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Abstract
This article proposes a state feedback controller synthesis for nonlinear time-delay distributed control systems subjected to
input saturation nonlinearity and disturbances. Nonlinear time-delay distributed control system individual states are without
time-delay and the states coming from other subsystems have the communication link time-delay. The coupling states time-
delay is presumed to be time-varying within a predefined bound. First, we suggest global state feedback controller design
and then, we extend the proposed global design technique to more general local state feedback controller scheme by using
an auxiliary region of attraction. Linear matrix inequality (LMI)-based solution is anticipated to synthesis global and local
state feedback controller by using global and local sector bounded condition, Lyapunov–Krasovskii function, and Lipschitz
condition. Which guarantee global and local asymptotic stability of the complete closed-loop system and L2 gain reduction of
the mapping from dp(t) to z p(t). Application results are presented to validate the benefits and effectiveness of the anticipated
controller design schemes.

Keywords State feedback control · Linear matrix inequalities (LMI) · Lipschitz nonlinearity · Nonlinear time-delay
distributed control systems · Sector bounded condition

1 Introduction

Recently, the “networked control systems” (NCSs) is an
evolving researchfield in control systemcommunity inwhich
many subsystems are connected via a communication net-
work. NCSs has a wide range of application, for instance,
electrical power grids, smart transportation, distributed con-
trol systems (DCS), remote surgery, oil and gas pipelines,
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wastewater collection and water distribution systems, super-
visory control and data acquisition (SCADA), smart home,
and industrial control systems (ICS) [1–7]. Time-delay is
occurs in NCS owing to the finite capability of data pro-
cessing and information communication among numerous
subsystems. The presence of time-delay not just reduces the
system performance but moreover affect the closed-loop sys-
tem stability, even makes the closed-loop system unstable
[8–11].

Three types of model predictive control (MPC), central-
ized, decentralized and distributed schemes are widely used
to control large-scale distributed control systems [12]. How-
ever, in many application, the MPC may not be desirable
due to the computational burden, lack of flexibility, and high
maintenance cost. Designing controllerwithout including the
nonlinear behavior of actuator may cause inaccuracy, per-
formance degradation, loss of control, and even instability,
when the control action crosses the actuator maximum or
minimum bounds [9, 13, 14]. Actuator saturation nonlinear-
ity exists in all physical systems. Because physical actuators
such as electric motors, airplane elevators, airplane flaperon,
hydraulic and valves in process industry cannot convey infi-
nite energy signal. The conventional controller may perform
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well under normal operation, but when actuator saturates,
then the behavior of closed-loop systemchanges significantly
[14]. Similarly, the presence of time-delay is pretty common
in chemical processes, industrial plants, power plants, robots,
pneumatic structures, distributed network control systems,
and hydraulic transmission lines. The presence of time-delay
in a plant generally has undesirable effects such as perfor-
mance degradation, oscillations, lag, and instability [11, 12].
Throughout the past eras, the study of the time-delay plant
has acquired abundant research consideration from the con-
trol system community [15–22]. The study of the stability
criteria of the time-delay system can be grouped into three
types, delay-independent [15–18], delay-dependent [19–22],
and delay-range-dependent [11, 12]. Delay-independent sta-
bility criteria are more conservative because it does not
contain the information of time-delay and can be applica-
ble to the plant with infinite delay. Delay-dependent stability
criteria include the information of time-delay. In contrast,
delay-independent and delay-dependent stability criteria,
delay-range-independent stability criteria time-delay diverge
in a range and are least conservative amongst all [12]. Main-
taining the stability of network time-delay system with state
delay and input saturation is a challenging problem to control
engineers.

This paper proposed state feedback controller synthe-
sis for nonlinear time-delay distributed control systems
with input saturation nonlinearity, time-varying coupling
delay, and external disturbances. The nonlinear time-delay
distributed control system individual state vector is with-
out any time-delay and the states approaches from other
subsystems has transportation time-delay. By applying a Lip-
schitz condition, global and local sector bounded condition,
and Lyapunov–Krasovskii function, LMI-based conditions
are provided to synthesize global and local state feedback
tracking controller, which ensure the L2 stability of the over-
all closed-loop system. Simulation results are provided to
demonstrate the effectiveness of the proposed global and
local state feedback controller schemes.

The rest of this paper is planned as follows. Nonlinear
time-delay distributed control system is introduced in Sect. 2.
Sections 3 and 4 presents the global and local controller syn-
thesis for nonlinear time-delay distributed control systems,
respectively. Section 5 provides simulation results. Finally,
the conclusion is presented in Sect. 6.

Notation This article used standard notations.
The L2 gain from dp(t) to z p(t) is represent by
sup‖dp(t)‖2 ��0

(∥∥z p(t)
∥∥
2

/∥∥dp(t)
∥∥
2

)
< γ .

∥∥z p(t)
∥∥
2 and

∥∥z p(t)
∥∥ indicates the L2 and Euclidian norm of vector z p(t),

respectively. S > 0 and S ≥ 0 denote that symmetric matrix
S is positive-definite and positive semi-definite. Block
diagonal matrix is represented by diag{x1, x2, . . . xn}. The

dead zone and saturation nonlinearity are represented by
Nsat (u(t)) and ζz(u(t)) respectively.

