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Abstract
In this paper, independent, symmetric, periodic motions in a van der Pol oscillator are predicted through a semi-analytical
method. This semi-analytic method is based on the discretization of the corresponding continuous nonlinear system for an
implicit mapping. Through the implicit mapping structures, stable and unstable periodic motions are obtained analytically. A
sequence of periodic motions to chaos via 1(S)� 3(S)� ···� (2m −1)(S)� ··· is discovered. The stability and bifurcations of
periodic motions are determined through eigenvalue analysis. The frequency–amplitude characteristics of periodic motions
are discussed. Numerical simulations of the periodic motions are carried out for comparison of numerical and analytical
results. Such a periodic motion sequence is for a better understanding of dynamics of the van der Pol oscillator.
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1 Introduction

The van der Pol oscillator was first proposed by van der Pol
[1] in 1920. The analytical solutions of periodic motions of
such a self-excited oscillator have been of great interest for
a century. The method of averaging was used by van der Pol
[1] for determining periodic motions of circuits’ self-excited
systems, and the presence of natural entrainment frequen-
cies in such a system was observed in [2]. van der Pol [3]
continued to study the nonlinear properties of the van der
Pol oscillator. The approximate solutions of single degree of
freedom and two-degree of freedom van der Pol oscillators
were developed. The resonant and relaxation characteris-
tics of the van der Pol oscillators were also discussed. In
1945, Cartwright and Littlewood [4] analyzed the dynamics
of the forced van der Pol equation and proved the existence
of periodic motions. In 1947, Littlewood [5] discussed the
more general case about the dynamic flow of the van der Pol
equation, and proved was that the periodic motions existed
when new damping terms were added. In 1948, Levinson [6]
used a piecewise linear model to describe the van der Pol
equation and determined the existence of periodic motions.
In 1949, Levinson [7] further developed the structures of
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periodic solutions in such a second order differential equa-
tion through the piecewise linear model, and discovered that
infinite periodic solutions existed in such a piecewise linear
model. In 1967, from the Levinson’s results, Smale [8] used
the topological point to present the Smale horseshoe with
discontinuous mappings to describe the existence of infinite
periodic motions. Thus, one extensively used the concept of
the Smale horseshoe to explain chaos in nonlinear dynam-
ical systems. Herein, it should not be discussed any more.
This paper will focus on the periodic motions in nonlinear
dynamical systems.

In 1998, Buonomo [9] suggested a transformation of per-
turbation parameters for approximate solutions of the peri-
odic solutions, and Buonomo [10] combined the perturbation
method and harmonic balance method for improvement of
the aforementioned approximate periodic solutions of the
van der Pol equation. In 2001, Mickens [11] studied the peri-
odicmotion of the van der Pol equation through the backward
Euler method. Mickens [12] also studied the computational
time-step size effects on the period of the limit cycle of the
van der Pol equations for such a numerical method. In 2006,
Waluya and van Horssen [13] used the energy and phase
variables to study the van der Pol dynamic system, and the
asymptotic approximate solutions and the periods of periodic
motions were determined. Andrianov and van Horssen [14]
used the same ideas for a generalized van der Pol equation
and analytically approximated the corresponding periodic
motions.
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The aforementioned improvedmethods were based on the
perturbation and classic harmonic balance method. One tried
to find the way to get the more accurate solutions of periodic
motions in the van der Pol oscillator. To solve such problems
in nonlinear dynamical systems, in 2012, Luo [15] developed
a generalized harmonic balance method. Such an approach
transformed the nonlinear dynamic system into the dynamic
system of coefficients through the finite Fourier series trans-
formation. The steady-state solutions of periodicmotions can
be achieved accurately with a prescribed precision. Luo and
Lakeh [16] used the generalized harmonic balance method to
investigate a periodically forced van der Pol oscillator, and
the stable and unstable solutions of period-m motions were
presented analytically and the symmetric period-1 to period-
5 themotionswere demonstrated.Luo andLakeh [17] studied
period-1 motion and limit cycle in the van der Pol equation.
The parametermap of excitation frequency and amplitude for
period-1 motions was obtained. Luo and Lakeh [18] used the
generalized harmonic balance method to study the period-m
motions of a van der Pol–Duffing oscillator, and the bifur-
cation trees of period-m motions to chaos in such a van der
Pol–Duffing oscillator were presented.

Indeed, the generalized harmonic method provided good
results of periodic motions in nonlinear dynamical systems
with polynomial nonlinearity. For non-polynomial nonlin-
ear dynamical systems, the generalized harmonic balance
method should be very difficult to use. Thus, in 2015,
Luo [19] systematically developed the discrete mapping
method (semi-analytical method) for such a non-polynomial
nonlinear systems, and the periodic solutions of such non-
linear dynamic systems can be predicted analytically and
accurately. The detailed discussion and application were pre-
sented in Luo [20]. Luo and Guo [21] used such a discrete
mappingmethod to determine the bifurcation trees of period-
1 motions to chaos and the frequency–amplitude character-
istics of periodic motions to chaos were presented, which
were compared to the corresponding analytical solutions.
The results given by the analytical and semi-analytical meth-
ods match very well. Guo and Luo [22] further studied the
complex periodic motions of a periodically forced Duffing
oscillator and the bifurcation trees of periodic solutions were
analytically predicted, and the harmonic–amplitude charac-
teristics of periodic motions were also presented (also see,
Guo and Luo [23]). Because the discrete mapping method
(semi-analytical method) can be used to non-polynomial
nonlinear dynamical systems, in 2017, Guo and Luo [24]
used such a discrete mapping method to study the periodic
motion to chaos in a periodically forced pendulum oscil-
lator, and the bifurcation trees varying with the excitation
amplitude were presented. Luo and Xing [25] applied the
discrete mapping method to a time-delayed, quadratic non-
linear system. Luo and Xing [26] used the discrete mapping
method to investigate complex periodic motions in a periodi-

