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Abstract
This research investigates uncertain crane motor system unstructured, structured, and linear parameter varying uncertainty
modeling, control, and optimization frameworks. The proposed approaches effectively address the uncertain or time-varying
plant components that typically exhibit significant variations under normal physical operational conditions with external
influence, implying a complex stabilization and performance synthesis problem with a need for sophisticated quantitative
frameworks, suitable for real-time implementations, as compared to traditional proportional-integral-derivative controller
implementations. The crane system motor inductor component uncertainty is modeled analytically for the proposed three
frameworks by using the uncertain state-space approach and the corresponding Multi-Input Multi-Output Linear Fractional
Transformation modeling is used to formulate robust optimization problems for superior tracking performances under opera-
tional disturbances. The uncertain crane controller synthesis numerical results clearly indicate the effectiveness of the proposed
modeling and optimization frameworks on desired tower crane stability and performance levels.

Keywords H∞ control · μ control · Linear parameter varying control · Crane motor parameter uncertainty

1 Introduction

Tower cranes are used in the construction industry, due to
their ability to easily hoist and transport massive loads to
desired locations. Under normal practical conditions, the
tower crane system operation results in significant dynam-
ical stability control problems since its inherent nature of
pendulum characteristics, i.e., the swaying effect [1], imply-
ing serious operational performance concerns, including
fatal accidents and economical losses. The United States
Department of Labor for Occupational Safety & Health
Administration (OSHA) data indicates that an average of
71 crane related fatalities occur each year, with the signif-
icant risk of crane operator exposure to fatalities [2]. Over
the years, crane manufacturers and engineers have attempted
to reduce the number of motor-crane related fatalities by
revising mechanical designs, motor load calculations, and
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electrical control components. However, minimal emphasis
has been concentrated on the crane motor system operational
dynamics, which is vital for the overall crane motor system
stability under operational loads, external disturbances, and
uncertain or varying component characteristics.

Dynamical control of most crane motor systems have
mainly been based on the conventional Proportional, Inte-
gral, Derivative (PID) controllers, because of their simplic-
ity for synthesis as well as implementations, and a few
required, intuitive tuning parameters. However, practical
crane motor system components typically exhibit uncertain
or time-varying characteristics and significantly increase the
complexity of the stability and performance problem, possi-
bly exceeding the capabilities of PID controllers to handle
under real-time practical conditions. In addition, the pres-
ence of plant uncertainties with unknown frequencies and
external disturbances can even make the control of motor
cranes too complex for a traditional PID controller to achieve
reliable robust performance levels for all operational con-
ditions. Thus, control approaches with potential to handle
complex as well as nonlinear dynamical crane systems are
proposed for superior operations. Overhead crane motor sys-
tems have been controlled by using Fuzzy logic [3,4], with
a need for an immense labor task to accurately define the
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fuzzy logic parameters, membership sets, and rules. Optimal
control [5,6]was alsoproposed,with a focus on systemstabil-
ity over the transient response performance levels. However,
optimal control and associated stability margins are very
much susceptible tomodel uncertainties as well as their mag-
nitude and phase characteristics. Adaptive control approach
[7,8]was also proposed bymainly focusing on systemperfor-
mance levels with respect to the system stability perspectives
under uncertainty. Furthermore, H∞ control [9] was devel-
oped for overhead crane motor systems by considering the
length of the hoist cable and angle of swing as the primary
focal points and its implementation via the linear matrix
inequality approach.