2 System description

Consider a class of two nonlinear time-delay distributed con-
trol systems with dynamic nonlinearity, input saturation, and
external disturbances, represented by

ẋ p1(t) � Ap11xp1(t) + f (t , xp1) + Ap12xp2(t − τ )

+ Bu1Nsat (u1(t)) + Bw1dp1(t)

z p1(t) � Cp11xp1(t) + Cp12xp2(t − τ )

+ Du1Nsat (u1(t)) + Dw1dp1(t)

ẋ p2(t) � Ap21xp2(t) + f (t , xp2) + Ap22xp1(t − τ )

+ Bu2Nsat (u2(t)) + Bw2dp2(t)

z p2(t) � Cp21xp2(t) + Cp22xp1(t − τ )

+ Du2Nsat (u2(t)) + Dw2dp2(t)

xp1(t) � θ1(t), t ∈ [−τ2 0
]
,

xp2(t) � θ2(t), t ∈ [−τ2 0
]
, (1)

where xp1(t) ∈ Rn is state of the first plant, xp2(t) ∈ Rn

is the state of the second plant, u1(t) ∈ Rm denotes the
control input to the first system, and u2(t) ∈ Rm represents
the control input to the second system. Nsat (u1(t)) ∈ Rm

and Nsat (u2(t)) ∈ Rm denotes the saturated control input
to the first and second system, respectively. z p1(t) ∈ Rp

and z p2(t) ∈ Rp are the systems outputs. dp1(t) ∈ Rn

and dp2(t) ∈ Rp represents the exogenous disturbances to
the first and second system, respectively. τ indicates the
transportation time-delay in the states approaching from
other subsystems. f (t , xp1) and f (t , xp2) denotes the non-
linear dynamics. The saturation Nsat (uk(t)) and dead-zone
ζz(uk(t)) nonlinearity are define as

Nsat (uk(t)) � [Nsat1(uk1(t)), Nsat2(uk2(t)), . . . ,

× Nsatm(ukm(t))]
T (2)

ζz(uk(t)) � [ζz1(uk1(t)), ζz2(uk2(t)), . . . , ζzm(ukm(t))]
T (3)

where, Nsati (uki (t)) � sign(uki (t))×min{|uki (t)|, v̄k(i)(t)},
v̄k(i)(t) > 0, ∀ k ∈ {1, 2.}, i ∈ {1, . . . , m}, ζzi (uki (t)) �
sign(uki (t)), max{0, |uki (t)| − v̄k(i)(t)}, v̄k(i)(t) > 0, ∀ k ∈
{1, 2.}, i ∈ {1, . . . , m}, v̄(i) is the i’th saturation
bound. The saturation and dead-zone functions belong to the
Sector [0, I ] and are interrelated by the subsequent relations

Nsat (u1(t)) � −ζz(u1(t)) + u1(t). (4)

Nsat (u2(t)) � −ζz(u2(t)) + u2(t). (5)
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By employing Eqs. (4) and (5) the nonlinear time-delay
distributed control systems (1) can be rewrite as

ẋ p1(t) � Ap11xp1(t) + f (t , xp1) + Ap12xp2(t − τ )

− Bu1ζz(u1(t)) + Bu1u1(t)) + Bw1dp1(t)

z p1(t) � Cp11xp1(t) + Cp12xp2(t − τ ) + Du1Nsat (u1(t))

+ Dw1dp1(t)

ẋ p2(t) � Ap21xp2(t) + f (t , xp2) + Ap22xp1(t − τ )

− Bu1ζz(u2(t)) + Bu2u2(t)) + Bw2dp2(t)

z p2(t) � Cp21xp2(t) + Cp22xp1(t − τ )

+ Du2Nsat (u2(t)) + Dw2dp2(t) (6)

Consider the following state feedback tracking controller,
given by

u1(t) � K11xp1(t) + K12xp2(t − τ )

u2(t) � K21xp2(t) + K22xp1(t − τ ) (7)

where, K11, K12, K21 and K22 are the controller gainmatrices
of appropriate dimension. The complete closed-loop control
system is attained by nonlinear time-delay distributed con-
trol systems (6) and state feedback tracking controller (7) is
represented as

ẋ p1(t) � Ã p11xp1(t) + Ã p12xp2(t − τ ) + f1(t , xp1)

− Bu1ζz(u1(t)) + Bd1dp1(t)

z p1(t) � C̃ p11xp1(t) + C̃ p12xp2(t − τ )

− Du1ζz(u1(t)) + Dd1dp1(t)

ẋ p2(t) � Ã p21xp2(t) + Ã p22xp1(t − τ ) + f2(t , xp2)

− Bu2ζz(u2(t)) + Bd2dp2(t)

z p2(t) � C̃ p21xp2(t) + C̃ p22xp1(t − τ )

− Du2ζz(u2(t)) + Dd2dp2(t) (8)

Ã p11 � (Ap11 + Bu1K11), Ã p12 � (Ap12 + Bu1K12)

C̃ p11 � (Cp11 + Du1K11), C̃ p12 � (Cp12 + Du1K12)

C̃ p21 � (Cp21 + Du2K21), C̃ p22 � (Cp22 + Du2K22)

Ã p21 � (Ap21 + Bu2K21), Ã p22 � (Ap22 + Bu2K22) (9)

In order to design the global and local state feedback track-
ing controller for nonlinear time-delay distributed control
systems we make the following assumptions.

