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Abstract
Payload oscillation suppression in point-to-point maneuvers is a challenging problem in the design and control process of 
overhead crane systems. To address this issue, this article proposes an input shaping control method coupled with a genetic 
algorithm strategy to tune the jib input acceleration. A polynomial function is defined as the input for the jib acceleration to 
move the payload on a specific track that satisfies the system constraints, while the desired final conditions are achieved. All 
three phases of a crane maneuver, including filling the ladle, moving the payload to a new position, and eventually unload-
ing the ladle, are captured by the optimization algorithm. The proposed method is evaluated for both constant and variable 
hoisting cable length cases. The numerical results indicate that the introduced method enables the crane to safely perform an 
accurate controlled maneuver by constraining the payload angular motion within a certain range, which is critical in handling 
sensitive loads. In compared with the existing techniques, the new input shaper also provides a faster system response owing 
to the fact that it is driven by a continuous input function. A sensitivity study is performed and a non-sensitive optimized 
input polynomial function is obtained for the variable hoisting length case.

Keywords  Input shaping · Genetic algorithm · Crane control · Payload oscillation · Rest to rest motion

1  Introduction

The construction and transportation industries heavily rely 
on cranes in their day-to-day activities. Cranes carry mas-
sive payloads, therefore any flaw in their operation can cause 
long delays in production, property damage, injuries, and 
even fatalities in some cases. As a result of automation tech-
nologies, which supply the cranes with discrete-time control 
capabilities, faster, taller and even larger cranes have been 
produced [1]. Accordingly, the need for efficient controllers 
that guarantee fast turn-over times and smooth operations, 
while all the safety requirements are met, has been growing 

[2]. There have been many experimental and theoretical 
research attempts for mathematical modelling and control 
of cranes over the past years. Despite the increased research 
in the field of crane dynamics and control, some of the major 
concerns associated with the crane operations are yet to be 
addressed.

Since overhead crane systems operate on pre-defined sets 
of tracks within a limited space, payload oscillation in point-
to-point maneuvers is a challenging problem in crane opera-
tions. Simulated results of a scaled overhead crane showed 
a sway angle up to 4° during maneuvering [3]. A generic 
crane positioning operation includes three stages: loading 
the ladle, moving it to the new location, and lastly unloading 
the ladle. If one of these stages conflict with one another, 
the operation would either fail or be delayed. Thus, precise 
position control and rapid rest to rest motion is critical [4].

Although different control strategies have been developed 
so far to reduce the residual oscillations in overhead crane 
systems, the problem persists [5]. In particular, a number 
of input shaping techniques have been derived and imple-
mented over the past four decades to suppress the payload 
swing in real time [3, 6, 7]. The early shaping techniques 
were focused on eliminating the residual oscillations of the 
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payloads, the damping ratio and the natural frequency of 
the crane. Although according to Vaughan et al. [5], the 
robustness of these shapers [known as zero vibration (ZV)] 
were enhanced later, increasing robustness resulted in slower 
system responses. Using the straight transfer transforma-
tion method, Terashima et al. [4] developed a three-dimen-
sional loop control strategy for a rotary crane in point to 
point maneuvers. Their findings indicated that their control 
method was successful in eliminating the centrifugal force 
effects and residual oscillations. In another effort to reduce 
payload oscillations, Starr [8] implemented a double step 
acceleration profile to suspend an object. By employing a 
linear approximation to determine the oscillation period, 
they derived an analytical expression for the acceleration 
profile. In 2012, Maleki et al. [9] proved that the shape of the 
input is equivalent to a notch filter that applies to a general 
input signal. They also suggested that input is centered on 
the natural frequency of the payload oscillation. Numeri-
cal verifications and experiments they conducted for crane 
maneuvers with different cable lengths demonstrated the 
ability of their approach in suppressing the residual payload 
oscillations. Maleki et al.’s work was further advanced com-
pared to Parker et al. [10, 11], whom based on their simula-
tion observations concluded that the verification presented in 
[9] was only applicable to low acceleration and slow speed 
commands. Alhazza and Masoud [12, 13] introduced a new 
strategy with a single variable acceleration that was able to 
eliminate residual and travel payload oscillations of an over-
head crane. Compared to the initial double step accelera-
tion profile, the profile they proposed was able to provide a 
smoother acceleration profile. The proposed strategy further 
accounted for the effects of damping. Through the applica-
tion of numerical simulations and experiments, they were 
able to prove that residual oscillations for different damping 
ratios could be eliminated.