This research focuses on uncertain motor systems in crane
operations, i.e., a crane motor inductor component-level
uncertainty for the corresponding safety, stability, and per-
formance levels, that illustrate significant variations under
external influences during the real life motor crane applica-
tions. Fluctuating crane motor parameters such as armature
coil resistance and inductance, with increasing temperature
levels [10,11] as the motor heats up during heavy opera-
tions, can considerably affect the stability and performance
of motor crane systems. As generalized low-pass filters can
be introduced in the design model to capture the parameter
perturbation and also to suppress any disturbance that might
affect the tracking of the motor speed, this study investi-
gates a formal quantitative, low computational complexity
modeling and optimization approaches, i.e., robust H∞, μ,
and linear parameter varying (LPV) modeling, control, and
optimization frameworks, for guaranteed stability and per-
formance levels during optimal cranemotor operations under
quantified as well as norm-bounded uncertainty terms. The
proposed quantitative frameworks offer an effective numer-
ical controller synthesis to handle component, dynamical,
and exogenous component as well as signal uncertainties for
worst-case conditions and to ensure safety, stability aswell as
desired performance levels of the corresponding crane sys-
tem inherent dynamic stability conditions for accurate aswell
as safe real-time implementations. The study is organized as
follows: the model development and derivation of the basic
tower crane motor model is presented in Sect. 2. Section 3
describes the proposedH∞ andμ controller synthesis frame-
works while Sect. 4 presents the Linear Parameter Varying
(LPV) modeling and optimization framework with a candi-
date system motor inductor variations. As Sect. 5 discusses
the proposed framework numerical implementation steps and
simulation results, the conclusions are given in Sect. 6.

2 Basic cranemotor modeling

Motors in crane systems are accurately described by well-
known mathematical models, with estimated parameters to

Fig. 1 Single motor tower crane

Fig. 2 A DC motor armature circuit with the rotor connected load

adopt for the expected operating conditions. However, high
performance, model-based closed-loop system performance
is closely dependent to the accuracy of the estimated motor
parameters, with inaccurate or varying parameters yielding
unexpected stability and performance issues. As the con-
sideration of all potential parameter variations most likely
yields intractable problems, it is essential to identify themost
critical parameters for stability and performance analysis.
A permanent magnet DC motor implementation in a tower
crane system, shown in Fig. 1, is considered in this research
for clarity and easy extension to any type of motor dynamics
in crane systems, to hoist payloads up anddown to target loca-
tions; the horizontal jib or working arm of the crane carries
the load on a trolley and moves it in and out of the crane cen-
ter while the horizontal machinery arm contains the motor,
other electronics and a large concrete counterweight. During
the crane operations, the payload is hoist up/down by a steel
cable rope that runs over a pulley which is connected to a DC
motor gearbox system.

A DCmotor system operating under a load, shown in Fig.
2, contains electrical and mechanical subsystems with the
corresponding parameters given in Table 1 [12]. Using the
physical laws for the corresponding electrical andmechanical
subsystems yields the state-spacemodel with inputs, outputs,
and the governing system states.

The DCmotor generates an electromagnetic torque T that
is proportional to the armature current i and the strength
of the internal magnetic field. Assuming constant internal
magnetic field, the motor electromagnetic torque is propor-
tional to the armature current, given as T = kt i , where kt
denotes themotor structure-dependent torque constant. Also,
the back emf e is proportional to the angular velocity ω of
the motor shaft as e = kb

dθ
dt , where kb denotes the motor

structure-dependent voltage constant andω = dθ
dt , θ(t) being

the angular position. Applying the Kirchhoff’s voltage law
around the motor circuit in Fig. 2 yields

Lo
di

dt
+ Ri + e = u (1)
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Table 1 DC motor system parameters

Description (symbol) Unit or value

Moment of inertia (J) 7.2 × 10−6 Kgm2

Viscous friction constant (b) 4.8∗10-5Nm s rad−1

Back electromotive force (e) Volt

Armature resistance (R) 2.07 Ohms

Armature inductance (Lo) 6.2 × 10−4 Henry

Armature current (i) (A) Ampere

Electromagnetic torque (T) Nm

Torque constant (kt ) 0.052NmA−1

Rotor position (Θ) (θ) Degree

Voltage constant (kb) 5.2 × 10−2 V s rad−1

Rotor angular velocity (ω) rpm

Input voltage (u) Volt

Using the Newton’s 2nd law of rotational motion, the elec-
tromagnetic torque T causes a mechanical action that is
governed by

J
d2θ

dt2
+ b

dθ

dt
= T (2)

Rearranging (1) and (2), and substituting torque and back
emf expressions yield (3), and (4), respectively.

di

dt
= − R

Lo
i − kb

Lo
ω + 1

Lo
u (3)

dω

dt
= − b

J
ω + kt

J
i (4)

