operator of fractional order is
denoted by D−α can be rewritten as D−α f (t) = h(t)∗ f (t),
where h(t) denotes impulse response of linear system with
h(t) = tα−1

	α
. Let θ(�) be frequency weighting function (dif-

fusive representation) and � be elementary frequency then
we can define h(t) as,

h(t) =
∫ ∞

0
θ(�)e�t d�.

Lemma 1 [10] A nonlinear differential equation of commen-
surate order α, Dαx(t) = f (x(t)) caused by fractional
integrator with continuous frequency distributed model can
be written as follows,

∂Z(t,�)

∂t
= −�Z(t,�) + f (x(t)),

x(t) =
∫ ∞

0
θ(�)Z(t,�)d�. (8)

Lemma 2 [19] Let the Assumptions 2 and 3 hold then there
exist a positive definite matrix P2 such that the following
condition holds, BT

a P2 = FC.

Lemma 3 [20] Let matrices M, N and F(t) be real matrices
with appropriate dimension, with F(t) satisfying FT (t)F(t)
≤ I , then for any scalar ε > 0, the following inequality
holds: MF(t)N + NT F(t)MT ≤ εMMT + ε−1NT N .

3 Main results

In the following theorem, a stability analysis is made on the
given fractional-order system without gain fluctuations and
the fault is taken as time-varying. Therefore, Dα f (t) �= 0,
then the fractional-order derivative of f̃ (t) with respect to
time is Dα f̃ (t) = Dα f̂ (t) − Dα f (t).

Theorem 1 Let the Assumptions 1–4 hold. For the given
scalars d1 ≥ 0, d2 > 0, γ > 0, ρ1 > 0, μ > 0 and
given matrices F, K and � of appropriate dimensions, the
fractional-order system (1) is asymptotically stable with pre-
scribed H∞ performance index if there exist a positive scalar
ε1 and positive definite matrices P1, P2, Q11, Q11, Q12, Q13,
Q21, Q22, Q23, R1, R2 and O such that the following con-
dition holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1,1 �1,2 �1,3 . . . �1,22 �1,23

∗ �2,2 �2,3 . . . �2,22 �2,23

∗ ∗ �3,3 . . . �3,22 �3,23
...

...
... . . .

...
...

∗ ∗ ∗ . . . �22,22 �22,23

∗ ∗ ∗ . . . ∗ �23,23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (9)

where �1,1 = AT P1 + P1A + P1BK + KT BT P1 + Q11 +
Q21 + Q31 + (d2 −d1)2R1, �1,2 = P1BK , �1,3 = −P1Ba,
�1,6 = P1Ad, �1,10 = P1D, �1,11 = P1, �1,20 = ε1CT ,
�1,22 = CT , �1,23 = √

ρ1LT , �2,2 = AT P2 + P2A +
P2LC + CT LT P2 + Q12 + Q22 + Q32 + (d2 − d1)2R2,
�2,3 = −CT LT P2Ba − AT P2Ba, �2,7 = P2Ad, �2,10 =
P2D,�2,11 = P2,�2,21 = P2L�,�3,3 = −2BT

a P2Ba+O,
�3,7 = −BT

a P2Ad, �3,10 = BT
a P2D, �3,11 = BT

a P2,
�3,21 = Ba P2L�, �4,4 = −Q11, �5,5 = −Q12,
�6,6 = −(1 − μ)Q21, �7,7 = −(1 − μ)Q22, �8,8 =
−Q31, �9,9 = −Q32, �10,10 = −γ I , �11,11 = −ρ1 I ,
�12,12 = −4R1, �12,18 = 6

d2−d1
R1, �13,13 = −4R2,

�13,19 = 6
d2−d1

R2, �14,14 = −4R1, �14,16 = 6
d2−d1

R1,

�15,15 = −4R2,�15,17 = 6
d2−d1

R2,�16,16 = − 12
(d2−d1)2

R1,

�17,17 = − 12
(d2−d1)2

R2, �18,18 = − 12
(d2−d1)2

R1, �19,19 =
− 12

(d2−d1)2
R2, �20,20 = −ε1 , �21,21 = −ε1, �22,22 = −I ,

�23,23 = −I and remaining terms are zero. For the time-
varying fault that is Dα f (t) �= 0, by the fractional adaptive
estimation algorithm,

Dα f̂ (t) = −P−1
3 F(Dαey(t) + ey(t)), (10)

where P−1
3 > 0 is the learning rate, the state error e(t) and

fault estimation error are bounded.