Assumption 1 The mappings Γ1 : dp1(t) → z p1(t) and Γ2 :
dp2(t) → z p2(t) for all real vectors dp1(t), z p1(t) ∈ Rn and
dp2(t), z p2(t) ∈ Rn satisfies

∥
∥z p1(t)

∥
∥ ≤ γ1

∥
∥dp1(t)

∥
∥ (10)

∥∥z p2(t)
∥∥ ≤ γ2

∥∥dp2(t)
∥∥ (11)

Assumption 2 The nonlinear functions f (t , xp1) and f (t ,
xp2) for all real vectors x(t), x̄(t) ∈ Rn fulfills

∥∥ f1(t , xp1) − f1(t , x̄ p1)
∥∥ ≤ ∥∥κ f 1(xp1(t) − x̄ p1(t))

∥∥, (12)
∥∥ f2(t , xp2) − f2(t , x̄ p2)

∥∥ ≤ ∥∥κ f 2(xp2(t) − x̄ p2(t))
∥∥, (13)

where, κ f 1 and κ f 2 are suitable dimensions Lipschitz con-
stant matrices.

3 Global controller design for distributed
control system

In this subsection LMI-based global condition are derived
to design controller for nonlinear time-delay distributed sys-
tems. For diagonal matrices W1 ∈ Rm×m and W2 ∈ Rm×m ,
the dead-zone nonlinearity satisfies global sector bounded
condition (see [9, 13] and references therein)

ζz(u1(t))
T W1[u1(t) − ζz(u1(t))] ≥ 0 (14)

ζz(u2(t))
T W2[u2(t) − ζz(u2(t))] ≥ 0 (15)

Theorem 1 Consider the overall closed-loop nonlinear time-
delay distributed control system attained by nonlinear time-
delay distributed control systems (6) and state feedback
tracking controller (7) satisfying assumptions A1 and A2.
Presume there exist symmetric matrices Q1 ∈ Rn×n , Q2 ∈
Rn×n , P1 ∈ Rn×n , and P2 ∈ Rn×n, and symmetric diagonal
matrices W1 ∈ Rm×m and W2 ∈ Rm×m, than the nonlinear
time-delay distributed control systems under input satura-
tion nonlinearity is globally asymptotically stable, and the
L2 gain from dp1(t) to z p1(t) and from dp2(t) to z p1(t) are
less thenγ1 and γ1 respectively if dp1(t) �� 0 and dp2(t) �� 0,
independent of delay if the following LMI are satisfied:

Ψ �
[

Ψ1 Ψ2

∗ Ψ3

]
< 0 (16)

Ψ1 �

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

Ψ11 0 0 Ap12X2 + Bu1S12 I 0
∗ Ψ22 Ap22X1 + Bu2S22 0 0 I
∗ ∗ −(1 − τ̇ )Z1 0 0 0
∗ ∗ ∗ −(1 − τ̇ )Z2 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

Ψ2 � [
Υ11 Υ12

]

Υ11 �

⎡

⎢
⎢⎢⎢⎢⎢
⎣

−Bu1U1 + ST11 0 Bd1 0
0 −Bu2U2 + ST21 0 Bd2

0 ST22 0 0
ST12 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎦
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Υ12 �

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

X1κ
T
f 1 0 X1CT

p11 + ST11Du1 0
0 X2κ

T
f 2 0 X2CT

p21 + ST21Du2

0 0 0 X1CT
p22 + ST22Du1

0 0 X2CT
p12 + ST12Du1 0

0 0 0 0
0 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎦

Ψ3 �

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

−2U1 0 0 0 0 0 −U1DT
u1 0

∗ −2U2 0 0 0 0 0 −U2DT
u2∗ ∗ −Iγ1 0 0 0 DT

d1 0
∗ ∗ ∗ −Iγ2 0 0 0 DT

d2∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

where, Ψ11 � X1AT
p11 + ST11B

T
u1 + Ap11X1 + Bu1S11 +

Z1,Ψ22 � X2AT
p21 + ST21B

T
u2 + Ap21X2 + Bu2S21 + Z2

Moreover, the controller gain matrices can be obtain from
K11 � S11P1, K12 � S12P2, K21 � S21P2, K22 � S22P1.