Considering that x1 = i , ẋ1 = di
dt , x2 = ω, ẋ2 = dω

dt , and
the motor angular velocity as the system output, the motor
system governing state-space representation can be given as

[
ẋ1
ẋ2

]
=

[− R
L0

− kb
Lo

kt
J − b

J

] [
x1
x2

]
+

[ 1
Lo

0

]
u

y = [
0 1

] [
x1
x2

]
(5)

and the corresponding motor nominal system block diagram,
for the Maxon RE Permanent Magnet DC motor (Catalog
number 273753) [12] parameter data in Table 1, is given in
Fig. 3. The state-space representation in (5) can be used to
generate the nominal plant Go(s) block diagram for con-
troller design purposes as shown in Fig. 4, with the current i
and the angular velocity ω represent the system states x1 and
x2, respectively.

Fig. 3 The DC motor nominal plant block diagram

Fig. 4 The closed-loop control system with the plant multiplicative
uncertainty

3 Cranemotor parametric uncertainty
modeling, and H∞ and � controller
synthesis

For the crane systemmodel parameter uncertainty modeling,
control, and optimization considerations, themotor operating
under load in Fig. 2 is considered to have the uncertain arma-
ture inductance Lo with significant perturbations. The same
approach can easily be applied to other potentially important
parameters, with higher level of problem complexity.

The main objective of the controller design is to achieve
robust tracking performance while minimizing the effects of
parameter or external perturbations associated with the real
plant. Robust system theories synthesize controllers by using
the linear, time-invariant (LTI) nominal models for norm-
bounded uncertain plants to ensure robustness and stability,
as robustness terms being manipulated as fictitious uncer-
tainty components. For a stabilizing controller to exist under
a common configuration, a necessary and sufficient condition
must be achieved such that the closed-loop transfer matrix
‖Twz(s)‖∞ ≺ γ for the closed-loop system in Fig. 4, with
the uncertain plant G(s) = Go(s)(1 + W (s)�) in the mul-
tiplicative uncertainty case, where γ is a prescribed critical
level for robustness, uncertainty Δ, and uncertainty weight-
ing functionW (s). In Fig. 4, the inputs have been partitioned
into exogenous disturbances w from the uncertainty, refer-
ence signal r(t) and control input u(t). Likewise, the outputs
have been partitioned into the output z from a filter, i.e.,
an uncertainty weighting function, used to characterize the
uncertainty as well as performance effects, and the plant out-
put y(t) that is available to the controller C(s), through the
error signal e(t).

Once the nominal plant Go(s) is obtained from Fig. 3, a
critical motor component is considered for parameter fluctu-
ations as uncertainty. During the crane operations, the motor
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Fig. 5 The uncertain DC motor block diagram

heats up and the change in temperature affects the arma-
ture coil inductance considerably by an increase of 10–20%
perturbation [13] of the nominal armature coil inductance
value. Thus, by utilizing the component-level multiplicative
uncertainty description, the uncertain armature coil induc-
tance component can be expressed as

L = Lo
(
1 + WLo (s)ΔLo (s)

)
(6)

where Lo is the nominal armature inductance value,WLo (s)
is the armature inductance uncertainty weighting function
covering all related uncertainty characteristics in the fre-
quency domain, and ΔLo (s) is the corresponding bounded
uncertainty term. Incorporating theuncertain armature induc-
tance model into the nominal plant block diagram of the DC
motor in Fig. 3 results in the uncertain crane motor model
block diagram, as shown in Fig. 5.

Using the diagram in Fig. 5 with two inputs and two
outputs, the uncertain motor state-space model can also be
written as

[
ẋ1
ẋ2

]
=

[ −R
Lo

kb
Lo

kt
J

−b
J

] [
x1
x2

]
+

[ −1
Lo

1
Lo

0 0

] [
d
u

]

[
z
ω

]
=

[−R −kb
0 1

] [
x1
x2

]
+

[−1 1
0 0

] [
d
u

]
(7)

For a unity-feedback closed-loop control system having
a multiplicative uncertainty description, as shown in Fig. 4,
the system robust stability is achieved if and only if the cor-
responding controller (C(s)) satisfies