Proof As stated in the Lemma 1, the given fractional-order
equations (6), (7) and (10) can be rebuild in the backing
forms:

⎧
⎪⎨

⎪⎩

∂Z1(�,t)
∂t = −�Z1(�, t) + Ax(t) + Adx(t − d(t))

+ g(x(t)) + BK x̂(t) − Ba f̃ (t) + Dω(t),

x(t) = ∫ ∞
0 θ(�)Z1(�, t)d�,

(11)

⎧
⎪⎨

⎪⎩

∂Z2(�,t)
∂t = −�Z2(�, t) + Ae(t) + Ade(t − d(t)) − g(x(t))

+ LCe(t) − L��(t)Cx(t) + Ba f̃ (t) − Dω(t),

e(t) = ∫ ∞
0 θ(�)Z2(�, t)d�,

(12)
⎧
⎪⎨

⎪⎩

∂Z3(�,t)
∂t = −�Z3(�, t) − P−1

3 F(Dαey(t)

+ey(t)) − Dα f (t),

f̃ (t) = ∫ ∞
0 θ(�)Z3(�, t)d�.

(13)

Initially we construct the monochromatic Lyapunov func-
tion for Z1, Z2 and Z3,

v1(t) = ZT
1 (t)P1Z1(t) + ZT

2 (t)P2Z2(t) + ZT
3 (t)P3Z(t).

(14)

Arising the Lyapunov function V1(t) by summing along with
the weighting function θ(t),

V1(t) =
∫ ∞

0
θ(�)[ZT

1 (�, t)P1Z1(�, t)]d�
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+
∫ ∞

0
θ(�)[ZT

2 (�, t)P2Z2(�, t)]d�

+
∫ ∞

0
θ(�)[ZT

3 (�, t)P3Z3(�, t)]d�. (15)

Let us construct required Lyapunov–Krasovskii function as
follows,

V (t) =
4∑

i=1

Vi (t), (16)

where

V2(t) =
∫ t

t−d2
xT (s)Q11x(s)ds +

∫ t

t−d(t)
xT (s)Q21x(s)ds

+
∫ t

t−d1
xT (s)Q31x(s)ds +

∫ t

t−d2
eT (s)Q12e(s)ds

+
∫ t

t−d(t)
eT (s)Q22e(s)ds +

∫ t

t−d1
eT (s)Q32e(s)ds,

V3(t) = (d2 − d1)
∫ t−d1

t−d2

∫ t

s
xT (u)R1x(u)duds

+ (d2 − d1)
∫ t−d1

t−d2

∫ t

s
eT (u)R2e(u)duds.

Taking the derivative along the solutions of Lyapunov–
Krasovskii function (16) with respect to t we get,

V̇ (t) =
4∑

i=1

V̇i (t), (17)

V̇1(t) = − 2
∫ ∞

0
θ(�)[ZT

1 (�, t)P1Z1(�, t)]d�

− 2
∫ ∞

0
θ(�)[ZT

2 (�, t)P2Z2(�, t)]d�

− 2
∫ ∞

0
θ(�)[ZT

3 (�, t)P3Z3(�, t)]d�

+ 2
∫ ∞

0
θ(�)ZT

1 (�, t)P1[Ad x(t − d(t)) + g(x(t))

+ BK x̂(t) − Ba f̃ (t) + Dω(t)]d�

+ 2
∫ ∞

0
θ(�)ZT

2 (�, t)P2[Ae(t) + Ade(t − d(t)) − g(x(t))

+ LCe(t) − L��(t)Cx(t) + Ba f̃ (t) − Dω(t)]d�(t)

+ 2
∫ ∞

0
θ(�)ZT

3 (�, t)P3[−P−1
3 F(Dαey(t)

+ ey(t)) − Dα f (t)]d�. (18)

From the Lemma 2 we can get,

− 2 f̃ T (t)FC[Dαe(t) + e(t)] = −2 f̃ T (t)BT
a P2[Dαe(t)

+ e(t)]. (19)

By substituting (19) and the error system e(t) = x̂(t) − x(t)
into (18), we obtain,

V̇1(t) = − 2
∫ ∞

0
θ(�)[ZT

1 (�, t)P1Z1(�, t)]d�(t)

− 2
∫ ∞

0
θ(�)[ZT

2 (�, t)P2Z2(�, t)]d�

− 2
∫ ∞

0
θ(�)[ZT

3 (�, t)P3Z3(�, t)]d�

+ 2xT (t)[P1A + P1BK ]x(t) + 2xT (t)

× [P1BK − CT�T (t)�LT P2]e(t)
+ 2xT (t)P1Adx(t − d(t)) − 2xT (t)P1Ba f̃ (t)

+ 2xT (t)P1Dω(t) + 2xT (t)P1g(x(t))

+ 2eT (t)[P2A + P2LC]e(t) + 2eT (t)P2

× Ade(t − d(t)) − 2eT (t)P2Dω(t)