Pendulum models, which are commonly adopted in oscil-
lation modelling of cranes, do not include hoisting for sim-
plification purposes. However, hoisting is a critical step in a 
point-to-point crane maneuver as it relates to the variations 
in cable length and adds a new level of non-linearity to the 
equations of motion. To account for this shortcoming and to 
ensure that the hoisting complexities are addressed, Maleki 
et al. [9] introduced different sets of input shaping control-
lers. After comparing different input shaping techniques, 
they showed that residual vibrations could be reduced to an 
acceptable level by input shapers. To further evaluate the 
effects of hoisting, a new line of research has been focused 
on double pendulum models for cranes. The need for these 
models is more evident for heavy lifts, which their hooks 
and payloads are comparable in term of weight and their 
hoisting mechanisms behave similar to a double pendulum. 
The design of control systems for this type of overhead crane 
systems should compensate for the double oscillations that 

are expected to occur in an uncontrolled motion. Command 
shapers that are designed for the first mode oscillations are 
particularly applicable to multi-degree of freedom systems 
because they prevent the higher modes of oscillations to 
appear once odd integer multiples are used as frequencies. 
Masoud et al. [14] used this concept to develop feedback-
based shapers for an overhead system in a double pendu-
lum platform. Point-to-point crane maneuvers are repeti-
tive series of rest to rest motions with identical conditions. 
Therefore, by adopting iterative learning controls (ILC), they 
proposed a repetitive cyclic process in which the input could 
be controlled and modified for every cycle. This flexibility 
makes the approach suitable for application in crane industry 
[15].

This article is aimed to discuss how to control an over-
head crane in rest to rest maneuvers using input shaping 
method and a genetic algorithm (GA) as the optimization 
technique to tune the jib input acceleration. To achieve this 
outcome, a polynomial function is implemented as the input 
for the jib acceleration to move the payload on a specific 
trajectory that satisfies the system constraints and secures 
the target conditions. The parameters of this polynomial are 
optimized using the proposed GA strategy. GA is suitable 
for non-convex problems such as crane maneuvers. A fitness 
function is applied to establish an optimal set of polynomial 
coefficients. The proposed algorithm provides an interaction 
with the problem to be solved through an objective func-
tion, which measures the quality of the solution. Compared 
with the existing control methods for the overhead crane 
system, the proposed control technique shows superior anti-
swing control performance. The controller is able to pre-
cisely limit the payload swing angle to safely carry sensitive 
loads, liquid, and chemicals. Moreover, unlike the existing 
methods which are driven by single and/or double steps, the 
introduced approach uses a continuous input function which 
results in quicker time responses. Also, allowing the GA to 
tune the controller input parameters reduces the overhead 
system sensitivity to any inaccuracy in the hoisting cable 
length.

2 � Mathematical model

The proposed model for the overhead crane consists of a 
moving massless platform (jib) confined to move in the hori‑ 
zontal direction (x) with an acceleration function of ü , as 
shown in Fig. 1. A variable length cable connects a lumped 
mass m to the platform. The attached mass represents the 
payload and it is free to swing in the x–y plane with the 
rotation angle θ . The model captures all three stages of a 
rest-to-rest maneuver, including hoisting (raising), cruising, 
and lowering.
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Jib acceleration and deceleration periods occur during 
hoisting and lowering operations, respectively. Initial and 
desired final conditions are defined as:

where θi and 𝜃̇i represent the mass angular position and angu-
lar velocity at the onset of hoisting, and th, θ

(
th
)
 and 𝜃̇

(
th
)
 

are the hoisting time, rotation, and angular velocity at the 
end of hoisting, respectively.

