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Abstract
This paper focuses on the problem of polynomial and weak stabilization of abstract distributed semilinear systems in a real
Hilbert space governed by an optimal multiplicative feedback control. A new proposed feedback control is constructed to
achieves the two kinds of stabilization. Necessary and sufficient conditions for stabilization problems are investigated as well.
Furthermore, the used feedback control is the unique solution of an appropriate minimization problem. Some examples of
hyperbolic and parabolic partial differential equations are provided. Finally, simulations are given.
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1 Introduction

The present paper deals the problemof feedback stabilization
for a class of distributed semilinear systems with multiplica-
tive feedback control of the form:

dy(t)

dt
= Ay(t) + p(t)By(t) + Ny(t), t > 0. (1)

Here the state space is a real Hilbert space H endowed with
inner product 〈., .〉 and its associated norm ‖.‖ and A is lin-
ear operator (generally unbounded) which is an infinitesimal
generator of a linear C0 semigroup of contractions S(t), so
that A is dissipative, i.e., 〈Aφ, φ〉 ≤ 0, ∀φ ∈ D(A) while B
and N are twononlinear operators from H into itself,whereas
p(t) is a scalar function which represents the control. In this
case in order to be in agreement with standard notations used
in the existing literature, we rather write the Eq. (1) in the
form:

dy(t)

dt
= Ay(t) + F(y(t)), t > 0,
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where F(y(t)) = p(t)By(t) + Ny(t). Then, the system
(1) is expected to be dissipative if the nonlinearity F has
“the good sign”. Along any solution of (1) (while it is well
defined), the derivative with respect to time of the energy

E(t) := 1

2
‖y(t)‖2, we have, at least formally, E ′(t) ≤

−〈F(y(t)), y(t)〉, since A generates a semigroup of contrac-
tions. In the sequel, we will make appropriate assumptions
on F ensuring that E ′(t) ≤ 0 and therefore, the system (1)
is dissipative. It is then expected that the unique solution is
globally well defined and that it energy decays asymptoti-
cally to 0 as t → +∞. We make the following assumptions
〈F(y(t)), y(t)〉 ≤ 0, for all y(t) solution of the system (1).
This assumption implies that E ′(t) ≤ 0. In the case when
N = 0, the system (1) may be expressed as:

dy(t)

dt
= Ay(t) + p(t)By(t), t > 0. (2)

The stabilization problem of the system (2) has been studied
by several authors (see [1–4]). In the earlier papers [2,4], it
has been shown in the case H = Rn, that the condition

〈BS(t)φ, S(t)φ〉 = 0, ∀t ≥ 0 ⇒ φ = 0, (3)

is sufficient for the weak stabilizability of the system (2).
This result has been generalized to the infinite-dimensional
case, under the assumption that B is sequentially continuous
from Hw (H endowed with its weak topology) to H (i.e.,
ψn⇀ψ ⇒ Bψn → Bψ as n → +∞) which is equivalent
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to assuming that B is compact for bilinear control problem. It
has been shown that the quadratic feedback control p0(t) =
−〈By(t), y(t)〉, weakly stabilizes the system (2) provided
that the condition (3) holds (see [1]). The strong stabilization
result has been obtained using the same control p0(t) for the
systems (2) with the following optimal decay estimate of the
stabilized state

‖y(t)‖ = O
(

1√
t

)
as t → +∞, (4)

i.e., ‖y(t)‖ ≤ M√
t
, M > 0, for t large enough, such that the

following condition

∫ T

0
|〈BS(t)φ, S(t)φ〉|dt ≥ δT ‖φ‖2, (T , δT > 0), (5)

holds (see [3]). In [5], it has been shown that if the resol-
vent of A is compact, B is a bounded linear self-adjoint and
monotone operator, then under the sufficient assumption (3),
the feedback control law:

p∗(t) = − 〈By(t), y(t)〉
1 + |〈By(t), y(t)〉| , (6)

strongly stabilizes the system (2). In [6], the strong stabi-
lization of the system (2) has been obtained with the decay
estimate (4) via the same feedback control (6). The main
objective in this work is to makes the initial system (1)
weakly and strongly stable with an explicit decay estimate
of the stabilized state for a large class of semilinear systems
under certain necessary and sufficient conditions by using
a feedback control of a lower cost than that p∗(y(t)) (see
Remark 3.1). Moreover, we will show that this control min-
imizes an appropriate cost. The candidate feedback control
that fulfills the control requirements is the following:

p∗
log

(t) = ρ log(1 + p∗(t)) = ρ log

(
1 − 〈By(t), y(t)〉

1 + |〈By(t), y(t)〉|
)