cally forced, time-delayed hardeningDuffing oscillator.Xing
and Luo [27] also presented the possible infinite bifurcation
trees of period-3 motion to chaos in a time-delayed, twin-
well Duffing oscillator. In 2018, Xu and Luo [28] studied a
two-degree-of-freedom van der Pol–Duffing oscillator with
the discrete mapping method. The series of periodic motion
to chaos was presented in such an oscillator. From the afore-
mentioned study, a similar sequent order of periodic motions
in the van der Pol oscillator should exist. In this paper, peri-
odic motions in the van der Pol oscillator will be studied
first.

In this paper, the semi-analytical solutions of periodic
motions in the periodically forced van der Pol oscillator
will be developed from the discrete mapping method. The
stability and bifurcations of periodic motions will be dis-
cussed. The harmonic frequency–amplitude characteristics
of periodic motions in the van der Pol oscillator will also
be presented. Numerical simulations will be completed for
comparison of numerical and analytical results.

2 A semi-analytical method

Consider a periodically forced, van der Pol oscillator as

ẍ − (α1 − α2x
2)ẋ + βx � Q0 cos�t (1)

where α1 and α2 are linear and nonlinear damping coef-
ficients. β is the linear stiffness coefficient; Q0 and � are
excitation amplitude and frequency, respectively. In state
space, Eq. (1) becomes

ẋ � y,

ẏ � (α1 − α2x
2)ẋ − βx + Q0 cos�t . (2)

For t ε [tk−1, tk], Eq. (2) can be discretized with a midpoint
scheme and a mapping Pk (k �1, 2, 3, …) (e.g., Luo [19,
20]) is defined as

Pk : xk−1 → xk ⇒ xk � Pkxk−1 (3)

where xk � (xk, yk)T is the node of motion in the van der
Pol oscillator. The algebraic equations of discrete implicit
mapping for Pk (k �1, 2, …, N) are

xk � xk−1 + 1
2h(yk + yk−1),

yk � yk−1 + h
{
1
8

[
4α1 − α2(xk + xk−1)

2
]
(yk + yk−1)

− 1
2β(xk + xk−1) + Q0 cos�

(
tk−1 + 1

2h
)}

(4)

where h � tk − tk−1 is the discrete time step, and t0 is the
initial time.
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For periodicmotions, themapping structure canbedefined
as P �PN ◦ PN−1 ◦ · · · ◦ P1, i.e.,

P1 : x0 → x1 ⇒ x1 � P1x0,

P2 : x1 → x2 ⇒ x2 � P2x1 � P2 ◦ P1x0,

...

Pk : xk−1 → xk ⇒
xk � Pkxk−1 � Pk ◦ Pk−1 ◦ · · · ◦ P2 ◦ P1x0,

...

PN : xN−1 → xN ⇒
xN � PNxN−1 � PN ◦ PN−1 ◦ · · · ◦ Pk ◦ · · · ◦ P2 ◦ P1x0.

(5)

The associated algebraic equations for the mapping structure
are:

x1 � x0 + 1
2h(y1 + y0),

y1 � y0 + h{ 18 [4α1 − α2(x1 + x0)2](y1 + y0)
− 1

2β(x1 + x0) + Q0 cosΩ(t0 + 1
2h)}

⎫
⎬
⎭ for P1

x2 � x1 + 1
2h(y2 + y1),

y2 � y1 + h{ 18 [4α1 − α2(x2 + x1)2](y2 + y1)
− 1

2β(x2 + x1) + Q0 cosΩ(t1 + 1
2h)}

⎫
⎬
⎭ for P2

...

xk � xk−1 + 1
2h(yk + yk−1)

yk � yk−1 + h{ 18 [4α1 − α2(xk + xk−1)2]
×(yk + yk−1) − 1

2β(xk + xk−1)
+ Q0 cosΩ(tk−1 + 1

2h)}

⎫⎪⎪⎬
⎪⎪⎭

for Pk

...

xN � xN−1 + 1
2h(yN + yN−1)

yN � yN−1 + h{ 18 [4α1 − α2(xN + xN−1)2]
×(yN + yN−1) − 1

2β(xN + xN−1)
+ Q0 cosΩ(tN−1 + 1

2h)}

⎫⎪⎪⎬
⎪⎪⎭

for PN . (6)

The periodicity condition is

xN � x0 ⇒ (xN , yN )
T � (x0, y0)

T. (7)

There are all 2(N +1) algebraic equations in Eqs. (6) and
(7) for nodes x∗

k (k �0, 1, …, N). Once the nodes are com-
puted, the semi-analytical solutions of periodic motions are
obtained. Further, the corresponding stability and bifurca-
tions of periodic motions in the van der Pol dynamic system
can be determined through eigenvalue analysis.