‖T (s)W (s)‖∞ ≺ 1 for all Re(s) ≥ 0 (8)

where W (s) is a given stable uncertainty weighting func-
tion and T (s) is the complementary sensitivity function,
expressed as

Fig. 6 The feedback control system with the uncertainty and perfor-
mance weighting functions

Fig. 7 The linear fractional transformation controller synthesis frame-
work of the feedback control system

T (s) = C(s)Go(s)

1 + C(s)Go(s)
(9)

Assuming that the robust tracking performance is character-
ized by a small sensitivity function S(s), given by

S(s) = 1

1 + C(s)Go(s)
(10)

then, the condition for nominal performance for the closed-
loop system with multiplicative uncertainty becomes

∥∥S(s)Wp(s)
∥∥∞ ≺ 1 for all Re(s) ≥0 (11)

where Wp(s) is the performance weighting function. To
achieve the system performance under uncertainty, i.e.,
robust performance, the controller must satisfy both the
robust stability and nominal performance conditions for all
possible plant models, given as

∥∥|T (s)W (s)| + ∣∣S(s)Wp(s)
∣∣∥∥∞ ≺ 1 for all Re(s) ≥ 0 (12)

A robust stability problem with two perturbations is equal
to a robust performance problem with one perturbation, i.e.,
the main loop theorem [14], provided the H∞ norm is used to
quantify robust performance with the fictitious perturbation
applied at the appropriate location in the feedback control
system, as shown in Fig. 6 for the cranemotor control system.

A single motor with one uncertainty at the component
level in a feedback control system in Fig. 6 can be considered
for the robust performance criterion by using the common
Linear Fractional Transformation (LFT) framework for the
controller synthesis, as shown inFig. 7,whereΔ is the system
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uncertainty matrix that contains the bounded model uncer-
tainty and the performance fictitious uncertainty terms, C(s)
is the robust controller to be designed, and P(s) denotes the
augmented plant of the closed-loop control system, shown in
Fig. 6, including the nominal plant and performance as well
as uncertainty weighting functions, given by

⎡
⎣ ē
z
e

⎤
⎦ = P(s)

⎡
⎣ r̄
d
u

⎤
⎦ (13)

where the augmented plant is obtained as

P(s) =
⎡
⎣Wp(s) −Td−y(s) ∗ Wp(s) −Tu−y(s) ∗ Wp(s)

0 Td−z̄(s) ∗ WLo(s) Tu−z̄(s) ∗ WLo(s)
1 −Td−y(s) −Tu−y(s)

⎤
⎦ ,

where Ta−b(s) denotes the transfer function from the input
a to the output b, and WLo(s) is the uncertainty weighting
function that covers all inductance uncertainty behavior for
different frequencies.

3.1 H∞ controller

The H∞ controller synthesis, for the given LFT representa-
tion in Fig. 7, can be stated as designing a controller C(s)
such that
∥∥∥∥∥∥∥∥
T∣∣∣∣∣
r̄
d

∣∣∣∣∣→
∣∣∣∣∣
ē
z

∣∣∣∣∣
(s)

∥∥∥∥∥∥∥∥∞

≺ 1 (14)

is satisfied for the performance and disturbance input–output
transfer functions. The appropriate inductor uncertainty
weighting function, WLo(s)

WLo(s) = (0.2)

(
s + 10

s + 100

)
(15)

is considered to cover all uncertainty around the nominal
plant in the frequency domain, i.e., its steady-state value for
low frequency range is more accurately known with respect
to the instantaneous variations at relatively high frequencies,
as shown in Fig. 8.

The control system aims for satisfactory steady-state
tracking performance, i.e., minimize

∥∥S(s)Wp(s)
∥∥∞ ≺ 1,

where Wp(s) is the desired performance weighting function
selected for the real plant. Using the performance weight-
ing function selection guidelines and several iterations, the
performance weighting function Wp(s)

Wp(s) = 8100

( s
10 + 1
s

0.001 + 1

)
(16)

Fig. 8 The uncertainty and performance weighting function frequency
responses

was chosen to have a high gain value at low frequencies
for superior steady-state performancewhile having relatively
low gain at high frequencies for acceptable transient perfor-
mance levels, whose frequency response is shown Fig. 8,
comparatively with the uncertainty weighting function fre-
quency response.