− 2eT (t)P2g(x(t))

− 2eT (t)AT P2Ba f̃ (t)

− 2 f̃ T (t)BT
a P2Ade(t − d(t)) − 2 f̃ T (t)BT

a P2Ba f̃ (t)

− 2eT (t)CT LT P2Ba f̃ (t)

− 2xT (t)CT�T (t)�T LT f̃ (t)

− 2 f̃ T (t)P3D
α f (t),

≤ 2xT (t)[P1A + P1BK ]x(t)
+ 2xT (t)[P1BK − CT�T (t)�LT P2]e(t)
+ 2xT (t)P1Adx(t − d(t))

− 2xT (t)P1Ba f̃ (t)

+ 2xT (t)P1Dω(t) + 2xT (t)P1g(x(t))

+ 2eT (t)[P2A + P2LC]e(t) + 2eT (t)P2Ade(t − d(t))

− 2eT (t)P2Dω(t)

− 2eT (t)P2g(x(t)) − 2eT (t)AT P2Ba f̃ (t)

− 2 f̃ T (t)BT
a P2Ade(t − d(t))

− 2 f̃ T (t)BT
a P2Ba f̃ (t)

− 2eT (t)CT LT P2Ba f̃ (t) − 2xT (t)CT�T (t)�T LT f̃ (t)

− 2 f̃ T (t)P3D
α f (t). (20)

For positive definite matrix O we can rewrite the last term of
the above equation as follows,

− 2 f̃ T (t)P3D
α f (t) ≤ f̃ T (t)O f̃ (t)

+ Dα f T (t)P3O
−1P3D

α f (t). (21)

From (21) and Assumption 1 we obtain,

V̇1(t) ≤ 2xT (t)[P1A + P1BK ]x(t)
+ 2xT (t)[P1BK − CT�T (t)�LT P2]e(t)
+ 2xT (t)P1Ad x(t − d(t))

− 2xT (t)P1Ba f̃ (t) + 2xT (t)P1Dω(t)
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+ 2xT (t)P2g(x(t)) + 2eT (t)[P2A + P2LC]e(t)
+ 2eT (t)P2Ade(t − d(t)) − 2eT (t)AT P2Ba f̃ (t)

− 2 f̃ T (t)BT
a P2Ade(t − d(t)) − 2 f̃ T (t)BT

a P2Ba f̃ (t)

− 2eT (t)CT LT P2Ba f̃ (t)

− 2xT (t)CT�T (t)�T LT f̃ (t)

+ f̃ T (t)O f̃ (t) + f 21 λmax (P3O
−1P3), (22)

V̇2(t) = xT (t)(Q11 + Q21 + Q31)x(t)

− (1 − μ)xT (t − d(t))Q11x(t − d(t))

− xT (t − d1)Q21x(t − d1)

− xT (t − d2)Q31x(t − d2) + eT (t)(Q12 + Q22 + Q32)e(t)

− (1 − μ)eT (t − d(t))Q12e(t − d(t))

− eT (t − d1)Q22e(t − d1) − eT (t − d2)Q32e(t − d2), (23)

V̇3(t) = (d2 − d1)
2xT (t)R1x(t) − (d2 − d1)

∫ t−d1

t−d2
xT (s)R1x(s)ds

+ (d2 − d1)
2eT (t)R1e(t)

− (d2 − d1)
∫ t−d1

t−d2
eT (s)R2e(s)ds. (24)

Consider the integral terms in the above equation,

− (d2 − d1)
∫ t−d1

t−d2
xT (s)R1x(s)ds

= −(d2 − d1)
∫ t−d(t)

t−d2
xT (s)R1x(s)ds − (d2 − d1)

×
∫ t−d1

t−d(t)
xT (s)R1x(s)ds, (25)

− (d2 − d1)
∫ t−d1

t−d2
eT (s)R2e(s)ds

= −(d2 − d1)
∫ t−d(t)

t−d2
eT (s)R2e(s)ds − (d2 − d1)

×
∫ t−d1

t−d(t)
eT (s)R2e(s)ds (26)

By applying the Wirtinger inequality for the above integral
terms we get,

− (d2 − d1)
∫ t−d(t)

t−d2
xT (s)R1x(s)ds

≤ −
[∫ t−d(t)

t−d2
x(s)ds

]T

R1

[∫ t−d(t)

t−d2
x(s)ds

]

− 3

[∫ t−d(t)

t−d2
x(s)ds − 2

d2 − d1

∫ t−d(t)

t−d2

∫ t−d(t)

s
x(u)duds

]T

R1

[∫ t−d(t)

t−d2
x(s)ds − 2

d2 − d1

∫ t−d(t)

t−d2

∫ t−d(t)

s
x(u)duds

]