For the mapping structure in Eq. (5), consider a small
disturbance �xk−1 in the neighborhood of x∗

k−1(i.e., xk−1 �

x∗
k−1 + �xk−1, k �1, 2, …, N). With the variation of �xk ,
Eq. (6) can be linearized by

∂fk
∂xk−1

|(x∗
k ,x

∗
k−1)

�xk−1 +
∂fk
∂xk

|(x∗
k ,x

∗
k−1)

�xk � 0 (8)

where fk � ( f1,k, f2,k)T with

f1,k � xk − xk−1 − 1
2h(yk + yk−1),

f2,k � yk − yk−1 − h
{
1
8 [4α1 − α2(xk + xk−1)

2](yk + yk−1)

− 1
2β(xk + xk−1) + Q0 cosΩ(tk−1 + 1

2h)
}
. (9)

Equation (8) gives

�xk � −
[

∂fk
∂xk

]−1[
∂fk

∂xk−1

]

(x∗
k ,x

∗
k−1)

�xk−1 � DPk�xk−1

(10)

where

DPk �
[

∂xk
∂xk−1

]

(x∗
k ,x

∗
k−1)

�
[

∂xk
∂xk−1

∂xk
∂yk−1

∂yk
∂xk−1

∂yk
∂yk−1

]

(x∗
k ,x

∗
k−1)

for k � 1, 2, . . . , N (11)

and

∂xk
∂xk−1

� 8 − h2(α2�1 − 2β + 4hβ) + �2

8 + h2α2�1 + 2h2β + �2
,

∂xk
∂yk−1

�
[
(16 + �2) − (2β − �2)h2

]
h

2
(
8 + h2α2�1 + 2h2β + �2

) ,

∂yk
∂xk−1

� − 4h(α2�1 + 2hβ)

8 + h2α2�1 + 2h2β + �2
,

∂yk
∂yk−1

� 8 − h2(α2�1 + 4β − �2)

8 + h2α2�1 + 2h2β + �2
,

�1 � (xk + xk−1)(yk + yk−1),

�2 � − 4α1 + α2(xk + xk−1)
2. (12)

Finally, the perturbed variation of node �xN is computed by

�xN � DP�x0 � DPN · DPN−1 · · · · · DP2 · DP1︸ ︷︷ ︸
N -multiplication

�x0

(13)
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The resulting Jacobian matrix of the period-1 motion is

DP �
[
∂xN
∂x0

]

(x∗
N ,x∗

N−1,...,x
∗
0)

� DPN · DPN−1 · · · · · DP2 · DP1

�
1∏

k�N

[
∂xk

∂xk−1

]

(x∗
k ,x

∗
k−1)

(14)

The stability and bifurcation of period-1motion can be deter-
mined by the eigenvalues of the Jacobian matrix DP as

|DP − λI2×2| � 0 (15)

From Luo [19, 20], the stability of period-1 motion can be
determined as follows.

i. If the magnitudes of all eigenvalues ofDP are within the
unit cycle (i.e., |λi | <1, i �{1, 2}), the periodic solution
will be stable.

ii. If at least one magnitude of the eigenvalues is out of the
unit cycle (i.e., |λi | >1, i ε {1, 2}), the periodic solution
will be unstable.

iii. The boundaries between stable and unstable periodic
solutions whose eigenvalues have the magnitudes on the
unit cycle will generate bifurcation and stability condi-
tions with higher order singularity.

The bifurcation conditions are as follows.

iv. If λi �1 with |λj | <1 (i, j ε {1, 2}, i �� j), the saddle-node
bifurcation (SN) occurs.

v. If λi �− 1 with |λj | <1 (i, j ε {1, 2}, i �� j), the period-
doubling bifurcation (PD) occurs.

vi. If |λi,j |�1 (i, j ε {1, 2}, λi � λ̄ j ), the Neimark bifurca-
tion (NB) occurs.

For the semi-analytical solutions of period-m motions in
the van der Pol oscillator, the mapping in Eq. (3) becomes

P (m)
k : x(m)

k−1 → x(m)
k ⇒ x(m)

k � P (m)
k x(m)

k−1,

(k � 1, 2, . . . ,mN ). (16)

where x(m)
k � (x (m)

k , y(m)
k )T, (k � 1, 2, . . . ,mN ). Similarly,

the mapping structures of period-m motions of the van der
Pol oscillator can be obtained as:

P (m) : x(m)
0 → x(m)

mN ⇒ x(m)
mN � P (m)x(m)

0 (17)

where P(m) �P(m)
mN ◦ P(m)

mN-1 ◦ ··· ◦ P(m)
2 ◦ P(m)

1 (m �
1, 2, …). The corresponding algebraic equations for P(m)

k
(k �1, 2, …, mN) are

x (m)
k � x (m)

k−1 +
1
2h

(
y(m)
k + y(m)

k−1

)
,

y(m)
k � y(m)

k−1 + h
{
1
2

(
y(m)
1,k + y(m)

1,k−1

)

×
[
α11 − 1

4α12

(
x (m)
1,k + x (m)

1,k−1

)2]

− 1
2β11

(
x (m)
1,k + x (m)

1,k−1

)
+ Q0 cos�

(
tk−1 + 1

2h
)}

.