Although the H∞ control framework is easy to handle, the
corresponding controller synthesis results are mostly overly
conservative due to the consideration of unstructured worst-
case uncertainty description, including the stability and
performance uncertainties, implying a need for the μ control
framework to potentially improve the results by exploiting
particular uncertainty structures of each problem while sig-
nificantly increasing the problem computational complexity.

3.2 � controller

The μ control framework makes use of the structured
uncertainty [15] description if the relationships between
the individual plant and performance uncertainty terms are
known. Assuming that the individual uncertainties are not
interrelated, the simplest structured uncertainty description
can be given as

Δ =

⎡
⎢⎢⎢⎣

Δ1 0 · · · 0
0 Δ2 0 0
... 0

. . . 0
0 0 0 Δn

⎤
⎥⎥⎥⎦ (17)

The performance weighting function selection for theμ con-
troller design is expected to be more ambitious, compared to
the H∞ controller case, due to the fact that the μ controller
design assumed the simplest structured uncertainty descrip-
tion for the proposed crane motor problem. Using the design
guidelines and several iterations, the performance weighting
function for the real uncertain plant that provides satisfactory
tracking performance was chosen to have a high gain at low
frequencies. The quantification of the performance weight-
ing function was accomplished by choosing the performance
weighting function Wp(s)
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Fig. 9 The μ and H∞ controller performance weighting functions

Wp(s) = (57300)

( s
10000 + 1

s
0.1 + 1

)
(18)

such that Wp(s)−1 reflects the desired shape of the closed-
loop sensitivity function S(s). Figure 9 shows the perfor-
mance weighting function frequency response, selected for
the μ controller (new) design versus the one selected for the
H∞controller (old) design.

4 Cranemotor linear parameter varying
uncertainty modeling and controller
synthesis

The linear parameter varying (LPV) control frameworkoffers
an effective advanced optimization approach for systems
with time-varying parameter(s)ρ(t) for superior stability and
performance outcomes. The time trajectory of ρ(t) is a-priori
unknown, but the actual parameter values are considered to
be measurable in future time points. The LPV control frame-
work eliminates the repetitive task of manually tuning the
control loop, i.e., varying the gain of the controller accord-
ing to the time varying parameter ρ(t), by developing a gain
scheduling [16] controller, i.e., switching among an array of
linear time-invariant controllers for different operation points
of a nonlinear system. However, the LPV design framework
utilizes potential time-varying parameter(s) that are indepen-
dent of the system states, ensuring linear dependence when
compared to the gain-scheduling case of nonlinear relation-
ship. For the sake of clarity, the crane system considers the
motor armature inductance as the measurable time-varying
parameter. Although additional plausible component fluctua-
tions can also be taken into consideration for the time varying
parameters for superior modeling and control performances,
the corresponding computational complexity increases con-
siderably, limiting the number of effective parameters.

Typical LPV system state space models [17] are given as

[
ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

] [
x(t)
u(t)

]
(19)

Fig. 10 Augmented LPV
system

Fig. 11 LFT depiction of LPV synthesis

where ρ(t) is the time-varying parameter that takes on values
in a known compact set P and has known bounds on ρ̇(t),
where P : {v ≤ ρ̇(t) ≤ v̄}, x(t) denotes the system states,
y(t) denotes the system outputs, u(t) denotes the system
inputs and A(ρ(t)), B(ρ(t)), C(ρ(t)), and D(ρ(t)) are the
parameter dependent state space matrices that vary within a
polytope, as shown in Fig. 10, dictated by the time-varying
parameter ρ(t) variations. The LPV framework uses the Lin-
ear Fractional Transformation (LFT) during the controller
synthesis, as shown in Fig. 11, where w indicates the refer-
ence and disturbance inputs, z denotes the weighted output
of the performance objectives, u is the system input from
the controller and y is the measured output to the controller.
Then, the LPV controller framework is to synthesize an LPV
controller K (ρ), described as

ẋk(t) = Ak(ρ(t))xk(t) + Bk(ρ(t))y(t)
u(t) = Ck(ρ(t))xk(t)

(20)

such that the closed-loop system in Fig. 11 is stable and its
||Tw−z(s)||∞ norm is bounded by γ such that 1 
 γ 
 0 for
all possible parameter trajectories.