, (27)

− (d2 − d1)
∫ t−d(t)

t−d2
eT (s)R2e(s)ds

≤ −
[∫ t−d(t)

t−d2
e(s)ds

]T

R2

[∫ t−d(t)

t−d2
e(s)ds

]

− 3

[∫ t−d(t)

t−d2
e(s)ds − 2

d2 − d1

∫ t−d(t)

t−d2

∫ t−d(t)

s
e(u)duds

]T

R2

×
[∫ t−d(t)

t−d2
e(s)ds − 2

d2 − d1

∫ t−d(t)

t−d2

∫ t−d(t)

s
e(u)duds

]

,

(28)

− (d2 − d1)
∫ t−d1

t−d(t)
xT (s)R1x(s)ds

≤ −
[∫ t−d1

t−d(t)
x(s)ds

]T

R1

[∫ t−d1

t−d(t)
x(s)ds

]

− 3

[∫ t−d1

t−d(t)
x(s)ds − 2

d(t) − d1

∫ t−d1

t−d(t)

∫ t−d1

s
x(u)duds

]T

R1

×
[∫ t−d1

t−d(t)
x(s)ds − 2

d(t) − d1

∫ t−d1

t−d(t)

∫ t−d1

s
x(u)duds

]

, (29)

− (d(t) − d1)
∫ t−d1

t−d(t)
eT (s)R2e(s)ds

≤ −
[∫ t−d1

t−d(t)
e(s)ds

]T

R2

[∫ t−d1

t−d(t)
e(s)ds

]

− 3

[∫ t−d1

t−d(t)
e(s)ds − 2

d(t) − d1

∫ t−d1

t−d(t)

∫ t−d1

s
e(u)duds

]T

R2

×
[∫ t−d1

t−d(t)
e(s)ds − 2

d(t) − d1

∫ t−d1

t−d(t)

∫ t−d1

s
e(u)duds

]

. (30)

For any ρ1 > 0 Assumption 4 becomes,

ρ1x
T (t)HT Hx(t) − ρ1g

T (x(t))g(x(t)) ≥ 0. (31)

Let ζ(t) = [xT (t) eT (t) f̃ T (t) xT (t − d1) eT (t −
d1) xT (t − d(t)) eT (t − d(t)) xT (t − d2) eT (t − d2)

ωT (t) g(x(t))
t−d(t)∫

t−d2

xT (s)ds
t−d(t)∫

t−d2

eT (s)ds
t−d1∫

t−d(t)
xT (s)ds

t−d1∫

t−d(t)
eT (s)ds

t−d1∫

t−d(t)

∫ t−d1
s xT (u)duds

t−d1∫

t−d(t)
t−d1∫

s
eT (u)duds

t−d(t)∫

t−d2

t−d(t)∫

s
xT (u)duds

t−d(t)∫

t−d2

t−d(t)∫

s
eT (u)duds]T .

From (22)–(31), Eq. (16) becomes,

V̇ (t) + yT (t)y(t) − γωT (t)ω(t)

≤ V̇ (t) + yT (t)y(t)

− γωT (t)ω(t) + ρ1x
T (t)x(t)

− ρ1g
T (x(t))HT Hg(x(t))

≤ ζ T (t)[�̄]19×19ζ(t) + £, (32)

where �̄1,1 = AT P1 + P1A + P1BK + KT BT P1 +
Q11 + Q21 + Q31 + (d2 − d1)2R1 + CTC + ρ1HT H ,
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�̄1,2 = P1BK − CT�T (t)�T LT P2, �̄1,3 = −P1Ba +
CT�T (t)�T LT P2Ba , �̄1,6 = P1Ad , �̄1,10 = P1D,
�̄1,11 = P1, �̄2,2 = AT P2 + P2A + P2LC + CT LT P2 +
Q12 + Q22 + Q32 + (d2 − d1)2R2, �̄2,3 = −CT LT P2Ba −
AT P2Ba , �̄2,7 = P2Ad , �̄2,10 = P2D, �̄2,11 = P2
,�̄3,3 = −2BT

a P2 Ba + O , �̄3,7 = −BT
a P2Ad , �̄3,10 =

BT
a P2D, �̄3,11 = BT

a P2, �̄4,4 = −Q11, �̄5,5 = −Q12,
�̄6,6 = −(1 − μ)Q21,�̄7,7 = −(1 − μ)Q22, �̄8,8 =
−Q31, �̄9,9 = −Q32, �̄10,10 = −γ I , �̄11,11 = −ρ1 I ,
�̄12,12 = −4R1, �̄12,18 = 6