(18)

The periodicity condition is

x (m)
mN � x (m)

0 , y(m)
mN � y(m)

0 . (19)

Based on Eqs. (18) and (19), the periodic solutions of a
period-mmotion in the van der Pol oscillator can be obtained
by solving 2(mN+1) equations. Thus, the nodes x(m)∗

k (k
�0, 1, 2, …, mN) give the semi-analytical solution of the
period-m motion. For the stability and bifurcations of the
period-m motions, in the neighborhood of x(m)∗

k , x(m)
k �

x(m)∗
k + �x(m)

k (k �0, 1, 2, …, mN), the variation of x(m)∗
mN

can be determined by the linearized equation of the period-m
motion as

�x(m)
mN � DP (m)�x(m)

0

� DP (m)
mN · DP (m)

mN−1 · · · · · DP (m)
2 · DP (m)

1︸ ︷︷ ︸
mN -multiplication

�x(m)
0

(20)

where �x(m)
k � DP (m)

k �x(m)
k−1,

DP (m)
k �

[
∂x(m)

k

∂x(m)
k−1

]
(
x(m)∗
k ,x(m)∗

k−1

) �

⎡
⎢⎢⎢⎣

∂x (m)
k

∂x (m)
k−1

∂x (m)
k

∂y(m)
k−1

∂y(m)
k

∂x (m)
k−1

∂y(m)
k

∂y(m)
k−1

⎤
⎥⎥⎥⎦
(x(m)∗

k ,x(m)∗
k−1 )

(21)

for k �1, 2, …, mN. The components of the Jacobian matrix
DP(m)

k in Eq. (21) are the same as in Eq. (11), which can
be determined by Eq. (12). The stability and bifurcation of
period-m motion are determined by the eigenvalues, i.e.,
∣∣∣DP (m) − λI2×2

∣∣∣ � 0 (22)
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where

DP (m) �
[

∂x(m)
mN

∂x(m)
0

]

(x(m)∗
mN ,x(m)∗

mN−1,...,x
(m)∗
0 )

� DP (m)
mN · DP (m)

mN−1 · · · · · DP (m)
2 · DP (m)

1

�
1∏

k�mN

[
∂x(m)

k

∂x(m)
k−1

]

(x(m)∗
k ,x(m)∗

k−1 )

(23)

The stability and bifurcation conditions for period-mmotions
are the same as for the period-1 motion.

3 Periodic motions

To keep periodic solutions with the accuracy of 10−11, the
time step h ��t <10−3 and the number of periodic nodes
should be 1000 or bigger per period. To avoid collecting all
node nodes, a set of Poincare mapping section is introduced
for a better illustration of the nonlinear properties of the van
der Pol oscillator. For period-mmotions, the node points rel-
ative to the initial point and starting points of each period are
collected in the Poincare mapping section (m �1, 2, 3, …).
That is,

∑
m

�
⎧
⎨
⎩

(
x (m)
k , y(m)

k

)
∣∣∣∣∣∣
tk � t0 + kT

/
N , t0 � 0, T � 2π

/
�

k � 0, 1, 2, . . .mN , mod(k, N ) � 0
m � 1, 2, . . .

⎫
⎬
⎭.

(24)

For periodic motions, consider a set of parameters as

α1 � 16, α2 � 1, β � 5, Q0 � 100. (25)

3.1 Semi-analytical solutions

In this section, the semi-analytical solutions of symmetric
period-m motions in the van der Pol oscillator are presented
through node (x(m)k , y(m)k ) with mod(k, N ) � 0. In all the
plots, the solid and dashed curves represent the stable and
unstable solutions of periodic motions, respectively. The
acronym “SN” is used for the saddle-node bifurcation.

In Fig. 1, the sequent, independent, symmetric periodic
motions are presented for � ε (0, 21). Eleven independent
periodic motions of symmetric period-1 to period-21 motion
are presented in this frequency range. In Fig. 1(i) and (ii),
a global view of displacement x(m)k and velocity y(m)k (mod
(k, N ) � 0) of symmetric periodic solutions is presented.
From the global view, the evolution process of the periodic
motion series to chaos can be concluded as follows

1(S) � 3(S) � 5(S) � · · · � (2l − 1)(S) � · · · (l � 1, 2, . . .)
(26)