The robust stability and performance for the closed-loop
system inFig. 11 can be ensured via thewell-knownBounded
Real Lemma, by utilizing (19) and (20) within the closed-
loop diagram in Fig. 11 such that the L2 induced gain level
(γ 
 0) is achieved if there exists a matrix

(
X = XT 
 0

)
such that

⎡
⎣ AT

cl (ρ) X + X Acl (ρ) XBcl CT
cl (ρ)

BT
cl (ρ) X −γ I DT

cl (ρ)

Ccl (ρ) Dcl (ρ) −γ I

⎤
⎦ ≺ 0 (21)

Thus, without loss of generality, the synthesis of the con-
dition in (21) involves a search over the polytope, dictated
by the time-varying parameter (ρ(t)) and corresponding LTI
systems, by using a set of linear matrix inequalities (LMI).
Assuming that the plant parameter dependence (G(ρ(t))) is
affine, where (ρ(t)) is the time-varying parameter for the cor-
responding polytope, with vertices ρ j , j = 1, 2...., r . Then,
an LPV controller K (ρ) can be computed [18,19] as follows:
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Fig. 12 The step response of the nominal crane motor plant with the
controller

(i) The vertex controller K j = (
AK j , BK j ,CK j , 0

)
, for

(1 ≤ j ≤ r) can be computed by solving the set of linear
matrix inequalities, given as

⎡
⎢⎢⎢⎢⎣

X A j + B̂K j C2 j + ∗ ∗ ∗ ∗
ˆAT

K j
+ A j A jY + B2 j ĈK j + ∗ ∗ ∗(

XB1 j + B̂K j D21 j

)T
BT
1 j

−γ I ∗
C1 j C1 j Y + D12 j ĈK j D11 j −γ I

⎤
⎥⎥⎥⎥⎦ ≺ 0

(22)

and

[
X I
I Y

]

 0 (23)

where (∗) denotes the terms whose expressions follow the
requirement that thematrix is self-adjoint. This step produces(
ÂK j , B̂K j , ĈK j

)
and the symmetric matrices X and Y .

(ii) AKk , BK j and CK j can be computed as AK j = N−1(
ÂK j − X A jY − B̂K j C2 j Y − XB2 j ĈK j

)
M−T , BK j =

N−1 B̂K j , and CK j = ĈK j M
−T , where N and M are matri-

ces to hold I − XY = NMT .The resulting state-space
matrices of the LPV polytopic controller K (s) is a convex
combination of the vertex controller given by

[
AK BK

CK 0

]
(ρ) =

r∑
j=1

α j

[
AK j BK j

CK j 0

]
(24)

5 Numerical results

5.1 H∞ control

The robust control toolbox in Matlab was used to implement
and obtain the H∞ control simulation results that indicated
the corresponding controller having an achievable gamma
value of 0.9882, with the controller state-space matrices.
The step response of the plant with the controller also shows

Fig. 13 The step response of a perturbed cranemotorwith the controller

Fig. 14 The step responses of the nominal crane motor with the H∞
and μ controllers

perfect steady-state tracking of the nominal plant output, as
shown in Fig. 12.

In order to verify that the H∞ controller designed can
minimize the tracking error in themotorwith perturbed arma-
ture coil inductance, a perturbation of 40% was added to
the nominal value of the armature coil inductance Lo, i.e.,
Lperturbed = [(40% ∗ Lo) + Lo], resulting in the perturbed
plant step response with the same H∞ controller, shown in
Fig. 13. A comparison between the step responses of the
nominal and the perturbed plants was made by taking the
error difference for both plants, and was found to be very
small.

5.2 � control

TheMatlab simulation results for theμ controller resulted in
the μ value of 0.99, i.e., implying robust performance, after
performing several D-K iteration steps for the corresponding
controller state-space representation, with the step response
of the nominal crane motor plant for the H∞ control and μ

control cases, shown in Fig. 14.