The jib final velocity at the end of hoisting is given by:

where vf is the desired jib velocity at the end of hoisting. A 
polynomial function (ü(t)) is adopted to provide an adequate 
level of smoothness and continuity as:

where an are the polynomial coefficients and t is the opera-
tion time. The constant coefficients are determined by a 
GA to satisfy the boundary conditions [Eq. (1)] and system 
constraints. The system constrains, given by Eq. (2), are 
applied in terms of maximum input acceleration and maxi-
mum swing angle as:

where θmax and amax are the maximum swing angle and 
maximum jib acceleration, respectively. The equation 
of motion of the overhead crane system is derived using 
Lagrange’s equation as:

where l(t) is the cable length, r is the constant hoisting speed, 
and g is the gravitational acceleration. Equation (5) is the 
general form of the system equation of motion. Assuming 
the oscillations to be small, the equation of motion can be 
linearized as:

where li is the initial length of the hoisting cable. 
Equation (6) describes the lowering stage of the maneuver 
once a negative r is fed into the equation. The equation of 

(1)
θi = 0, 𝜃̇i = 0

θ
(
th
)
= 0, 𝜃̇

(
th
)
= 0

(2)
th

∫
0

ü(t)dt = vf

(3)ü(t) =

N∑
n=0

ant
n

(4)|ü(t)| ≤ amax, |θ(t)| ≤ θmax

(5)l(t)𝜃̈ + 2r𝜃̇ + g sin θ = ü(t) cos θ

(6)
(
li + rt

)
𝜃̈ + 2r𝜃̇ + gθ = ü(t)

motion is solved in two different forms depending on the 
variability of the cable length. These two scenarios are 
elaborated in the following.

2.1 � Case 1: constant cable length

The first scenario considers a constant cable length through-
out the entire maneuver of transferring the payload. There-
fore, r = 0 and the hoisting and lowering intervals, become 
acceleration and deceleration periods without any change in 
cable length. Substituting the acceleration term in Eq. (6) with 
Eq. (3), the equation of motion is reduced to:

A GA optimization technique is implemented to acquire 
the unknown coefficients that satisfy the system conditions 
given by Eqs. (1) and (2). The three conditions represented 
by these equations require three coefficients of the input 
function to be found. The remaining (N − 3) coefficients are 
independent of the system conditions, but optimal values are 
assigned to these coefficients in order to satisfy the system 
constraints [Eq. (4)] and minimize the maneuver time. Dif-
ferent number of polynomial coefficients (four, five, and six) 
are implemented and discussed in Sect. 4. Equation (7) is 
solved in an exact form given by:

where ωn is the system natural frequency. The coefficients 
given by Eq. (8) can be presented in a matrix form,

(7)l𝜃̈ + gθ =

N∑
n=0

ant
n

(8)

θ(t) = A sin
(
ωnt

)
+ B cos

(
ωnt

)
+

N∑
n=0

bnt
n

A = −
b1

ωn

, B = −b0

bN =
aN

ω2
n

, bN−1 =
aN−1

ω2
n

,

bi =
ai − (i + 1)(i + 2)bi+2

ω2
n

, i = 0, 1,… , N − 2

(9)

� =�

⎡
⎢⎢⎣

a0
⋮

aN

⎤
⎥⎥⎦

� =

⎡⎢⎢⎢⎢⎢⎣

γ1,1 … γ1,N
⋮ ⋮

γN−2,1 … γN−2,N
0 … 0 1∕ω2

n
0

0 0 … 0 1∕ω2
n

⎤⎥⎥⎥⎥⎥⎦

γp,q =

⎧
⎪⎨⎪⎩

−
(p+1)(p+2)γp+2,q

ω2
n

, p > q

1∕ω2
n
, p = q

0, p < q

Fig. 1   The overhead crane 
model consists of a rotating 
lumped mass attached to a slid-
ing massless platform
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Applying system conditions [Eqs. (1) and (2)] to [Eq. (8)] 
yields the following system of equations:

Equation (10) can be re-written in a matrix form as follows:

Equations (11) will be rewritten as:

(10)

θ
(
th
)
= A sin

(
ωnth

)
+ B cos

(
ωnth

)
+

N∑
n=0

bnt
n
h

𝜃̇
(
th
)
= Aωncos

(
ωnth

)
− Bωnsin

(
ωnth

)
+

N∑
n=1

nbnt
n−1
h

N∑
n=0

an

n + 1
tn+1
h

= vf

(11)

�
[
a1 … aN

]T
= �3

� =

[
�1

�2

]

�1 =

[
1 − cos

(
ωnth

)
th −

1

ωn

sin
(
ωnth

)
t2
h

… tN
h

ωnsin
(
ωnth

)
1 − cos

(
ωnth

)
2th … NtN−1

h

]
Γ

�2 =
[
th

1

2
t2
h

1

3
t3
h
…

1

N+1
tN+1
h

]

�3 =
[
0 0 vf

]T

(12)

�1�̂ +�2�̄ = �3

�1 = ��,�, p = 1, 2, 3, q = 1, 2, 3

�2 = ��,�, p = 1, 2, 3, q = 4, 5,… , N + 1

�̂ =
[
a0 a1 a2

]T

�̄ =
[
a3 a4 … aN

]T

where �̂ is the dependent coefficients vector, and �̄ is the 
independent coefficients vector. Therefore, the dependent 
coefficients are found as:

The independent coefficients vector (�̄) is determined by 
applying a GA such that the system constraints are attained.

2.2 � Case 2: variable cable length

This case considers variability in the cable length during 
payload hoisting and lowering. Changing the cable length 
adds and removes damping from the system in lowering and 
raising movements, respectively. An exact solution cannot 
be found for this case due to the nonlinearity in the equation 
of motion [Eq. (6)]. Since the system final conditions given 
by Eq. (1) cannot by explicitly achieved, a tolerance must be 
implemented in the solver. These conditions will be imposed 
in the GA process along with other constraints from Eq. (4). 
However, the system condition given by Eq. (2) can be used 
to introduce one dependent coefficient as follows:

Thus, the GA technique will consider N − 1 independent 
coefficients to satisfy system conditions and constraints.

(13)�̂ = �−1
1

(
�3 −�2�̄

)

(14)a0 =
1

th

(
vf −

N∑
n=1

an

n + 1
tn+1
h

)

Table 1   Input polynomial 
coefficients for the constant 
cable length case

tf a0 a1 a2 a3 a4 a5

1.19 0.18739 0.33842 − 0.31926 0.034657 0 0
1.00 0.79603 − 7.7075 31.245 − 46.888 23.309 0
0.99 0.83162 − 7.6140 27.373 − 31.029 0.42263 10.996

Table 2   Input polynomial 
coefficients for the variable 
cable length (hoisting motion)

tf a0 a1 a2 a3 a4 a5

1.15 0.31595 − 0.35922 − 0.00956 0.40946 0 0
1.10 0.69659 − 4.0458 9.7429 − 9.0869 3.0577 0
1.05 0.77496 − 5.9176 18.428 − 21.028 5.0624 3.2923

Table 3   Input polynomial 
coefficients for variable cable 
length (lowering motion)

tf a0 a1 a2 a3 a4 a5

1.15 − 0.40456 0.42378 0.18398 − 0.47626 0 0
1.10 − 0.37199 0.15938 − 0.04612 1.7786 − 1.9180 0
1.05 − 0.70901 3.9153 − 10.872 10.439 1.8161 − 5.1693
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3 � Optimization method: genetic algorithm

A genetic algorithm is employed to find an optimal set of 
input polynomial coefficients. The GA process includes ini-
tialization, selection, crossover, mutation, elitism, and fitness 
evaluation. A population of 100 chromosomes is selected. 

