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Abstract
In this paper, a neural network (NN)-based feedback controller is proposed in order to compensate for the errors caused
by using an approximated dynamic model in controller design. The controller consists of two subcontrollers working in
parallel: base linear controller and NN-based PID compensator. The former can be any controller that is easily designed based
on the system’s linearized or simplified model. The latter is based on a PID controller with adjustable gains and a neural
network is used to update the PID gains during control process, aiming to compensate for the nonlinear effects ignored in the
base controller. The performance of the proposed controller is demonstrated with a ball-on-plate system built for this study.
Approximate feedback linearization is used to design the base controller in this work and the NN-based PID compensator is
used in parallel. Simulation and experimental results that achieve better stabilization and trajectory tracking performance are
provided and discussed.

Keywords Neural network-based PID · Nonlinearity compensation · Feedback linearization · Ball-on-plate system

1 Introduction

Controller design of a nonlinear system is in general diffi-
cult. One way to avoid such complexity is using a linearly
approximated model so that a linear control technique can be
easily applied. However, a certain degree of control error is
inevitable when using the simplified model.

The objective of this work is to reduce this error using a
neural network (NN)-based PID compensator. The controller
structure of the system consists of two parts: base controller
and NN-based PID. The base controller can be any classic
linear controller that can perform stabilization and/or trajec-
tory tracking. The error of the base controller, which may
be induced by model simplifications, is compensated by the
NN-based PID.

In this work, the full-state feedback linearization method
is used on an approximated model for the design of the base
controller. The neural network in the PID compensator takes
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state errors as input and generates PID gains as outputs. The
PID compensator uses the updated gains and creates com-
pensatory control input to the system. The neural network
itself is also being updated online using the backpropagation
learning algorithm. Finally, the two control inputs from the
base linear controller and the NN-based PID compensator
are added to generate the input to the system.

This control approach is implemented on the ball-on-plate
systemwe built for this study and demonstrates improvement
in stabilization and trajectory tracking control.

1.1 Literature review

The feedback linearization method which our proposed base
controller is based on is a powerful tool in control design
of nonlinear systems since a nonlinear system can be trans-
formed to an equivalent linear system so that linear control
techniques can be easily applied. Among numerous related
studies, Ho et al. [1] used the aforementioned method to con-
trol a wheel that balances a ball on it. Ryu et al. [2] also used
the feedback linearizationmethod to balance a disk on a disk.
In their work, the lower disk is attached to a DC motor and
the upper disk which is free to roll is balanced on top of the
lower disk.
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However, this method is limited in that only a class of
systems that satisfy necessary conditions is feedback lin-
earizable. For those that do not satisfy the conditions, one
possible solution would be simplification of the dynamic
model so that feedback linearization becomes applicablewith
the approximate model. The ball-on-beam system is proven
to be not feedback linearizable, so an approximated model
approach is applied in [3], which we adopted in this study.

A typical approach to control the ball-on-plate system is
to decouple the system into two independent ball-on-beam
systems about each rotational axis of the plate throughmodel
simplification. A proven ball-on-beam controller can then be
applied to each axis in order to finally control the ball-on-
plate system.

Awtar et al. applied a double-loop control strategy where
the outer loop calculates target angular positions of the plate
while the inner loop uses PID control to achieve the target
position [4]. Mochizuki and Ichihara proposed I–PD control,
which is a variant of PID control, using the KYP (Kalman–
Yakubovich–Popov) lemma [5]. Fuzzy logic has been also
studied for the control of the ball-on-plate system in [6]. Ho
et al. applied in [7] the approximate feedback linearization
method which was first proposed in [3].

However, the simplification in controller design resulted
from using an approximate model is often made at a cost
of inferior performance of the control system. Therefore,
we propose a compensation strategy to compensate for the
effects of the ignored nonlinear terms as well as unmod-
eled dynamics. While a parallel control structure appears in
fuzzy PID control [8,9], we chose a neural network system as
a compensator due to its high adaptivity to different system
conditions. In addition, the error-based control method of the
PID can be used for neural network training as it has shown
reliable performance. For these collective reasons, the design
of a NN-based PID controller is proposed in this work.

Controller design in the structure of neural network has
been increasingly employed in a wide range of applications
from vehicle vibration control [10] to robotic manipulators
[11].