From the periodic motion sequence in Eq. (26), the
symmetric period-1 motion appears first, which is repre-
sented by 1(S). The stable and unstable period-1 motions
exist in � ε (0,+∞). When the stable period-1 motion
vanishes, with jumping or chaotic states, the symmetric
period-3 motion exists (i.e., 3(S)). The symmetric period-
3 motion only occurs in an independent, bounded frequency
range. Three stable solutions are obtained. With another two
stable branches adding, it turns to a symmetric period-5
motion (i.e., 5(S)). After symmetric period-5 motion, with
two new branches of stable solutions adding, the symmet-
ric period-5 motion becomes a symmetric period-7 motion.
Such symmetric periodic motion evolution will continue to a
symmetric period-(2l −1) motion toward chaos when l →+
∞. The bifurcation points and frequency range of the sym-
metric period-(2l −1) (i.e., (2l −1)(S)) motions are shown
in Table 1. As the symmetric periodic motion switches to
another adjacent symmetric periodic motion, only saddle-
node bifurcations exist. The jumping or chaotic transient
motion exists between the two adjacent symmetric periodic
motions. For the period-1 motion, the saddle-node bifurca-
tion occurs at �cr ≈2.645. The period-1 motion is stable in
� ε (0, 2.645) and unstable in � ε (2.645,+∞). The sym-
metric period-3 motion exists within � ε (2.449, 4.462).
Thus, from the period-1 to period-3 motion, the jumping
phenomenon is observed. The symmetric period-5 motion
exists in � ε (4.441, 6.205). The frequency ranges for the
two periodic motions are overlapped. Thus, the jumping phe-
nomenonwill be observed. The symmetric period-7motion is
in�ε (6.333, 7.902). The frequency ranges betweenperiod-5
and period-7 motions are not overlapped. Thus, the switch-
ing between the period-5 and period-7 motions are chaotic
in frequency range of � ε (6.205, 6.333). The symmetric
period-9 to period-21 motions exist in the frequency range
of � ε (8.248, 9.574), (10.229, 11.239), (12.219, 12.920),
(14.190, 14.637), (16.136, 16.405), (18.063, 18.220), and
(19.977, 20.069), respectively. The frequency ranges of the
adjacent periodic motions are not overlapped. Thus the fre-
quency gap exists for the two adjacent periodic motions in
the motion sequence. The switching between the two adja-
cent periodic motions are chaotic. The saddle nodes occur
on the boundaries of the frequency range of a symmetric
periodic motion. In Fig. 1(iii) and (iv), the first zoomed win-
dow for the displacement x(m)k and velocity y(m)k is presented
for a better view of periodic motions in such a sequence.
The period-3 to period-13 motions are presented, and the
branches of displacement and velocity are clearly presented
for the slow varying portions in the periodicmotion in the van
der Pol oscillator. In Fig. 1(v) and (vi), the second zoomed
window for period-15 to period-21motions is presented. The
period-15 and period-21 can be clearly observed.
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Fig. 1 Period-mmotions varyingwith excitation frequency.Global view
(� ε (0, 21)): i displacement x(m)k , ii velocity y(m)k . The first zoomed view

(� ε (2.0, 13.1)): iii displacement x(m)k , iv zoomed view of velocity y(m)k .

Second zoomed view (� ε (13.2, 21.2)): v displacement x(m)k , vi veloc-

ity y(m)k . α1 �16, α2 �1, β �5, Q0 �100. (mod(k, N ) � 0, k �
0, 1, …, mN − 1, m �1, 3, …, 21)

3.2 Frequency-Amplitude analysis of periodic
motions

Since the discrete node vectors x(m)�(x (m)
j , y(m)

j ) (j �
1, 2,…,mN) of period-mmotions are obtained, the period-m
motions can be approximately expressed by the finite Fourier
series as,

x(m)(t) ≈ a(m)
0 +

M∑
k�1

[
bk/ m cos

(
k

m
�t

)
+ ck/ m sin

(
k

m
�t

)]
.

(27)

In Eq. (27), there are 2(2 M+1) unknown coefficients of
a(m)
0 ,bk/m and ck/m . They can be determined from the ana-

lytically predicted node vectors x(m)
j (j �1, 2, …, mN) with
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Table 1 Saddle-node bifurcation points with jumping phenomenon of
period-m motions (α1 �16, α2 �1, β �5, Q0 �100, � ε (0, 21), m �
1, 3, …, 21)

Frequency range SN(L) SN(R) Branches

P-1 (0, 2.645) – 2.64 1 branch

(2.645, +∞) 2.64 – 1 branch

P-3 (2.449, 4.462) 2.449 4.462 3 branches

P-5 (4.441, 6.205) 4.441 6.205 5 branches

P-7 (6.333, 7.902) 6.333 7.902 7 branches

P-9 (8.248, 9.574) 8.248 9.574 9 branches

P-11 (10.229, 11.239) 10.229 11.239 11 branches

P-13 (12.219, 12.920) 12.219 12.920 13 branches

P-15 (14.190, 14.637) 14.190 14.637 15 branches

P-17 (16.136, 16.405) 16.136 16.405 17 branches

P-19 (18.063, 18.220) 18.063 18.220 19 branches

P-21 (19.977, 20.069) 19.977 20.069 21 branches

2(mN +1)≥2(2M +1). SettingM �mN /2, the node vectors
x(m) for the period-m motion are expressed with t ε [0, mT ]
as

x(m)(t j ) � x(m)
j ≈ a(m)

0 +
mN / 2∑
k�1

bk/m cos

(
k

m
Ωt j

)

+ ck/m sin

(
k

m
Ωt j

)

≈ a(m)
0 +

mN / 2∑
k�1

bk/m cos

(
k

m

2π j

N

)

+ ck/m sin

(
k

m

2π j

N

)
(28)

where �t �T /N �2π /(�N), tj � t0 + j�t �2π j/(�N) for

(t0 �0, j �0, 1, …, mN). The coefficients of a(m)
0 ,bk/m and

ck/m can be achieved by the following formulas.