The number of alleles assigned to each chromosome depends 
on the number of independent coefficients in the correspond-
ing case. Although, a maximum of 10,000 generations is 
allowed, the fitness function usually takes fewer generations 
to reach the targeted plateau.

Ranking method is implemented in the GA selection 
stage. Two different crossover operators are used with this 
method: one-point crossover and blending. In one-point 

Fig. 2   Payload angle and jib 
acceleration for a constant cable 
length case with four, five, and 
six coefficients
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Fig. 3   Jib velocity for a constant cable length case with four, five, and 
six coefficients
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crossover approach, one random position is selected to cut 
the chromosomes. The first part of the first parent is then 
hooked up to the second part of the second parent to gener-
ate the first offspring. The same procedure is done in reverse 
order to create the second offspring. In blending method, a 
random percentage is to produce the first and second genera-
tions as follows:

where OSi , Pi, and B represent the ith offspring, the ith par-
ent, and the blending percentage, respectively.

Mutation is performed by replacing an allele with a ran-
dom number in the range of the expected solution. Mutation 

(15)
OS1 = B × P1 + (1 − B) × P2

OS2 = (1 − B) × P1 + B × P2

percentage does not exceed 1%, while the crossover percent-
age is 90% due to the nature of the GA procedure.

Elitism is exercised in the GA process to assure that the 
best chromosome (i.e. lowest fitness value) is transferred 
to the next generation without any modification. The elite 
chromosome does not bypass any crossover or mutation, but 
a copy of the elite is reserved for the next generation.

The defined fitness function ( F ) consists of three parts: 
the maximum jib acceleration ( f1 ), the maximum payload 
swing angle ( f2 ), and the final vibration amplitude ( f3 ). Each 
component is given a different weight (w) as:

where:

4 � Numerical results and discussions

To evaluate the functionality of proposed optimization strat-
egy, two test cases are studied and presented in the follow-
ing. The first case is the crane model with a constant cable 
length with different input functions. The other case is the 
model with a variable hoisting cable length, which is also 
used for sensitivity and convergence analysis. The crane 
has a maximum jib speed ( vf ) of 0.3 m/s and a maximum 
acceleration ( amax ) of 0.9 m/s2. The payload angle should 
not exceed 3 ° during the maneuvers ( θmax = 3°). For the 
variable cable length case, since the system final conditions 
given by Eq. (1) cannot by explicitly achieved, a solution 
tolerance of 0.1° is accepted for the final vibration mag-
nitude. The polynomial coefficients of the proposed input 
functions for the constant, variable-hoisting and variable-
lowering cases are listed in Tables 1, 2, and 3, respectively. 
Each table includes the four, five and six coefficient cases, 
with the corresponding final time ( tf).

4.1 � Case 1: constant hoisting cable length

Polynomial functions with four, five, and six constants are 
studied for a constant cable length case to reach an optimal 
number of coefficients. The payload angle and jib accelera-
tion trajectories are shown in Fig. 2 for these three sce-
narios. The plots indicate noticeable differences between 
the outputs of the functions with four and five polynomial 
coefficients. However, the differences are minimal between 
the five and six coefficients cases, suggesting that a poly-
nomial function with five constants is sufficient.

The jib velocity reaches the desired velocity in all three 
cases, as shown in Fig. 3. Implementing the polynomial 

(16)F =
∑

wifi

(17)

f1 =
||ümax
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Fig. 5   A comparison between controlled constant-cable-length jib 
acceleration (1. four, 2. five, and 3. six coefficients) and TORB accel-
eration output
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functions with five and six coefficients, however, results 
in faster responses.

The payload angular motion and jib acceleration predic-
tion of the input shaping controller is compared with the 
uncontrolled motion in Figs. 4 and 5. Time-optimal rigid 
body (TORB) illustrates the uncontrolled motion, while 
the other three trajectories represent different number of 
polynomial coefficients used in the controller. Payload 
reaches the final position in 2 s using TORB command, 

compared to 2.6 s using the proposed input shaping tech-
nique. However, the vibration amplitude of the motion 
induced by TORB is considerably larger, which makes the 
controlled motion more feasible and preferable.