Jung et al. designed a neural network-based pre-filter for a
conventional PID, based on the reference compensation tech-
nique (RCT) that can stabilize a two-dimensional inverted
pendulum [12] as well as a wheeled inverted pendulum [13].
The neural network in these studies basically represents the
inverse dynamics of the control system.A variant of PID con-
troller which is also based on neural networks is presented in
[11,14] to improve the position control of a manipulator arm
using pneumatic actuators. Similar to our proposed work, the
backpropagation algorithm is used to update the neural net-
work online. Cong and Liang [15] proposed a neural network
controller that mimics a structure of PID using an activation
and output feedback on three nodes in the hidden layer and
implemented it on a single and a double inverted pendulum.

In this work, the control performance is dependent on initial
conditions of the states.Kang et al. presented an adaptive neu-
ral network controller that uses a PID structure in [16] where
the particle swarm optimization (PSO) algorithm is adopted
to choose better initial weights that prevent trapping in local
minima. Another adaptive controller is proposed in [17] to
control a Segway-type inverted pendulum. The controller is
based on radial basis function neural networks (RBFNNs)
and the same structure of controller is applied each for bal-
ancing and yaw control.

Neural networks also have been used as an estimator [18].
In the reference, the neural network is designed to estimate
the system’s dynamic model and used with another neu-
ral network-based PI controller to control the speed of an
induction motor under the presence of disturbances using
the so-called projection algorithm. A high gain observer to
estimate the state derivatives is also used in [19] with a neural
network-based feedback controller that does not need offline
training.

1.2 Paper outline

The rest of the paper is organized as follows. The dynamic
model of the ball-on-plate system is derived in Sect. 2. Sec-
tion 3 describes the design and structure of the proposed
controller. The experimental setup we built for this study is
explained in Sect. 4. Sections 5 and 6 present the simulation
and experimental results, respectively, followed by conclud-
ing remarks in Sect. 7.

2 Dynamic model of the ball-on-plate system

In this section, we derive the equations of motion of the
ball-on-plate system using the Euler–Lagrange equation.
The derived model will later be simplified to two indepen-
dent ball-on-beam systems such that the two rotational axis
motions of the ball-on-plate system are controlled each by a
ball-on-beam controller.

2.1 Dynamic model

Figure 1 shows the 3D CAD model of the ball-on-plate sys-
tem we developed for this study. While the derivation of
the equations of motion is also available in [7], we present
important steps in a slightly different manner to improve
understanding.

The Euler–Lagrange equation is given by

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= Q (1)
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where Lagrangian L = T − V . Here, T and V are the total
kinetic and potential energies of the system, respectively.
The generalized coordinate vector q for the system is given
by q = [x, y, θx , θy]T in which (x , y) is the ball position
measured from the center of the plate. θx and θy are the plate
tilting angles about x and y axes, respectively. The definitions
of these state variables are visualized in Figs. 1 and 2. The
generalized force vector Q represents the input torques about
each axis, given by Q = [0, 0, τx , τy]T .

First, between the local coordinate frame oxyz attached
to the plate, denoted by ‘1’, and the global coordinate frame
OXY Z , denoted by ‘0’, the rotation matrix is given by

R0
1 =

⎡
⎣ cy 0 sy

sx sy cx −sxcy
−cx sy sx cxcy

⎤
⎦ (2)

where sx , cx , sy , and cy denote sin θx , cos θx , sin θy , and
cos θy , respectively.

The relationship of S(ω0
p) = Ṙ0

1(R
0
1)

T from [20, chap. 4]
gives the angular velocity of the plate in the form of a skew
symmetric matrix.