a(m)
0 � 1

mN

mN−1∑
j�0

x(m)
j

bk/m � 2

mN

mN−1∑
j�0

x(m)
j cos

(
k

m

2π j

N

)
,

ck/m � 2

mN

mN−1∑
j�0

x(m)
j sin

(
k

m

2π j

N

)
,

(k � 1, 2, . . . ,mN
/
2) (29)

where

a(m)
0 �

(
a(m)
1,0 , a(m)

2,0

)T
,

bk/m � (
b1,k/m, b2,k/m

)T
,

ck/m � (
c1,k/m, c2,k/m

)T
. (30)

The harmonic amplitudes and phases for a period-m motion
in the van der Pol oscillator can be expressed as

A1,k/m �
√
(b1,k/m)2 + (c1,k/m)2, ϕ1,k/m � arctan

c1,k/m
b1,k/m

,

A2,k/m �
√
(b2,k/m)2 + (c2,k/m)2, ϕ2,k/m � arctan

c2,k/m
b2,k/m

.

(31)

The periodic solutions of the period-m motion for the van
der Pol oscillator in Eq. (27) can be rewritten as for j �
0, 1, …, mN

⎧⎨
⎩
x (m)

y(m)

⎫⎬
⎭ ≈

⎧⎨
⎩
a(m)
1,0

a(m)
2,0

⎫⎬
⎭ +

mN / 2∑
k�1

⎧⎪⎨
⎪⎩

A1,k/m cos
(
k
m�t − ϕ1,k/m

)

A2,k/m cos
(
k
m�t − ϕ2,k/m

)

⎫⎪⎬
⎪⎭

.

(32)

To avoid too much illustrations, only frequency-amplitude
curves of displacement x(m)j for period-m motions will be
presented. The displacements for the period-m motion are:

x (m)(t) ≈ a(m)
0 +

mN / 2∑
k�1

bk/m cos

(
k

m
�t

)
+ ck/m sin

(
k

m
�t

)

(33)

Thus,

x (m)(t) ≈ a(m)
0 +

mN / 2∑
k�1

Ak/m cos

(
k

m
�t − ϕk/m

)
(34)

where j �0, 1, …, mN and

Ak/m �
√
(bk/m)2 + (ck/m)2, ϕk/m � arctan

ck/m
bk/m

. (35)

Based on the Fourier series expression of the periodic
motions, the frequency–amplitude characteristics of period-
m motion can be obtained. In all following plots, acronym
“SN” means the saddle node. The stable and unstable solu-
tions of period-mmotions are respectively represented by the
solid and dashed curves.

In Fig. 2, shown are the global views of the harmonic
amplitudes of the symmetric period-m (m �1, 3, …, 21)
motions in the van der Pol oscillator with � ε (0, 21).
For symmetric period-m motions, a(m)0 �0 and A2l/m �0
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Fig. 2 A global view of the frequency–amplitude characteristics of period-m motion: i–vi Ak/m (k �1, 3, …, 11). α1 �16, α2 �1, β �5, Q0 �
100, (m �1, 3, 5, …, 21)

while A(2l-1)/m ��0 (l �1, 2, …). The harmonic amplitude
Am/m �A1 versus with excitation frequency is presented in
Fig. 2(i). The period-1 motion exist in all frequency range,
but the period-m solutions (P-3, P-5, …, P-21) occur in a
finite frequency range. All periodic motions consist of stable
and unstable solutions, and the switching between the stable
and unstable solutions is at saddle-node bifurcations. The
quantity level of A1 is in Am/m ε (0.1, 10.0). The harmonic
amplitude A3m/m �A3 varying with excitation frequency is
shown in Fig. 2(ii). The saddle-node bifurcations are for the
stability switching of periodic motion. The quantity level for

harmonic amplitudes A3m/m �A3 are different from different
period-mmotions (m�3,…, 21).A3 for period-1motion has
a quantity level of 10−6–101, but the quantity level of A3 �
A3m/m (m �3, …, 21) is 10−2–100. The harmonic amplitude
A5m/m �A5 varying with excitation frequency is presented
in Fig. 2(iii). The saddle-node bifurcations and stable and
unstable branches of periodic solutions can be clearly illus-
trated. The quantity level for harmonic amplitude A5 is of
10−9–100, but the quantity level of A5m/m (m �3, …, 21)
is of 10−4–10−1. The harmonic amplitudes A7m/m, A9m/m

and A11m/m are presented in Fig. 2(iv)–(vi), respectively. The
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Fig. 3 Frequency–amplitude characteristics of period-3 motion: i A1/3, ii A3/3, iii A5/3, iv A7/3, v A9/3, vi A189/3. α1 �16, α2 �1, β �5, Q0 �100

quantity level of A7, A9 and A11 for period-1 motion is of
10−11–100. The quantity levels for A7m/m, A9m/m and A11m/m

for period-m motion (m �3, 5, …, 21) are of 10−5–10−1,
10−6–10−1 and 10−7–10−1, respectively. From the global
view of harmonic amplitudes, the quantity level is high for
the low frequency.With frequency increase, the quantity level
of harmonic amplitudes drops.