d2−d1
R1, �̄13,13 = −4R2,

�̄13,19 = 6
d2−d1

R2,�̄14,14 = −4R1, �̄14,16 = 6
d2−d1

R1,

�̄15,15 = −4R2, �̄15,17 = 6
d2−d1

R2, �̄16,16 = − 12
(d2−d1)2

R1,

�̄17,17 = − 12
(d2−d1)2

R2, �̄18,18 = − 12
(d2−d1)2

R1, �̄19,19 =
− 12

(d2−d1)2
R2 and £ = f 21 λmax (P3O−1P3). Using the

Lemma 3 for the terms involving �(t), we can get �̄ ≤ �.
From (9) we can obtain �̄ < 0. Since �̄ < 0, the eigen
value of �̄ is negative let it be −ε, then V̇ (t) + yT (t)y(t) −
γωT (t)ω(t) ≤ −ε||ζ(t)||2 + £. Therefore we can obtain
V̇ (t) + yT (t)y(t) − γωT (t)ω(t) < 0 whenever ε||ζ(t)||2 >

£, itmeans ζ(t) converges to a small set byLyapunov stability
theory. So, estimation error of the fault and state are uni-
formly bounded. Under the zero initial condition V (0) = 0
and V (∞) > 0, which implies yT (t)y(t) ≤ γωT (t)ω(t).
This completes the proof. 
�

In the following theorem, a stability analysis made on the
given fractional order system with gain fluctuation.

Remark 1 Note that it is difficult to solve and get unknowns
usingLMI toolboxbecause of the equality inLemma2. Sowe
transform this equality into following LMI like optimization
problem [9],

(
ρ I BT

a P2 − FC
∗ ρ I

)

> 0. (33)

Theorem 2 For the given scalars d1 ≥ 0, d2 > 0, ρ1 > 0
and μ > 0, the fractional-order delayed system (1) with
gain fluctuation and the fault is taken to be time-varying is
robust asymptotically stable with H∞ performance if there
exist positive definite matrices P1, P1, P3, Q11, Q12, Q13,
Q21, Q22, Q23, R1, R2, O, positive scalars ρ2, ε1 and ε2 and
appropriate dimensioned matrices V1, V2 and F such that
the following conditions are satisfied,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1,1 �1,2 �1,3 . . . �1,24 �1,25

∗ �2,2 �2,3 . . . �2,24 �2,25

∗ ∗ �3,3 . . . �3,24 �3,25
...

...
... . . .

...
...

∗ ∗ ∗ . . . �24,24 �24,25

∗ ∗ ∗ . . . ∗ �25,25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (34)

and

(
ρ2 In BT

a P2 − FC
∗ ρ2 In

)

> 0, (35)

where�1,1 = AT P1 + P1A+ BV1 +V T
1 BT +Q11+Q21+

Q31 + (d2 − d1)2R1, �1,2 = BV1,�1,3 = −P1Ba, �1,6 =
P1Ad,�1,10 = P1D, �1,11 = P1,�1,20 = ε1CT , �1,22 =
CT , �1,23 = √

ρ1HT , �1,24 = ε2NT , �1,25 = P1BM,
�2,2 = AT P2 + P2A + V2C + CT V T

2 + Q12 + Q22 +
Q32+(d2−d1)2R2,�2,3 = −CT V T

2 Ba − AT P2Ba,�2,7 =
P2Ad, �2,10 = P2D, �2,11 = P2,�2,21 = V2�, �2,25 =
ε2NT ,�3,3 = −2BT

a P2Ba+O,�3,7 = −BT
a P2Ad,�3,10 =

BT
a P2D, �3,11 = BT

a P2, �3,21 = BaV2�, �4,4 = −Q11,
�5,5 = −Q12,�6,6 = −(1−μ)Q21,�7,7 = −(1−μ)Q22,
�8,8 = −Q31, �9,9 = −Q32, �10,10 = −γ I , �11,11 =
−ρ1 I ,�12,12 = −4R1,�12,18 = 6

d2−d1
R1,�13,13 = −4R2,

�13,19 = 6
d2−d1

R2, �14,14 = −4R1, �14,16 = 6
d2−d1

R1,

�15,15 = −4R2, �15,17 = 6
d2−d1

R2, �16,16 = − 12
(d2−d1)2

R1,

�17,17 = − 12
(d2−d1)2

R2, �18,18 = − 12
(d2−d1)2

R1, �19,19 =
− 12

(d2−d1)2
R2, �20,20 = −ε1, �21,21 = −ε1, �22,22 = −I ,

�23,23 = −I , �24,24 = −ε2, �25,25 = −ε2 and remaining
terms are zero. For the time-varying fault that is Dα f (t) �= 0,
by the fractional adaptive estimation algorithm,

Dα f̂ (t) = −P−1
3 F(Dαey(t) + ey(t)), (36)

where P−1
3 is positive definite is the learning rate and

observe that the state error e(t) and fault estimation error
are bounded. Furthermore we have, K = V1USP−1

1 STUT

and L = P−1
2 V2.