⎡
⎣ 0 −ωpz ωpy

ωpz 0 −ωpx

−ωpy ωpx 0

⎤
⎦ =

⎡
⎣ 0 −θ̇ysx θ̇ycx

θ̇ysx 0 −θ̇x
−θ̇ycx θ̇x 0

⎤
⎦
(3)

From this relationship, the angular velocity of the plate in the
global coordinate frame is obtained as

Fig. 1 Developed ball-on-plate system in CAD drawing

,

Fig. 2 Global OXY Z and local oxyz coordinate systems

ω0
p = [ωpx , ωpy, ωpz]T = [θ̇x , θ̇ycx , θ̇ysx ]T (4)

It ismore convenient to calculate the rotational kinetic energy
with the angular velocity expressed in the local coordinate
frame where the moments of inertia remain constant. Thus,
we have

ω1
p = (R0

1)
Tω0

p (5)

On the other hand, given the ball position in the local
coordinate frame

p1b = [x, y, r ]T (6)

where r is the radius of the ball, the velocity of the ball can
be obtained in the global coordinate frame such that

v0b = dp0b
dt

= d
(
R0
1 p

1
b

)
dt

(7)

Assuming no slip condition between the ball and the plate,
the angular velocity of the ball relative to the plate is given by[
− ẏ

r
,
ẋ

r
, 0

]T

. Furthermore, since the plate is also rotating,

adding the angular velocity of the plate of Eq. (5) yields the
angular velocity of the ball, expressed in the local coordinate
frame, as

ω1
b =

[
− ẏ

r
+ θ̇x cy,

ẋ

r
+ θ̇y, θ̇x sy

]T

(8)

Finally, the total kinetic and potential energies of the system
are the sum of those of the plate and the ball, given by

Ttotal = Tplate + Tball (9)

Vtotal = Vplate + Vball (10)

where

Tplate = 1

2

(
ω1
p

)T Ipω
1
p (11)

Vplate = 0 (12)

Tball = 1

2
mb

(
v0b

)T
v0b + 1

2
Ib

(
ω1
b

)T
ω1
b (13)

Vball = mbg[0 0 1]p0b (14)

Note that Ip is the constant inertia tensor expressed in the
body-attached frame given by

Ip =
⎡
⎣Ipx 0 0

0 Ipy 0
0 0 Ipz

⎤
⎦ (15)
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Table 1 Description of the system parameters

Ipx Plate moment of inertia about x axis

Ipy Plate moment of inertia about y axis

Ipz Plate moment of inertia about z axis

mb Mass of the ball

r Radius of the ball

Ib Moment of inertia of the ball

g Gravitational acceleration

where Ipx , Ipy , and Ipz are the moment of inertia about x ,
y, and z axes, respectively and Ib is the moment of inertia of
the ball (Table 1). Now by substituting L = Ttotal − Vtotal
into Eq. (1), one can obtain the full dynamic model of the
ball-on-plate system.

Mq̈ + Cq̇ + G = Q (16)

Due to the length, the detailed expressions of the matrices
of M , C , and G are not presented here, but one could easily
derive with help of mathematical software such as Maple or
Matlab.

As mentioned earlier, the base controller in our proposed
control structure is supposed to be designed with a simpli-
fied dynamic model. Ignoring coupling terms results in two
independent, simplified ball-on-beam equations.

(
mb + Ib

r2

)
ẍ − mbx θ̇

2
y − mbg sin θy = 0 (17a)

(
mbx

2 + Ib + Ip
)

θ̈y + 2mbx ẋ θ̇y

− mbgx cos θy − mbgr sin θy = τy

(17b)

(
mb + Ib

r2

)
ÿ − mbyθ̇

2
x − mbg sin θx = 0 (18a)

(
mby

2 + Ib + Ip
)

θ̈x + 2mby ẏθ̇x

− mbgy cos θx − mbgr sin θx = τx

(18b)

where Ip = Ipx = Ipy assuming the plate is square. Since
these two sets of the equations in Eqs. (17) and (18) are
basically identical for each axis of rotation, only Eq. (17) will
be used in the controller design in the next section. Then, the
same structure of the controller will be applied to the other
rotational motion.

3 Controller design

The proposed controller consists of two subcontrollers: base
linear controller and neural network (NN)-based PID com-

L

→

→
−

+

+

+

−

+

Fig. 3 Structure of the proposed controller (for one axis)

pensator. When a simple controller design is chosen based
on its approximated model, the NN-based PID compensator
is designed such that it compensates for the errors that may
have been caused by the simplification of the dynamic model
with the base controller. This proposed controller works in
a way that the control inputs from the two individual sub-
controllers are added to finally generate torque input to the
ball-on-plate system.