Proof Consider the subsequent Lyapunov–Krasovskii func-
tional for symmetric positive definite matrices Q1 ∈ Rn×n ,
Q2 ∈ Rn×n , P1 ∈ Rn×n and P2 ∈ Rn×n given as

V (xp1, xp2, t) � xTp1(t)P1xp1(t) + xTp2(t)P2xp2(t)

+

t∫

t−τ

xTp1(α)Q1xp1(α)dα

+

t∫

t−τ

xTp2(α)Q2xp2(α)dα (17)

The derivative of V (xp1, xp2, t) along the closed-loop
distributed control systems (1) and using (10)–(14) and (15)
yields

V̇ (xp1, xp2, t) ≤ xTp1(t) Ã
T
p11P1xp1(t)

+ xTp2(t − τ ) ÃT
p12P1xp1(t) + f T1 (t , xp1)P1xp1(t)

− ζ T
z (u1(t))B

T
u1
P1xp1(t)

+ dTp1(t)B
T
d1
P1xp1(t) + xTp1(t)P1 Ã p11xp1(t)

+ xTp1(t)P1 Ã p12xp2(t − τ ) + xTp1(t)P1 f1(t , xp1)

− xTp1(t)P1Bu1ζz(u1(t)) + xTp1(t)P1Bd1dp1(t)

+ xTp2(t) Ã
T
p21P2xp2(t) + xTp1(t − τ ) ÃT

p22P2xp2(t)

+ f T2 (t , xp2)P2xp2(t) − ζ T
z (u2(t))B

T
u2
P2xp2(t)

+ dTp2(t)B
T
d2
P2xp2(t) + xTp2(t)P2 Ã p21xp2(t)

+ xTp2(t)P2 Ã p22xp1(t − τ ) + xTp2(t)P2 f2(t , xp2)

− xTp2(t)P2Bu2ζz(u2(t)) + xTp2(t)P2Bd2dp2(t)

+ xTp1(t)Q1xp1(t)

+ xTp2(t)Q2xp2(t)

+ xTp1(t − τ )(1 − τ̇ )Q1xp1(t − τ ) + xTp2(t − τ )(1 − τ̇ )

× Q2xp2(t − τ ) + ζ T
z (u1(t))W1K11xp1(t)

+ ζ T
z (u1(t))W1K12xp2(t − τ ) − ζ T

z (u1(t))W1ζz(u1(t))

+ xTp1(t)K
T
11W1ζz(u1(t)) + xTp2(t − τ )KT

12W1ζz(u1(t))

− ζ T
z (u1(t))W1ζz(u1(t)) + ζ T

z (u2(t))W2K21xp2(t)

+ ζ T
z (u2(t))W2K22xp1(t − τ ) − ζ T

z (u2(t))W2ζz(u2(t))

+ xTp2(t)K
T
21W2ζz(u2(t)) + xTp1(t − τ )KT

22W2ζz(u2(t))

− ζ T
z (u2(t))W2ζz(u2(t)) + xTp1(t)κ

T
f 1κ f 1xp1(t)

− f1(t , xp1) f
T
1 (t , xp1) + xTp2(t)κ

T
f 2

× κ f 2xp2(t) − f2(t , xp2) f
T
2 (t , xp2)

+ xTp1(t)C̃
T
p11γ

−1
1 C̃ p11xp1(t) + xTp1(t)C̃

T
p11γ

−1
1

× C̃ p12xp2(t − τ ) − xTp1(t)C̃
T
p11γ

−1
1 Du1ζz(u1(t))

+ xTp1(t)C̃
T
p11γ

−1
1 Dd1dp1(t)

+ xTp2(t − τ )C̃T
p12γ

−1
1 C̃ p11xp1(t)

+ xTp2(t − τ )C̃T
p12γ

−1
1 C̃ p12xp2(t − τ ) − xTp2(t − τ )

× C̃T
p12γ

−1
1 Du1ζz(u1(t))

+ xTp2(t − τ )C̃T
p12γ

−1
1 Dd1dp1(t)

− ζ T
z (u1(t))D

T
u1γ

−1
1 C̃ p11xp1(t)

− ζ T
z (u1(t))D

T
u1γ

−1
1 C̃ p12xp2(t − τ )

− ζ T
z (u1(t))D

T
u1γ

−1
1 C̃ p12xp2(t − τ )

+ ζ T
z (u1(t))D

T
u1γ

−1
1 Du1ζz(u1(t))

− ζ T
z (u1(t)) × DT

u1γ
−1
1 Dd1dp1(t)

+ dp1(t)D
T
d1γ

−1
1 C̃ p11xp1(t)

× DT
u1γ

−1
1 Dd1dp1(t)

+ dp1(t)D
T
d1γ

−1
1 C̃ p11xp1(t)

+ dp1(t)D
T
d1γ

−1
1 C̃ p12xp2(t − τ )

− dp1(t)D
T
d1γ

−1
1 Du1ζz(u1(t))

− dp1(t)D
T
d1γ

−1
1 Du1ζz(u1(t))

+ dp1(t)D
T
d1γ

−1
1 Dd1dp1(t)

− γ1d
T
p1(t)dp1(t)

+ xTp2(t)C̃
T
p21γ

−1
2 C̃ p21xp2(t)