Proof Since we take gain fluctuation in account, the gain
matrix K becomes K + δK (t) in the Theorem 1 and again
applying the Lemma 3 for the term δK (t) = MF(t)N , we
get

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ1,1 φ1,2 φ1,3 . . . φ1,24 φ1,25

∗ φ2,2 φ2,3 . . . φ2,24 φ2,25

∗ ∗ φ3,3 . . . φ3,24 φ3,25
...

...
... . . .

...
...

∗ ∗ ∗ . . . φ24,24 φ24,25

∗ ∗ ∗ . . . ∗ φ25,25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (37)

where φ1,1 = AT P1 + P1A + P1BK + KT BT P1 +
Q11 + Q21 + Q31 + (d2 − d1)2R1, φ1,2 = P1BK , φ1,3 =
−P1Ba, φ1,6 = P1Ad , φ1,10 = P1D, φ1,11 = P1, φ1,20 =
ε1CT , φ1,22 = CT , φ1,23 = √

ρ1 HT , φ1,24 =
ε2NT , φ1,25 = P1BM, φ2,2 = AT P2 + P2A + P2LC +
CT LT P2 + Q12 + Q22 + Q32 + (d2 − d1)2R2, φ2,3 =
−CT LT P2Ba − AT P2Ba, φ2,7 = P2Ad , φ2,10 =
P2D, φ2,11 = P2, φ2,21 = P2L�, φ2,25 = ε2NT , φ3,3 =
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−2BT
a P2Ba + O, φ3,7 = −BT

a P2Ad , φ3,10 = BT
a P2D,

φ3,11 = BT
a P2, φ3,21 = Ba P2L�, φ4,4 = −Q11, φ5,5 =

Q12, φ6,6 = −(1− μ)Q21, φ7,7 = −(1− μ) Q22, φ8,8 =
−Q31, φ9,9 = −Q32, φ10,10 = −γ I , φ11,11 = −ρ1 I ,
φ12,12 = −4R1, φ12,18 = 6

d2−d1
R1, φ13,13 = −4R2,

φ13,19 = 6
d2−d1

R2, φ14,14 = −4R1, φ14,16 = 6
d2−d1

R1,

φ15,15 = −4R2, φ15,17 = 6
d2−d1

R2, φ16,16 = − 12
(d2−d1)2

R1,

φ17,17 = − 12
(d2−d1)2

R2, φ18,18 = − 12
(d2−d1)2

R1, φ19,19 =
− 12

(d2−d1)2
R2, φ20,20 = −ε1, φ21,21 = −ε1, φ22,22 =

−I , φ23,23 = −I , φ24,24 = −ε2 and φ25,25 = −ε2 By
applying SVD lemma for P1B and letting B P̄1 = P1B,
V1 = P̄1K and V2 = P2L , we can obtain that [φ]25×25 =
[�]25×25. Then it is obvious that the given fractional-order
system is stable by the Theorem 1. 
�

In the following corollary an analysis of stability done for
linear systems. By taking the nonlinear term g(x(t)) as zero,
we can linearise the nonlinear system (1) as follows,

Dαx(t) = Ax(t) + Adx(t − d(t)) + Bu(t) + Ba f (t)

+ Dω(t). (38)

Corollary 1 Let Assumptions 1–3 hold . For the given scalars
d1 ≥ 0, d2 > 0, μ > 0, the fractional order delayed sys-
tem (38) with gain fluctuation and the fault is taken to be
time-varying, is robust asymptotically stable with H∞ per-
formance if there exist matrices V1, V2 and F of appropriate
dimensions, positive definite matrices P1, P1, P3, Q11, Q12,
Q13, Q21, Q22, Q23, R1, R2, O and positive scalars ρ2, ε1,
ε2 such that the following condition are satisfied,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄1,1 �̄1,2 �̄1,3 . . . �̄1,22 �̄1,23

∗ �̄2,2 �̄2,3 . . . �̄2,22 �̄2,23

∗ ∗ �̄3,3 . . . �̄3,22 �̄3,23
...

...
... . . .

...
...