We use the approximate input-output feedback lineariza-
tion method adopted from [3] to design the base controller.
The method builds on the simplified model derived in
Sect. 2.1 and further simplification is made during the
controller design in Sect. 3.1. For the NN-based PID com-
pensator, we design a neural network that takes state errors
as input and updates the gains of the PID controller online to
complement the base controller. The structure of proposed
controller is shown in Fig. 3 and the detailed design of each
subcontrollers are presented in this section.

3.1 Base controller design using approximate
feedback linearization

The simplified dynamic model in Eq. (17) can be rewritten
in an input-affine form as

Ẋ = f (X) + g(X)τy (19)

where X = [x, ẋ, θy, θ̇y]T . This system is said to be feedback
linearizable if an output h(X) exists satisfying

�h adif g = 0, i = {0, 1, 2}, (20a)

�h ad3f g �= 0, (20b)

where the Lie bracket is defined as ad f g = �g f − � f g
[21]. Then, by solving Eq. (20a), the output is obtained as
h(X) = x . Now to transform the nonlinear system to a linear
one, we differentiate the output h with respect to time until
the input appears.

ζ1 = h(X) = x (21)

ζ2 = dζ1

dt
= ẋ (22)
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ζ3 = dζ2

dt
= 1

mb + Ib
r2

(
mbx θ̇

2
y + mbgsy

)
(23)

ζ4 = dζ3

dt
= 1

mb + Ib
r2

(
mbẋ θ̇

2
y + mbgθ̇ycy

)
(24)

in which the term 2mbx θ̇y θ̈y/(mb + Ib/r2) is ignored in ζ4.
This approximation is necessary in order to make the sys-
tem feedback linearizable. Then, we finally obtain, with ζ =
[ζ1, ζ2, ζ3, ζ4]T ,

ζ̇ =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ζ +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ v (25)

with the input transformation

v = α(X) + β(X)τy (26)

where α(X) and β(X) are a function of the state variables
and their expressions are provided in “Appendix”.

Since the transformed system in Eq. (25) is now linear, a
linear control technique such as the pole placement method
can be used to determine controller gains. The control input
in Eq. (25) can be designed such that

v = (xd)(4) + K4
...
e + K3ë + K2ė + K1e (27)

where xd is the desired ball trajectory and the error e =
xd − x . The actual torque input τy can then be obtained
using the input transformation in Eq. (26).

3.2 NN-based PID controller

The combination of PID and neural network is used as a
compensator in the form of

τNN = Kpe + Ki

∫ t

0
e dt + Kdė (28)

where the position error e = xd − x . The control gains Kp,
Ki , and Kd are updated online through the neural network
while adapting to different situations.

The structure of the neural network used in the controller
is shown in Fig. 4. The designed neural network has three
inputs, five neurons in the hidden layer, and three in the output
layer in which all neurons of one layers are connected to all
neurons of the next. The three inputs to the neural network
are

S1 = e, S2 =
∫ t

0
e dt, S3 = ė (29)

wji wkj

Sj j

i Sk
k:

Kp

Kd

Ki∫

Si :

.

i j k

Fig. 4 Designed neural network (biases, b j and bk , are not shown)

The outputs are three PID control gains.

φ1 = Kp, φ2 = Ki , φ3 = Kd (30)

A tangent sigmoid and linear functions are used as transfer
functions for the hidden and the output layers, respectively.
Those functions are given by

φ j (S j ) = 2

1 + e−2S j
− 1 (31)

φk(Sk) = Sk (32)

The final torque control input to the system is the sum of the
base linear control τAFL and the neural network control τNN

as shown in Fig. 3, such that

τ = τAFL + τNN (33)

To update the weights and biases of the neural network,
the gradient descent learning algorithm [22] is applied with
the following error function.

E = 1

2
(xd − x)2 (34)

Then, the update rules with an iterative index n are defined
as

wk j (n + 1) = wk j (n) − ηdwk j (n) + αdwk j (n − 1) (35)

bk(n + 1) = bk(n) − ηdbk(n) + αdbk(n − 1) (36)

w j i (n + 1) = w j i (n) − ηdw j i (n) + αdw j i (n − 1) (37)

b j (n + 1) = b j (n) − ηdb j (n) + αdb j (n − 1) (38)
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where

dwk j (n) = ∂E

∂wk j
(n), dbk(n) = ∂E

∂bk
(n)

dw j i (n) = ∂E

∂w j i
(n), db j (n) = ∂E

∂b j
(n)

and the learning rate η and momentum rate α can be deter-
mined experimentally. Furthermore, we have the following
equations using the chain rule.