Figure 6 shows the effect of changing the maximum 
allowable payload swing angle on the maximum jib accel-
eration and maneuver time for the constant cable length 
case. Increasing the allowable payload angle is equiva-
lent to decreasing the system constraints, which leads to 
a shorter maneuver time. On the other hand, allowing the 

Fig. 7   Payload angle and jib 
acceleration trajectories are 
compared for a variable-cable-
length case with four, five, and 
six coefficients
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system to have a larger payload angle leads to higher accel-
eration values.

4.2 � Case 1: variable hoisting cable length

Figure 7 shows the jib acceleration and payload angle tra-
jectories of a variable cable length model for three different 
cases according to the number of polynomial coefficients 
(four, five, and six). As discussed earlier, the cable length 
varies throughout the maneuver to reach specific end condi-
tions. Raising and lowering the payload tune the jib accel-
eration profile so that all conditions and constraints are met.

As depicted in Fig. 8, although jib velocity changes 
throughout the maneuver, it always reaches 0.3  m/s in 

cruising section. The more number of coefficients used in the 
polynomial acceleration function, the faster the jib reaches 
its required cruise velocity.

Figures 9 and 10 show how the controller and TORB 
commands affect the payload angle and jib acceleration, 
respectively. Similar to the constant cable length case, the 
time it takes for the jib to reach the final position (0.5 m) 
using TORB is shorter compared to the controlled input. 
However, the vibration amplitude of the controlled payload 
motion is considerably smaller regardless of the number of 
polynomial coefficients. The controlled inputs satisfy all sys-
tem constraints and produce feasible solutions.
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Fig. 12   Sensitivity study of changing cable length on the final vibra-
tion amplitude for the variable cable length case
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ity of the vibration amplitude to the cable length for different maneu-
ver times
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4.3 � System sensitivity and convergence analysis

Figures 11 and 12 show how sensitive the final vibration 
amplitude is to the initial cable length for both the constant 
and variable cable length, respectively. The plots suggest 
that sensitivity is not significantly affected by changing the 
number of coefficients of the input function. As expected, 
the minimum vibration amplitudes are observed near the 
original length, which is represented by the length ratio of 1.

For a constant cable length, GA is applied to optimize 
input parameters and reduce the sensitivity of the output to 
the cable length, as shown in Fig. 13. The fitness function 
is modified to include the vibration amplitude for a range 
of cable lengths. In this case, it is set to be 0.8 to 1.2 of the 
initial cable length. The added part to the fitness function 
is as follows:

where Af(L) is the vibration amplitude for different cable 
length in the specified range. As evident from Fig. 13, the 
proposed optimization strategy is capable of optimizing the 
input parameters in order to reduce the system sensitivity to 
small changes in cable length. The limitation factor, how-
ever, is the final time, which increases as the system sensi-
tivity drops.

Elite fitness is plotted in Fig. 14 as a function of gen-
erations to show the convergence progress in reaching the 
optimal solution. The convergence starts at a fast rate due 
to the large range of initial set, then it slows down as it gets 
closer to the optimal solution.

(18)f =
∑

Af(L)

5 � Conclusions

A robust input shaping control method was introduced to 
dissipate the payload oscillations in point-to-point over-
head crane maneuvers. The implemented genetic algorithms 
procedure was demonstrated to be capable of optimizing 
and tuning the jib input acceleration in order to satisfy the 
system conditions and constraints. The controlled payload 
motion was compared against the uncontrolled motion for 
a number of different cases and conditions. The introduced 
input shaper limits the payload sway motion within a spe-
cific range, which is critical in handling sensitive loads. In 
compared with previous techniques, the new input control 
method provides a faster system response as it is driven by a 
continuous input function. Also, employing a GA optimiza-
tion strategy reduced the system sensitivity to the variations 
in cable length and improved the handling maneuvers with 
significant robustness.
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