+ xTp2(t)C̃
T
p21γ

−1
2 C̃ p22xp1(t − τ )

− xTp2(t)C̃
T
p21γ

−1
2

× Du2ζz(u2(t)) + xTp2(t)C̃
T
p21γ

−1
2 Dd2dp2(t)

+ xTp1(t − τ )C̃T
p22γ

−1
2 C̃ p21xp2(t)

+ xTp1(t − τ )C̃T
p22γ

−1
2 C̃ p22xp1(t − τ )

+ xTp1(t − τ )C̃T
p22γ

−1
2 C̃ p22xp1(t − τ )
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− xTp1(t − τ )C̃T
p22γ

−1
2 Du2ζz(u2(t))

+ xTp1(t − τ ) × C̃T
p22γ

−1
2 Dd2dp2(t)

− ζ T
z (u2(t))D

T
u2γ

−1
2 C̃ p21xp2(t)

− ζ T
z (u2(t))D

T
u2γ

−1
2 C̃ p22

× xp1(t − τ ) + ζ T
z (u2(t))D

T
u2γ

−1
2 Du2ζz(u2(t))

− ζ T
z (u2(t))D

T
u2γ

−1
2 Dd2dp2(t)

+ dp2(t)D
T
d2γ

−1
2 C̃ p21xp2(t)

+ dp2(t)D
T
d2γ

−1
2 C̃ p22xp1(t − τ )

− dp2(t)D
T
d2γ

−1
2

× Du2ζz(u2(t)) + dp2(t)D
T
d2γ

−1
2 Dd2dp2(t)

− γ2d
T
p2(t)dp2(t) ≤ 0 (18)

The inequality (18) can be written as

V̇ (xp1, xp2, t) ≤ χT
p (t)Ψ̄ χp(t) ≤ 0, (19)

where,

χp(t) � [ xTp1(t) x
T
p2(t) x

T
p1(t − τ ) xTp2(t − τ ) f T1 (t , xp1)

f T2 (t , xp2) ζ T
z (u1(t)) ζ T

z (u2(t)) dp1(t) dp1(t) ], (20)
�̄

�

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

�̄11 0 0 �̄14 P1 0 �̄17 0 �̄19 0
∗ �̄22 �̄23 0 0 P2 0 �̄28 0 �̄210

∗ ∗ �̄33 0 0 0 0 �̄38 0 �̄310

∗ ∗ ∗ �̄44 0 0 �̄47 0 �̄49 0
∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ �̄77 0 DT

u1γ
−1
1 Dd1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̄88 0 DT
u1γ

−1
1 Dd2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ −1
1 I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ −1
2 I

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

,

(21)

Ψ̄11 � ÃT
p11P1 + P1 Ã p11 + Q1 + κT

f 1κ f 1 + C̃T
p11γ

−1
1 C̃ p11,

Ψ̄14 � P1 Ã p12 + C̃T
p11γ

−1
1 C̃ p12,

Ψ̄17 � −P1Bu1 + KT
11W1 − C̃T

p11γ
−1
1 Du1,

Ψ̄19 � P1Bd1 + C̃T
p11γ

−1
1 Dd1,

Ψ̄22 � ÃT
p21P2 Ã p21 + Q2 + κT

f 2κ f 2 + C̃T
p21γ

−1
2 C̃ p21,

Ψ̄23 � P2 Ã p22 + C̃T
p21γ

−1
2 C̃ p22,

Ψ̄28 � −P2Bu2 + KT
21W2 − C̃T

p21γ
−1
2 Du2,

Ψ̄210 � P2Bd2 + C̃T
p21γ

−1
2 Dd2,

Ψ̄33 � −(1 − τ̇ )Q1 + C̃T
p22γ

−1
2 C̃ p22,

Ψ̄38 � KT
22W2 − C̃T

p22γ
−1
2 Du2,

Ψ̄310 � C̃T
p22γ

−1
2 Dd2,

Ψ̄44 � −(1 − τ̇ )Q2 + C̃T
p12γ

−1
1 C̃ p12,

Ψ̄47 � KT
12W1 − C̃T

p12γ
−1
1 Du1,

Ψ̄49 � C̃T
p12γ

−1
1 Dd1,

Ψ̄77 � −2W1 + DT
u1γ

−1
1 Du1,

Ψ̄88 � −2W2 + DT
u2γ

−1
2 Du2. (22)

By employing the Schur complement Lemma [23
and references therein] to matrix inequality (21)
and then using congruence transformation by using
diag{Ξ1, Ξ1, Ξ2, Ξ3, Ξ2, Ξ2, Ξ2} to the resultant matrix
inequality, (where Ξ1 � diag{P1, P2}, Ξ2 � diag{I , I }
and Ξ3 � diag{W1, W2},) and using change of variables
P−1
1 � X1, P

−1
2 � X2, K11P

−1
1 � S11, P

−1
1 Q1P

−1
1 � Z1,

K12P
−1
2 � S12, K21P

−1
2 � S21, P−1

2 Q2P
−1
2 � Z2,

K22P
−1
1 � S22,W

−1
1 � U1 andW

−1
2 � U2, we attained the

LMI (16). Further, (18) implies that

V̇ (xp1, xp2, t) + γ −1
1 zTp1(t)z p1(t) − γ1d

T
p1(t)dp1(t)