∂E

∂wk j
= ∂E

∂x

∂x

∂τ

∂τ

∂τNN

∂τNN

∂φk

∂φk

∂Sk

∂Sk
∂wk j

(39)

∂E

∂bk
= ∂E

∂x

∂x

∂τ

∂τ

∂τNN

∂τNN

∂φk

∂φk

∂Sk

∂Sk
∂bk

(40)

∂E

∂w j i
= ∂E

∂x

∂x

∂τ

∂τ

∂τNN

(
3∑

k=1

∂τNN

∂φk

∂φk

∂Sk

∂Sk
∂φ j

)

× ∂φ j

∂S j

∂S j

∂w j i

(41)

∂E

∂b j
= ∂E

∂x

∂x

∂τ

∂τ

∂τNN

(
3∑

k=1

∂τNN

∂φk

∂φk

∂Sk

∂Sk
∂φ j

)

× ∂φ j

∂S j

∂S j

∂b j

(42)

For the calculation of each term in Eqs. (39)–(42), we obtain
from Eq. (34)

∂E

∂x
= −(xd − x) (43)

Then, due to the nature of the gradient descent method, the

direction of the term
∂x

∂τ
is more important. Hence, using

the finite difference method, one can simplify the term as
follows.

∂x

∂τ
(n) = sgn

(
�x

�τ

)
= sgn

(
x(n) − x(n − 1)

τ (n) − τ(n − 1)

)
(44)

where sgn(·) denotes the sign function.
Also, from Eq. (33),

∂τ

∂τNN
= 1 (45)

Since the neural network outputs are the gains of the PID
controller, we have

∂τNN

∂φ1
= xd − x (46)

∂τNN

∂φ2
=

∫ t

0
(xd − x)dt (47)

∂τNN

∂φ3
= ẋd − ẋ (48)

The neural network structure, as shown in Fig. 4, yields

∂Sk
∂wk j

= φ j ,
∂Sk
∂bk

= 1,
∂Sk
∂φ j

= wk j , (49)

∂S j

∂w j i
= φi ,

∂S j

∂b j
= 1 (50)

Furthermore, from the transfer functions we selected in
Eqs. (31) and (32),

∂φ j

∂S j
= 1 − φ2

j (51)

∂φk

∂Sk
= 1 (52)

Finally, following the rules in Eqs. (35)–(38) will update
the weights and biases of the neural network.

As it is often the case, the designedneural network requires
offline training beforehand. This training is done by setting
an acceptable set of PID gains, which can be first obtained
experimentally, as desired outputs of the neural network.

4 Experimental setup

The experimental setup built for this study is shown in Fig. 5.
It consists of three main components: mechanical system,
vision system, and controller system.

4.1 Mechanical system

The experimental setup is designed such that a steel ball is
free to roll on an acrylic plate that is placed on top of a
center rod through a universal joint. The plate is controlled
by two motors through a linkage mechanism. Each linkage
is attached to the plate through a universal joint so that it
can rotate around x and y axes at the same time. Dynamixel
motors (XM430-W210-T) mounted on the bottom plate are
used as actuators and the motor shaft is attached to the other
end of each linkage.

Using geometry and small angle approximations, we have
the following relationship between the plate angle θy and the
motor shaft angle θm .

θy = d

l
θm

and between the torque applied to the plate τ and the motor
output torque τm ,

τ = l

d
τm cos θm cos θx
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Fig. 5 Experimental setup

Table 2 Values of the system parameters

Parameters Values

Ipx 4.315 × 10−6 (kgm2)

Ipy 4.315 × 10−6 (kgm2)

Ipz 8.630 × 10−6 (kgm2)

mb 0.067 (kg)

r 0.013 (m)

Ib 4.077 × 10−3 (kgm2)

g 9.81 (m/s2)

l 0.140 (m)

d 0.056 (m)

where d denotes the length of the lower link attached to the
motor shaft and l denotes the distance from the center of the
plate to the point where the upper (universal joint) link is
attached.