In Fig. 3, the harmonic amplitudes of the symmetric
period-3 motion in the van der Pol oscillator are plotted for
� ε (2.05, 4.75) as an example. For the symmetric period-3
motion, a(3)0 �0 and A2j/3 �0 but A(2j−1)/3 ��0 (j �1, 2, …).
In Fig. 3(i), the harmonic amplitude A1/3 versus excitation

frequency is presented. The saddle-node bifurcations and a
closed loop formed by stable and unstable branch can be
observed clearly. In Fig. 3(ii), the harmonic amplitude A3/3

�A1 is presented, which is a zoomed view of A1 for period-
3 motion. Harmonic amplitude A3/3 has the quantity level
of 100. In Fig. 3(iii), the harmonic amplitude A5/3 varying
with excitation frequency is presented, and the quantity level
of A5/3 is still 100. The harmonic amplitudes A7/3, A9/3 and
A189/3 of the period-3 motion are presented in Fig. 3(iv)–(vi).
The quantity levels of A7/3 and A9/3 are almost the same as
100. However, the quantity level of A189/3 is of 10−11–10−5.
The harmonic amplitudes decay with increasing harmonic
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Fig. 4 Period-7 motion in the van der Pol oscillator (��7): i displacement, ii velocity, iii trajectory, iv harmonic amplitudes. (I.e. x0 ≈
− 5.05887, ẋ0 ≈ 8.22389) (α1 �16, α2 �1, β �5, Q0 �100). SV-slow varying, FV-fast varying. 3-W is three waves

order. For a high accuracy of 10−11, at least harmonic 189
terms are required for the symmetric period-3 motion. The
other period-m motion can be presented similarly.

4 Numerical simulations

For verifying the semi-analytical solutions of periodic
motions, numerical simulations of the periodic motions are
completed by the midpoint integration method. The initial
conditions for numerical solutions are obtained from the
semi-analytical solutions. The time-responses of displace-
ment and velocity, trajectories and harmonic amplitudes of
the period-7 motion will be presented first, and the trajec-
tories of other period-m motions will be presented. In all
the following plots, circular symbols and solid curves repre-
sented analytical and numerical solutions, respectively. The
acronym “I.C.” means the initial condition, which is denoted
as a circular symbol. The shaded areas are for slowly varying
segment of periodic motions.

In Fig. 4, the time-responses of displacement and velocity,
trajectory and harmonic amplitude spectrum of the period-
7 motion are presented with ��7. The parameters are the
same with Eq. (25). The corresponding initial conditions are
x0 ≈ − 5.05887, ẋ0 ≈ 8.22389 from the semi-analytical

prediction. In Fig. 4(i), the displacement response has two-
segments for slowly varying zones and two fast varying
spikes. In Fig. 4(ii), the velocity response has a slowly vary-
ing zone and two fast varying spikes. For each slowly varying
segment zone, there are three waves (i.e., 3-W). The fast
varying spike forms a wave to form 7-periods. The circu-
lar symbols are very dense for slowly varying segments, but
very sparse for the fast varying spike. In Fig. 4(iii), the phase
trajectory (x, y) of a stable period-7 motion in the van der Pol
oscillator is presented. There are six slowly varying waves
plus two-half, fast varying spikes.For harmonic amplitudes,
a(7)0 �0, A2l/7 �0 and A(2l−1)/7 ��0 (l �1, 2, …). The main
harmonic amplitudes are A1/7 ≈ 8.5104, A3/7 ≈ 2.6191,
A5/7 ≈ 1.6655, A7/7 ≈ 1.2469, A9/7 ≈ 0.6491, A11/7 ≈
0.5027, A13/7 ≈ 0.4455, A15/7 ≈ 0.3451, A17/7 ≈ 0.2705,
A19/7 ≈ 0.2212, A21/7 ≈ 0.1908, A23/7 ≈ 0.1615,
A25/7 ≈ 0.1355, and A27/7 ≈ 0.1146. Ak/7 ε (10−14, 10−2)
for k �29, 31, …, 461 and A461/7 ≈ 5.1620 × 10−13.

In Fig. 5, the phase trajectories of period-mmotions (m �
1, 3, 5, 9, 11, …, 21) are presented. The trajectory of period-
7 motion will not be presented because it was presented
in Fig. 4(iii). All input data are presented in Table 2. The
slowly-varying waves and fast varying spikes are listed. The
numerical results match very well with the semi-analytical
results. The slowly-varying zones are shaded. The initial
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Fig. 5 Phase trajectories of
period-m motions in the van der
Pol oscillator (m �
1, 3, 5; 9, 11, …, 21). i P-1
motion (��1), ii P-3 motion
(��3), iii P-5 motion (��5),
iv P-9 motion (��9), v P-11
motion (��11), vi P-13 motion
(��13), vii P-15 motion (��
14.64), viii P-17 motion (��
16.4), ix P-19 motion (��
18.22), x P-21 motion (��
20.07). α1 �16, α2 �1, β �5,
Q0 �100
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Table 2 Input data for numerical
simulations (α1 �16, α2 �1, β
�5, Q0 �100)