∗ ∗ ∗ . . . �̄22,22 �̄23,23

∗ ∗ ∗ . . . ∗ �̄23,23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (39)

and

(
ρ2 In BT

a P2 − FC
∗ ρ2 In

)

> 0, (40)

where �̄1,1 = AT P1 + P1A + BV1 + V T
1 BT + Q11 +

Q21 + Q31 + (d2 − d1)2R1, �̄1,2 = BV1,�̄1,3 = −P1Ba,
�̄1,6 = P1Ad,�̄1,10 = P1D, �̄1,19 = ε1CT , �̄1,22 = CT ,
�̄1,22 = ε2NT , �̄1,23 = P1BM, �̄2,2 = AT P2 + P2A +
V2C +CT V T

2 + Q12 + Q22 + Q32 + (d2 − d1)2R2, �̄2,3 =
−CT V T

2 Ba − AT P2Ba, �̄2,7 = P2Ad, �̄2,10 = P2D,
�̄2,20 = V2�, �̄2,23 = ε2NT , �̄3,3 = −2BT

a P2Ba + O,
�̄3,7 = −BT

a P2Ad, �̄3,10 = BT
a P2D, �̄3,20 = BaV2�,

�̄4,4 = −Q11, �̄5,5 = Q12, �̄6,6 = −(1 − μ)Q21, �̄7,7 =

−(1−μ)Q22, �̄8,8 = −Q31, �̄9,9 = −Q32, �̄10,10 = −γ I ,
�̄11,11 = −4R1, �̄11,17 = 6

d2−d1
R1, �̄12,12 = −4R2,

�̄12,18 = 6
d2−d1

R2, �̄13,13 = −4R1, �̄13,15 = 6
d2−d1

R1,

�̄14,14 = −4R2, �̄14,16 = 6
d2−d1

R2, �̄15,15 = − 12
(d2−d1)2

R1,

�̄16,16 = − 12
(d2−d1)2

R2, �̄17,17 = − 12
(d2−d1)2

R1, �̄18,18 =
− 12

(d2−d1)2
R2, �̄19,19 = −ε1, �̄20,20 = −ε1, �̄21,21 = −I ,

�̄22,22 = −ε2, �̄23,23 = −ε2, and remaining terms are zero.
For the time-varying fault that is Dα f (t) �= 0, by the frac-
tional adaptive estimation algorithm,

Dα f̂ (t) = −P−1
3 F(Dαey(t) + ey(t)), (41)

where P−1
3 is positive definite is the learning rate and

observe that the state error e(t) and fault estimation error
are bounded. Furthermore we have, K = V1USP−1

1 STUT

and L = P−1V2.

Proof By taking g(x(t)) as zero in the Theorem 2 we can
obtain the LMIs (39) and (40). Hence from the Theorem 2
the linear system (38) is robust asymptotically stable. 
�

4 Simulation verifications

In this section we dispense two examples to exhibit the
accomplishment of suggested non-fragile fault-tolerance
control. First example is used to show the effectiveness of
suggested controller for nonlinear fractional-order system.
A practical model of a vertical take-off and landing aircraft
in the vertical plane is given to display the effectiveness of
suggested controller for linearised fractional-order system.

Example 1 Consider the following fractional-order system of
order α = 0.5,

D0.5x(t) =
[−3 6
8 −1

]

x(t) +
[−0.1 −0.02
0.01 0.01

]

x(t − d(t))

+
[
5
3

]

u(t) +
[
0.1
0.2

]

ω(t) + g(x(t)),

y(t) = [
1 1

]
x(t).

It is obvious that the above system is equivalent to the sys-
tem (1). Consider the fault as f (t) = 0.5 sin π t+0.3 cos 15t ,
the disturbance as ω(t) = 0.2[sin 2t − 0.4 cos 0.5t] and

nonlinear term as g(x(t)) =
[
0.6 0
0 0.8

]

sin(0.2x(t)). The

fluctuation in the gain taken as δK = M cos t I2N , where
M = [0.3 0.01] and N = 0.01I2. In the quantizer, the density
of the quantizer considered as � = 1−0.8

1+0.8 and �(t) = sin t .
The Lipchitz’s constant H = 2 ∗ I2 and ρ1 = 6. The
minimum ρ2 and minimum γ are given by 0.1 and 0.1016
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Fig. 1 State response for open-loop system
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Fig. 2 State response for closed-loop system

respectively. Then we solve the LMIs given in the Theo-
rem2usingMATLABLMI toolbox,we can get the following

gains K = [−1.2126 − 0.7276], L =
[−0.6095
−5.4518

]

and

F = [22.8026].
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Fig. 4 Fault signal and its estimation under prescribed controller

The figure of open-loop system (i.e. Fig. 1) shows the
divergence of the state trajectories. Since rank(CBa) =
1 = rank(Ba) and the open-loop system is unstable, the
fault estimation control design is suitable for given example.
From the Fig. 2we can conclude that the suggested controller
make the system stable within short time duration. It reveals
and proved the effectiveness of suggested controller. Fig. 3
exhibits the estimation of state trajectories with the observer
trajectories. Fig. 4 shows the estimation of system fault with
estimated fault. Fig. 5 reveals the estimation error of fault of
the integer-order system has less conservative compare to the
error provided by the fractional-order system. Fig. 6 shows
the tracking of the output y(t) with the quantizer Q(y(t)).