Table 2 shows the system parameters and their values of
the actual system.

4.2 Vision system

A low-cost USB camera (Sony SLEH-00448) is used to track
the ball on the plate. It runs at a frame rate of 120Hzproviding
320 × 240 pixel resolution. The OpenCV library is used for
imageprocessing. The camera ismounted at a height of 48 cm
from the plate. Since the camera measures the ball’s position
with respect to the global coordinate frame, the coordinates

are transformed to the local frame using the rotation matrix
in Eq. (2).

4.3 Control system

A 2.1 GHz laptop with Ubuntu Linux 16.04 LTS is used
to control the entire system. The control code is written in
C++ utilizing the OpenCV library for vision tracking and the
Dynamixel library for motor control. While the Dynamixel
motors can run at up to 330 Hz using low latency timer in
Linux and the vision system at up to 120Hz, the entire control
loop is set to run at 100 Hz due to necessary computations
such as neural network online update.

From the experimental torque–current relation data pro-
vided by the manufacturer under current mode, we adopted
the following linear equation to control torque input of the
actuators by sending corresponding current commands to the
motors.

τ = 1.3i − 0.32 (53)

where i is in A and τ is in N m.

5 Simulation results

This section presents simulation results of stabilization and
trajectory tracking control by our controller designed in
Sect. 3. The results are compared with those of the linear
controller alone.

The control gain Ki of the base linear controller in Eq. (27)
are chosen as [K1, K2, K3, K4] = [2401, 1372, 294, 28],
which is the case when all the roots to the characteristic equa-
tion lie at − 7. The same gain matrix is used for control of
the other axis as well as for experiments. As mentioned in
Sect. 3.2, we first need a conventional PID controller work-
ing along with the base controller for offline training. For this
training purpose, the PID control gains are chosen experi-
mentally as (Kp, Ki , Kd) = (1.0, 1.0, 0.1) which yields an
acceptable control performance. For simulation study, the
original nonlinear model in Eq. (16) is used to represent the
physical system.

5.1 Stabilization

Figure 6 shows the simulation results for stabilizing the ball
at (xd , yd) = (0.1,− 0.1) m. To increase clarity, only the
variables related to the y-axis rotational motion are shown
since the other axis motion is analogous. Figure 6a shows the
result of only using the base linear controller (AFL hereafter)
for comparison purpose while Fig. 6b shows our proposed
controller (AFLNN hereafter) in which the neural network-
based PID compensator is used along with AFL. The initial
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Fig. 6 Simulation results for stabilizing the ball at (0.1,− 0.1). For clarity, only the y-axis rotational motion is plotted: a AFL alone and bAFLNN

-0.1 -0.05 0 0.05 0.1
x (m)

-0.1

-0.05

0

0.05

0.1

y 
(m

)

desired
simulated

-0.1 -0.05 0 0.05 0.1
x (m)

-0.1

-0.05

0

0.05

0.1

y 
(m

)

desired
simulated

(b)(a)

Fig. 7 Simulation results for circular trajectory tracking (R = 0.06 m and ω = 6 rad/s): a AFL alone and b AFLNN

conditions for all states were given zero in the simulations.
Although a target point off the plate center was selected to
see the performance difference between AFL and AFLNN,
except for initial larger overshoots of AFLNN, both con-
trollers resulted in the error of 0.001 m in both x and y axes.
However, as it will be shown later in the experiment sec-
tion, in practice AFL shows a fair amount of steady state
error whereas AFLNN is capable of significantly reducing
the errors which might be resulted from the model simplifi-
cation.

5.2 Trajectory tracking

To further demonstrate the performance of the proposed con-
troller, a circular trajectory tracking control is conducted. The
desired trajectory is chosen as
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Fig. 8 PID control gains being updated through the neural network
during trajectory tracking control

xd(t) = R sin(ωt) (54)

yd(t) = R cos(ωt) (55)
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Fig. 9 Experimental results for stabilizing the ball at (0.1,− 0.1): a AFL alone and b AFLNN
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Fig. 10 PID control gains being updated during the stabilization control
experiment

where R denotes the radius of the circle and ω the angular
velocity of the circular motion. Considering the size of the
plate, it is selected that R = 0.06 m and ω = 6 rad/s. Figure 7a
shows the simulation results of AFL alone while Fig. 7b
shows the result of the proposed controller. As it can be seen
form the figure, the RMS deviation of the circular motions
from the desired trajectory decreased from 8.4mm to 0.6mm
in the steady state.