+ γ −1
2 zTp2(t)z p2(t) − γ2d

T
p2(t)dp2(t) < 0. (23)

Integrating (23) from 0 to t > 0 yields

V (xp1, xp2, t) − V̇ (xp1, xp2, 0) + γ −1
1

×
t∫

0

zTp1(t)z p1(t)dt − γ1

t∫

0

dTp1(t)dp1(t)dt

+ γ −1
2

t∫

0

zTp2(t)z p2(t)dt − γ2

t∫

0

dTp2(t)dp2(t)dt < 0 (24)

Under zeros initial condition xawc(0) � 0 we can infers
that V (xp1, xp2, 0) � 0 V (xp1, xp2, t) > 0. Then condition
(24) implies

+ γ −1
1

t∫

0

zTp1(t)z p1(t)dt − γ1

t∫

0

dTp1(t)dp1(t)dt

+ γ −1
2

t∫

0

zTp2(t)z p2(t)dt − γ2

t∫

0

dTp2(t)dp2(t)dt < 0, (25)

which additionally, guarantees that
∥∥z p1(t)

∥∥ ≤ γ1
∥∥dp1(t)

∥∥
and

∥∥z p2(t)
∥∥ ≤ γ2

∥∥dp2(t)
∥∥. Hence, the L2 gains from dp1(t)

to z p1(t) and from dp2(t) to z p2(t) are less than γ1 and γ2
respectively, if dp1(t) �� 0 and dp2(t) �� 0. This concludes
the proof of Theorem 1. �
Remark 1 In Theorem 1 we propose a global state feedback
tracking controller design which ensure the global asymp-
totic stability of the overall closed-loop system. While in
Theorem2,we extend the global controller technique tomore
general local state feedback tracking controller schemes
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by using an auxiliary region of attraction and local sector
bounded condition. Which assurance local asymptotic sta-
bility of the overall closed-loop system.

4 Local controller design for distributed
control system

Consider an auxiliary regions given as

S1(v̄1, t) � {w1(t) ∈ �m ;−v̄1 ≤ u1(t) − w1(t) ≤ v̄1}, (26)

S2(v̄2, t) � {w2(t) ∈ �m ;−v̄2 ≤ u2(t) − w2(t) ≤ v̄2}, (27)

wherew1(t) andw2(t) are the auxiliary definedvectors and v̄1
and v̄2 are the limits on saturation nonlinearity. For positive
definite diagonal matrices W1 ∈ Rm×m and W2 ∈ Rm×m

the dead-zone nonlinearity fulfils the local sector bounded
condition (see [9, 13] and references therein), given by

ζz(u1(t))
T W1[w1(t) − ζz(u1(t))] ≥ 0 (28)

ζz(u2(t))
T W2[w2(t) − ζz(u2(t))] ≥ 0 (29)

w1(t) � u1(t) + G11xp1(t) + G12xp2(t), w2(t) � u2(t) +
G21xp1(t)+G22xp2(t) holds true, if (26) and (27) are fulfilled.

Theorem 2 Consider the overall closed-loop control non-
linear time-delay system attained by nonlinear time-delay
distributed control systems (6), and state feedback tracking
controller (7) satisfying assumptions A1, and A2. Presume
there exist symmetric matrices Q1 ∈ Rn×n , Q2 ∈ Rn×n ,
P1 ∈ Rn×n , and P2 ∈ Rn×n, and symmetric diagonal matri-
ces W1 ∈ Rm×m and W2 ∈ Rm×m, than the nonlinear
time-delay distributed control systems under input satura-
tion nonlinearity is locally asymptotically stable and the L2

gain from dp1(t) to z p1(t), and from dp2(t) to z p1(t) are less
then γ1 and γ1 respectively if dp1(t) �� 0 and dp2(t) �� 0,
independent of delay if the subsequent LMIs are satisfied:

Ψ̄ ∗
1 �

⎡

⎣
P1 0 G11

∗ P2 G12

∗ ∗ μv̄21(k)

⎤

⎦ ≥ 0, (30)

Ψ̄ ∗
2 �

⎡

⎣
P1 0 G21

∗ P2 G22

∗ ∗ μv̄22(k)

⎤

⎦ ≥ 0, (31)

Ψ ∗ �
[

Ψ1 Ψ ∗
2

∗ Ψ3

]
< 0 (32)

Ψ ∗
2 � [

Υ ∗
11 Υ12

]

Υ ∗
11 �

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

−Bu1U1 + ST11 + HT
11 HT

22 Bd1 0
HT
12 −Bu2U2 + ST21 + HT

21 0 Bd2

0 ST22 0 0
ST12 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

Proof Consider the condition (24) in the proof of The-
orem 1, under the assumption xawc(0) � 0, V̇ (xp1,
xp2, 0) � 0 V (xp1, xp2, t) > 0 yields V (xp1, xp2,

t) < γ1

t∫

0
dTp1(t)dp1(t)dt + γ2

t∫

0
dTp2(t)dp2(t)dt which fur-

ther gives xTp1(t)μP1xp1(t) + xTp2(t)μP2xp2(t) < 1 where,
t∫

0
dTp1(t)dp1(t)dt ≤ ∥∥dp1(t)