Example 2 In this Example, a linearised dynamic model of
a vertical take-off and landing aircraft in the vertical plane
[17] is considered as follows:

Dαx(t) =

⎡

⎢
⎢
⎣

0.0336 0.0271 0.0188 0.4555
0.0482 1.0100 0.0024 4.0208
0.1002 0.3681 0.7070 1.4200
0.0000 0.0000 1.0000 0.0000

⎤

⎥
⎥
⎦ x(t)
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Fig. 3 State estimation of the system based on the prescribed controller

123



334 P. Dhanalakshmi et al.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

  Time(t)

Fa
ul

t
Fractional−order
Integer−order

Fig. 5 Estimation error of actuator fault under fractional-order and
integer-order

+

⎡

⎢
⎢
⎣

0.4422 0.1761
3.5446 7.5922
5.5200 4.4900
0.0000 0.0000

⎤

⎥
⎥
⎦ u(t),

y(t) =
[
1 0 0 0
0 0 0 1

]

x(t),

where x(t) = [Vh Vv q θ ]T and u(t) = [δc δl ]T ; Vh
and Vv represents horizontal velocity and vertical velocity,
respectively; q denotes pitch rate; θ is pitch angle; δc and
δ1 represents collective pitch control and longitudinal cyclic
pitch control, respectively. Let us consider actuator faults
in this system. These type of faults generally occur in the
input vectors, so we assume that the coefficient of fault in the
system (38) as Ba = B. Assume that the disturbance distri-
butionmatrix as D = 0.01[1 1 1 1 ]T . Since rank(CBa) = 1,
we can use the fault detection control for the given system.
Consider the learning rate as P−1

3 = 75 and using LMI
tool box in MATLAB, we can obtain the following unknown
matrices:

K =
[−0.0036 −0.1361 −0.0180 0
−0.0084 −0.0185 −0.1170 0

]

,

L = 103

⎡

⎢
⎢
⎣

−0.0538 0.2387
−0.1561 0.7135
0.3301 −1.4658
0.3445 −1.5758

⎤

⎥
⎥
⎦ and

F =
[
16.1861 0.4183
10.0093 −1.4735

]

Assume that an actuator fault is created as f (t) = [ f1(t)
f2(t)]T where

f1(t) =
{
0 i f 0 ≤ t < 3

7 sin 2 ∗ t − 4 cos 1.5(t − 1) otherwise
,
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Fig. 6 Output signal and its quantified output signal under quantized
measurement approach
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Fig. 7 State response of the closed-loop system

f2(t) = 0, �(t) = sin(0.1t) and the disturbance signal is
assumed as ω(t) = 0.2 sin 0.2t .

Figure 7 describes the effectiveness of the proposed con-
troller which shows that the stability of the given linearised
system occur within 10s. From the Fig. 8 it is revealed
that within few seconds the fault estimation is quite accu-
rately achieved by the proposed controller. Further, the
error of actuator fault and its estimation is presented in
Fig. 9, which shows that the fault estimation error based on
fractional-order system is smaller than the integer-order sys-
tem. Furthermore, Fig. 10 and its sub figures highlight that
the accuracy of estimation of output with quantized output
based on fractional-order system is better than the integer-
order system. The simulation result discloses the potential
and efficiency of the proposed observer based non-fragile
fault-tolerant controller based on quantized measurement for
delayed fractional-order linear systems in the presence exter-
nal disturbances.
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Fig. 8 Fault signal and its estimation under prescribed controller
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Fig. 9 Estimation error of actuator fault under fractional-order and integer-order
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Fig. 10 Output signal and its quantified output signal under quantized measurement approach

5 Conclusion

In this paper the problem of FD for the class of nonlin-
ear and linear fractional-order systems with differentiable
time-varying delays using quantized measurement is dealt.

By using adaptive fault estimation algorithm, a non-fragile
FD controller is designed to ensure the control error system
is asymptotically stable with a prescribed H∞ performance
attenuation level. By choosing proper Lyapunov–Krasovskii
functional alongwith some properties of fractional-order cal-
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culus, a new set of sufficient conditions are derived in terms of
linear matrix inequalities for the stabilization of the labelled
problem. Finally, two examples provided to show the effec-
tiveness of the prescribed controller.
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