Figure 8 shows the adjustment of the PID gains by the
neural network over time. It is seen that in this case the pro-
portional gain, Kp, plays an important role in reducing the
steady state error as it rapidly increases in the beginningwhile
the other gains are reasonably stable within a range.

6 Experimental results

It is worth mentioning that in the implementation of AFL,
we need to measure higher time derivatives, ẍ and

...
x , of the

ball position apart from ẋ in the feedback control as seen
in Eq. (27). These derivatives can be obtained from making
use of the coordinate transformation in Eqs. (23) and (24),
which are ẍ = ζ3 and

...
x = ζ4, to avoid impractical numerical

differentiations for such high derivatives.
It also should be mentioned that in order to minimize

unwanted instability of AFLNN in practice, the NN-based

PID compensator is set to be activated after one second from
start when the response is relatively settled with the base
controller.

The learning rate of η = 0.3 and momentum rate of
α = 0.6 are used for the neural network in AFLNN for the
experiments.

6.1 Stabilization

Figure 9 shows the experimental results of stabilization of
the ball at (0.1,− 0.1) m. The ball was initially placed near
the center of the plate when the control starts. As it can be
seen in Fig. 9a, there is a steady state error in both x and y
coordinates with AFL alone as the ball is stabilized at the
averaged coordinates of (0.073,− 0.076) m. This error is
caused by the simplifications and approximations that have
beenmade on the systemmodel in the design of theAFL base
controller as explained in Sect. 3.1. As shown in Fig. 9b, the
steady state error becomes almost eliminated when AFLNN
is used as the ball is now stabilized at (0.093,− 0.093).

Figure 10 shows the changes in PID gains. Since the
amount of additional torque input needed for the stabiliza-
tion correction is relatively small, the PID gain updates occur
within a small range. The error that AFL alone is not capable
of eliminating is being gradually reduced as the PID gains are
updated and the gains are also eventually stabilized within a
small range as the ball is stabilized at the desired location.

6.2 Trajectory tracking

Figure 11 shows the experimental results of the ball fol-
lowing a circular trajectory with R = 0.08 m and ω = 2
rad/s. Figure 11a is with only AFL and Fig. 11b shows the
improved result with AFLNN. It shows that in the steady
state the deviation error decreases from 0.0115 to 0.0077 m
in terms of the radius of the circular trajectory.

Figure 12 shows that the PID gains by AFLNN are being
adjusted online successfully. It shows that the neural net-
work tries to increase the system response by increasing Kp
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Fig. 11 Experimental results for circular trajectory tracking (R = 0.08 m and ω = 2 rad/s): a AFL alone and b AFLNN
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Fig. 12 PID control gains being updated during the trajectory tracking
control experiment

while the trajectory tracking accuracy becomes improved by
increasing Ki .

7 Conclusion

In order to avoid the difficulties of controller design of non-
linear systems, we proposed a controller consisting of a base
linear controller and a neural network-based PID compen-
sator. The controller is structured in a way that the outputs of
the two subcontrollers are added together to generate a resul-
tant control input to the system.We implemented the strategy
on the ball-plate system and demonstrated the effective-
ness of the proposed controller in stabilization and trajectory
tracking control through simulations and experiments.

The suggested future research directions include the use of
different training algorithms such as Levenberg–Marquardt
for better convergence for the neural network’s online train-
ing and construction of a portable ball-on-plate system using
a small single-board computer such as Raspberry PI.

Appendix

The expressions for α(X) and β(X) in Eq. (26) are written
as

α(X) = A2
xmbθ̇

2
y

(
mbx θ̇

2
y + mbg sin θy

)

− Axmbgθ̇
2
y sin θy + Ax Bx

(
2mbẋ θ̇y + mbg cos θy

)
× (−2mbx ẋ θ̇y + mbgx cos θy + mbgr sin θy

)
β(X) = Ax Bx

(
2mbẋ θ̇y + mbg cos θy

)

where

Ax = 1

mb + Ib/r2
, Bx = 1

mbx2 + Ib + Ip
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