∥∥2
2 ≤ λ−1

1 ,
t∫

0
dTp2(t)dp2(t)dt ≤

∥∥dp2(t)
∥∥2
2 ≤ λ−1

2 and μ �
(
γ1λ

−1
1 + γ2λ

−1
2

)−1
. Con-

sequently, the states of the closed-loop system persist
bounded by xTp1(t)μP1xp1(t) + xTp2(t)μP2xp2(t) < 1 for

all the time. By including the region xTp1(t)μP1xp1(t) +

xTp2(t)μP2xp2(t) < 1 into S1(v̄1, t) and S2(v̄2, t), we attain
the matrix inequality (30) and (31), respectively. Subse-
quently, the region (26) and (27) and the local sector condition
(28) and (29) remain valid. The linear matrix inequality
(32) is attained by using transformation G11P

−1
1 � H11,

G12P
−1
2 � H12, G21P

−1
2 � H21, G22P

−1
1 � H22, (8),

(10)–(13) (28) and (29) in the similar approach as for the
derivation of Theorem 1. This completes the proof of Theo-
rem 2. �

For dp1(t) � 0 and dp2(t) � 0 a delay-dependent stability
result for designing local state feedback tracking controller
for nonlinear time-delay distributed control systems (1) is
attained from Theorem 2.

Corollary 1 Consider the overall closed-loop control non-
linear time-delay system formed by nonlinear time-delay
distributed control systems (6) and state feedback tracking
controller (7) satisfy A1 and A2. Presume there exist sym-
metric matrices Q1 ∈ Rn×n , Q2 ∈ Rn×n , P1 ∈ Rn×n and
P2 ∈ Rn×n, and symmetric diagonal matrices W1 ∈ Rm×m

and W2 ∈ Rm×m, than the nonlinear time-delay distributed
control systems under input saturation nonlinearity is locally
asymptotically stable if dp1(t) � 0 and dp2(t) � 0, indepen-
dent of delay if LMI’s (30) and (31) along with the following
LMIs are satisfied:

Ψ̄ �
[

Ψ1 Ψ̄2

∗ Ψ̄3

]
< 0 (33)

Ψ̄2 � [
Ῡ11 Υ12

]
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Ῡ11 �

⎡

⎢⎢⎢
⎢⎢⎢
⎣

−Bu1U1 + ST11 0
0 −Bu2U2 + ST21
0 ST22
ST12 0
0 0
0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

Ψ̄3 �

⎡

⎢
⎢⎢⎢⎢⎢
⎣

−2U1 0 0 0 −U1DT
u1 0

∗ −2U2 0 0 0 −U2DT
u2

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −Iγ1 0
∗ ∗ ∗ ∗ ∗ −Iγ2

⎤

⎥
⎥⎥⎥⎥⎥
⎦

Remark 2 Theorems 1 and 2 propose the global and local
state feedback tracking controller schemes for nonlinear
time-delay distributed control plants. The proposed out-
comes can easily be reduced to the linear time-delay dis-
tributed control systems by taking f (t , xp1) � 0 and f (t ,
xp2) � 0. Further, the proposed can also be reduced to
investigate the delay-independent stability of the nonlinear
time-delay distributed control systems.

Remark 3 It is valuable to note that controller design for dis-
tributed nonlinear systems has been studied in [24]. In [24]
the distributed model predictive controller design problem
is investigated for multi-agent nonlinear systems. However,
the transportation delays among subsystems are not consid-
ered. Similarly, in the works of [25, 26], it is presumed that
the communication infrastructure run in flawless environ-
ments. However, this supposition may not be true in practical
implementation, because hardware limitation induces imper-
fections for example time delays [27]. The stabilization
problem for network control system has been studied in [28,
29], by employing delay-independent and delay-dependent
techniques without considering controller windup effect.
These techniques may perform well in absence of input sat-
uration, however when the control action cross the actuator
bound then it may yield objectionable closed-loop perfor-
mance and even instability. In contrast, we investigate a more
practical scenario by considering hardware limitation such as
actuator saturation, communication delays, and time-varying
disturbances. That is the states coming fromother subsystems
have transportation time-delay. The coupling states time-
delay is presumed to be time-varying within a predefined
bound and the manipulating control action is bounded.

The suggested controller design method is based on the
supposition that the both the delayed and un-delayed states
of a nonlinear time-delay distributed control systems are
accessible. If delayed or un-delayed states of the plant are
not available, then numerous observer techniques for exam-
ple [30–32] can be employed to estimate the states of the

plant. A state feedback controller design problem for non-
linear time-delay distributed control systems subjected to
input saturation nonlinearity and disturbances is an interest-
ing problem if the delayed or un-delayed states of the system
are not accessible and can be considered in the further work.