5.3 LPV control

This study constructs and simulates the cranemotor LPV sys-
tem via the LPVTools software tool, developed by MUSYN
Inc. [17], implemented in Matlab. The LPVTools provides
numerous LPV data structures as well as modeling, simu-
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Fig. 15 The linear parameter varying framework performance weight-
ing function frequency response

lation, analysis, and synthesis tools in the LPV framework.
The LPVTools software tool uses the command (tvreal) to
scale the time-varying parameter ρ(t) and its rate bound ρ̇(t)
into their corresponding maximum and minimum values.
For the crane motor system, the armature coil inductance,
with its nominal value of (6.2E − 04H), is considered to
be the time varying parameter ρ(t) that can be measured
in future real-time using an inductive sensor. The (tvreal)
command is used to scale the time-varying parameter and
the rate bound into (1E − 04 ≤ ρ(t) ≤ 6.2E − 04) and
(−1E − 04 ≤ ρ̇(t) ≤ 1E − 04), respectively, with the cor-
responding LPV state-space matrices, shown as.

A =
[ −R

ρ
kb
ρ

kt
J

−b
J

]
, B =

[
1
ρ

0

]
,C = [

1 0
]
, D = [0] (25)

The performance weighting function Wper(s)

Wper(s) = (0.085)

( s
0.01 + 1000

s
0.01 + 0.1

)
(26)

was chosen, as shown in Fig. 15, after several iterations
to achieve the robust performance, to have a high gain at
low frequencies for superior steady-state tracking perfor-
mance while having relatively low gain at high frequencies
for acceptable transient response performance by using the
nominal plant frequency domain characteristics.

The LPV controller synthesis utilized the (lpvsyn) com-
mand to implement the corresponding LFT framework and
required the closed-loop performance objective characteriza-
tion in terms of the weighted interconnection of the system,
shown inFig. 16,where the interconnection is defined inMat-
lab as systemnames = ‘wperf sys’; inputvar = ‘[omega;u]’;
outputvar = ‘[wperf;omega – sys]’; input_to_sys = ‘[u]’; and
input_to_wperf = ‘[omega – sys]’.

The LPV controller synthesis of the crane motor sys-
tem resulted in the γ value of 0.9961, i.e., implying robust
performance achievement, and effectively minimized the

Fig. 16 The weighted interconnection for the linear parameter varying
system controller synthesis

Fig. 17 The closed-loop linear parameter varying crane motor system
response for the selected parameter trajectory

Fig. 18 The assumed crane motor inductor linear time-varying param-
eter trajectory

step response tracking error of the closed-loop LPV crane
motor plant, as shown in Fig. 17, for the illustrative time-
varying parameter ρ(t) trajectory selection of ρ(t) =
0.0006 cos(0.0005t), as shown in Fig. 18.

The LPV motor crane system time-varying nature closely
depends on the time-varying trajectory. Thus, each plausible
time-varying parameter can be tested with the proposed LPV
framework for their implementation efficiency and operation
conditions.

Also, the H∞, μ, and LPV controller step responses are
examined altogether for the best tracking system, as shown in
Fig. 19, where the time-varying parameter trajectory and the
performance weighting function for each case could poten-
tially change the current performance levels.
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Fig. 19 The step responses of the nominal crane motor with the H∞,
μ, and linear parameter varying controllers

6 Conclusions

Three different robust system modeling and control frame-
works have successfully been proposed for the tower crane
motor closed-loop steady-state tracking control systems,
under bounded unstructured as well as structured uncertainty
and time-varying parameter trajectory cases to reflect real-
life considerations. The proposed three control frameworks
allow performance, stability and robustness to be combined
into a single control synthesis framework and present great
flexibility that allows ease of adaption into areas of control
interest in crane motor systems.

The proposed robust modeling and synthesis frameworks
can be scaled further by considering multiple significant
parameter, dynamical, or signal uncertainties for superior
performance levels during practical crane operations while
the complexity of the proposed problems is expected to
increase, effectively limiting the number of uncertain compo-
nents to be arbitrarily large. In addition, as the performance
in terms of steady-state tracking error depends on the
performance weighting function selection, future studies
can further characterize real-life constraints and associated
candidate performance weighting functions under practical
controller frameworks.
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