Figure 5 P-m motions � (x0, ẋ0) SV-waves FV-spikes

(i) P-1 1.0 (− 3.5637, 19.0606) 0+0 1+1

(ii) P-3 3.0 (− 4.9368, 9.3679) 1+1 1+1

(iii) P-5 5.0 (− 5.0392, 8.6790) 2+2 1+1

(iv) P-9 9.0 (− 5.0490, 7.6542) 4+4 1+1

(v) P-11 11.0 (− 5.0363, 6.9132) 5+5 1+1

(vi) P-13 13.0 (− 5.0290, 6.2112) 6+6 1+1

(vii) P-15 14.64 (− 4.7826, 5.7650) 7+7 1+1

(viii) P-17 16.40 (− 5.5352, 4.8596) 8+8 1+1

(ix) P-19 18.22 (− 7.4913, 2.9701) 9+9 1+1

(x) P-21 21.07 (− 7.2824, 3.0437) 10+10 1+1

conditions selected are x0 ≈ (− 3.5637, 19.0606) for period-
1 motion. The corresponding trajectory is symmetric to
(x, y)� (0, 0). The harmonic amplitudes are A1 ≈ 10.8724,
A3 ≈ 2.8186, A5 ≈ 1.5392, A7 ≈ 1.0186, which can
continue to A499 ≈ 2.72 × 10−13. The period-1 motion
needs 250 odd harmonic terms to be approximated with the
accuracy of 10−13. In Fig. 5(ii), the phase trajectory of sta-
ble period-3 motion is presented with the initial condition
of x0 ≈ (− 4.9368, 9.3679). There are two slowly varying
waves. The harmonic amplitudes are A1/3 ≈ 8.5035, A3/3 ≈
3.7031, A5/3 ≈ 1.3946, A7/3 ≈ 1.0684, up to A499/3 ≈
2.13×10−13.The period-3motion needs 250 harmonic terms
of A(2l−1)/3 to model such a period-3 motions. A trajectory
of the stable period-5 motion is presented in Fig. 5(iii) with
the initial condition of x0 ≈ (− 5.0392, 8.6790). There are
4 slowly varying waves in the slowly varying zone with two
fast varying spikes. The harmonic amplitudes for the period-5
motion are A1/5 ≈ 8.4943, A3/5 ≈ 2.7523, A5/5 ≈ 2.0642,
A7/5 ≈ 0.9213 up to A499/5 ≈ 6.37 × 10−14. The period-
5 motion needs 250 harmonic terms to be approximated
with the accuracy of 10−14. In Fig. 5(iv), the trajectory of
period-9 motion is illustrated with the initial condition of
x0 ≈ (− 5.0490, 7.6542). The eight slowing varying waves
in the slowing varying zone are observed. The corresponding
harmonic amplitudes are A1/9 ≈ 8.5207, A3/9 ≈ 2.5826,
A5/9 ≈ 1.5399, A7/9 ≈ 1.1445, A9/9 ≈ 0.6974, up to
A413/9 ≈ 2.096 × 10−12. This period-9 motion needs 207
harmonic terms with accuracy of 10−12. The trajectory of a
period-11motion is presented in Fig. 5(v)with the initial con-
dition of x0 ≈ (− 5.0363, 6.9132). The ten slowly varying
waves in the slowing varying zone are observed in the trajec-
tory. The harmonic amplitudes for such a period-11 motion
are A1/11 ≈ 8.5246, A3/11 ≈ 2.5632, A5/11 ≈ 1.4790,
A7/11 ≈ 1.0347, up to A405/11 ≈ 7.938 × 10−13. This
period-11motion needs 203 harmonic terms to keep the accu-
racy of 10−13. The trajectories of period-m motions (m �
13, 15, …, 21) are presented from Fig. 5(vi)–(x), respec-
tively. The initial conditions are x0 ≈ (− 5.0290, 6.2112)

for a period-13 motion, x0 ≈ (− 4.7826, 5.7650) for a
period-15 motion, x0 ≈ (− 5.5352, 4.8596) for a period-
17 motion, x0 ≈ (− 7.4913, 2.9701) for a period-19 motion
and x0 ≈ (− 7.2824, 3.0437) for a period-21 motion. The
(m − 1) slowly varying waves exist in the slowly varying
zone. The harmonic amplitudes for period-m motions are
Ak/m >1 for k �1, 3, …, 7 and A403/13 ≈ 1.512 × 10−12,
A375/15 ≈ 8.249 × 10−12, A339/17 ≈ 1.61 × 10−10,

A379/19 ≈ 2.224 × 10−11, A377/21 ≈ 3.90 × 10−11. The
two fast varying spikes are observed.

5 Conclusions

In this paper, the stable and unstable solutions of period-m
motions in the periodically forced van der Pol oscillator were
obtained. The sequence of symmetric period-1 to period-m
motion is 1(S)�3(S)�5(S)�· · ·�(2l−1)(S)�· · · (l→∞). The
chaotic motions or catastrophes between two adjacent peri-
odicmotions exist. The stability and bifurcations of period-m
motions were determined through eigenvalue analysis. The
frequency–amplitude characteristics of period-mmotions are
presented. Numerical simulations of period-m motions were
carried out for illustration of the slowing varying waves and
fast varying spikes in the van der Pol oscillator. The slowly
and fast varying responses in the periodic motions of the van
der Pol oscillator can be accurately determined.
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