5 Simulation results

The following numerical example of nonlinear time-delay
distributed control systems is used to show the efficiency of
the suggested state feedback tracking controller:

Ap11 �
⎡

⎣
−1 2 0
1 −2 −1
3 0 −6

⎤

⎦, Ap12 �
⎡

⎣
−0.3 0.2 0
0.1 −0.2 −0.1
0.3 0 −0.6

⎤

⎦,

f (t , xp1) �
⎡

⎣
0
0

5.1 sin(xp1(t))

⎤

⎦,

Ap21 �
⎡

⎣
−3 2 0
1 −2 −1
3 0 −6

⎤

⎦, Ap22 �
⎡

⎣
−0.1 0.2 0
0.1 −0.2 −0.1
0.3 0 −0.6

⎤

⎦,

f (t , xp2) �
⎡

⎣
0
0

4.0 sin(xp2(t))

⎤

⎦,

Bu1 �
⎡

⎣
1

−1
0

⎤

⎦, Bu2 �
⎡

⎣
1
0

−1

⎤

⎦. (34)

For κ f 1 � 5.1I , κ f 2 � 4.0I , d � 1, v̄ � 1 τ1 � 0 and
τ2 � 1.6 the controller parameters K11, K12, K21 and K22

are calculated using LMI (16). It is calculated to be as

K11 � [
0.07350 11.0510 −2.5962

]
(35)

K12 � [
0.1265 −0.1980 −0.0706

]
(36)

K21 � [
0.2051 −0.1021 −0.3252

]
(37)

K22 � [−12.6462 −10.0148 1.9289
]

(38)

The time-varying disturbance signals dp1(t) and dp2(t) are
selected as

dp1(t) � [
3.5 cos(120t) 0.2 sin(80t) 1.5 cos(100t)

]T
(39)

dp1(t) � [
2.5 cos(120t) 1.2 sin(80t) 1.8 cos(110t)

]T
(40)

The initial values of the states of the first and second
subsystems are selected as xp1(t) � [

3.0 −2.0 2.0
]T

and

xp2(t) � [
1.0 −2.0 2.0

]T
, respectively. Figure 1a–c show

the state response of the first subsystem with and without
a controller. It can be clearly seen from Fig. 1a–c that all
the states of the first subsystem with the proposed controller
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Fig. 1 First subsystem performance with and without controller. a xp1(t) state response, b xp2(t) state response, c xp3(t) state response, d control
input

rapidly converges to zero in the existence of input satura-
tion and time-varying disturbances. Conversely, all states of
the first subsystem without the proposed controller exhibits
oscillatory response due to the dynamic nonlinearity, input
saturation, and external disturbances. The control input of
the first subsystem with and without a controller is shown
in Fig. 1d. It can be noticed from Fig. 1d that the control
input of the first subsystem with a controller is smooth and
convergent. However, a control input of the first subsystem
without a controller is oscillatory.

Similarly, the evolution of the states and control input of
the second subsystemwith andwithout controller are demon-
strated in Fig. 2a–d, respectively. It can be clearly seen from
Fig. 2a–d that all the states and control input of the second
subsystem with the proposed controller rapidly converges
to zero in the presence of input saturation and time-varying
disturbances. The performance of the control action is ade-
quately satisfactory. Conversely, all states and control input
of the second subsystem without the proposed controller
exhibits fluctuation due to the dynamic nonlinearity, input
saturation, and external disturbances.

The convergent behavior of nonlinear time-delay dis-
tributed control systems state trajectories for dp1(t) � 0 and
dp2(t) � 0 with initial conditions of the states xp1(t) �
[−2.0 2.0 −1.0

]T
and xp2(t) � [−0.5 −1.0 1.5

]T
are

depicted in Figs. 3 and 4. Figures 3 and 4 reveal that nonlinear
time-delay distributed control systemswithout disturbance is
asymptotically stable. Hence, we observe that our proposed
controller technique performs well in the presence of input
saturation with and without external disturbance and yield
satisfactory performance.

6 Conclusions

Global and local state feedback tracking controller design for
nonlinear time-delay distributed control systems subjected to
input saturation nonlinearity and disturbanceswere proposed
in this paper. The nonlinear time-delay distributed control
system individual state vector is without any time-delay
and the states coming from other sub-systems come with
time-delay. By applying a Lipschitz condition, global and
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Fig. 2 Second subsystem performance with and without controller. a xp1(t) state response, b xp2(t) state response, c xp3(t) state response, d control
input
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Fig. 3 First subsystem states response for dp1(t) � 0 and dp2(t) � 0
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Fig. 4 Second subsystem states response for dp1(t) � 0 and dp2(t) � 0
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local sector bounded condition, and a Lyapunov–Krasovskii
function, linear matrix inequalities (LMI)-based solution is
derived to synthesis state feedback tracking controller, which
ensure the L2 stability of the overall closed-loop system.Sim-
ulation results are provided to indicate the effectiveness of
the suggested global and local state feedback tracking control
methodologies.
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