,

ρ > 0. (7)

This feedback profits from the advantage of being applica-
ble as a constrained control, i.e., one can choose the control
gain so that the feedback never takes values beyond a fixed
threshold. The rest of this paper after this one is organized as
follows. In Sect. 2 we will present some preliminary known
results on the background material on nonlinear semigroups
and nonlinear evolution equations respectively. In Sect. 3 we
will analyze the existence and the uniqueness of the global
mild solution of the system (1). Moreover, we will establish
the strong stability of the system (1) with an explicit decay
estimate by using (7). In Sect. 4 we will show that the given

feedback control (7) yields the weak stabilization of the sys-
tem (1). Section 5 is devoted to the minimization problem
of a nonlinear cost by the feedback control (7). Finally, in
Sects. 6 and 7, we will give some applications and simula-
tions respectively.

2 Preliminary results

In this section, we present some preliminary results on non-
linear evolution equations which will be used later in our
analysis.

Definition 2.1 ([1,7,8]) Let H be a realHilbert space.A (gen-
eral nonlinear) semigroup �(t) on H is a continuous map
�(t) : H −→ H , t ∈ R+, satisfying

(i) �(0) = IH (the identity operator).
(ii) �(t+s) = �(t)�(s), ∀t, s ∈ R+ (proprieties of super-

position).
(iii) lim

t→0+ ‖�(t)ϕ − ϕ‖ = 0, ∀ϕ ∈ H (continuity of �(t) to

0+).
(iv) Moreover, the linear semigroup �(t) (resp. nonlinear

semigroup �(t)) is said to be a semigroup of con-
tractions, if ‖�(t)‖ ≤ 1, ∀t ∈ R+ (resp. ‖�(t)ϕ −
�(t)ψ‖ ≤ ‖ϕ − ψ‖, ∀ϕ,ψ ∈ H , ∀t ∈ R+).

Definition 2.2 ([8]) The linear operator A defined by

D(A) = {x ∈ H | lim
t→0+

S(t)x − x

t
exists} and Ax =

lim
t→0+

S(t)x − x

t
, ∀x ∈ D(A), is called the infinitesimal gen-

erator (or just the generator) of the semigroup S(t) andD(A)

is the domain of the operator A.

The following definitions concerns the weak solution of the
system (1).

Definition 2.3 ([8])Let t1 > t0.Afunction y ∈ C([t0, t1]; H)

is a weak solution of (1) on the interval [t0, t1], if y(t0) =
y0, f (., y(.)) ∈ L1([t0, t1]; H) and if for each ϕ ∈ D(A∗)
the function 〈y(t), ϕ〉 is absolutely continuous on [t0, t1] and
satisfies

d

dt
〈y(t), ϕ〉 = 〈y(t), A∗ϕ〉 + 〈 f (t, y(t)), ϕ〉, ∀t ∈ [t0, t1],

(8)

where f (t, y(t)) = p(t)By(t) + Ny(t).

Definition 2.4 ([8]) Let t1 > t0. A function y : [t0, t1] −→
H is a weak solution of (1) on [t0, t1], if y satisfies the vari-
ation of constants formula
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y(t) = S(t − t0)y(t0) +
∫ t

t0
S(t − τ) f (τ, y(τ ))dτ, ∀t ∈ [t0, t1].

(9)

The function y satisfying the variation of constants formula
(9) is often called mild solution of the system (1). Fur-
thermore, if the function y : R+ −→ H is continuously
differentiable with y(t) ∈ D(A), ∀t ≥ 0, and satisfies the
system (1), we call it a classical solution.

We recall the following basic definition on ω-limit sets.

Definition 2.5 1. The weak ω-limit set of ψ is (possibly
empty) the set given by

ωw(ψ) = {ϕ ∈ H : ∃tn → +∞ as n →
+∞ such that �(tn)ψ⇀ϕ as n → +∞}.

2. A subset C of H is said to be invariant if �(t)C = C for
all t ∈ R+.

Let us recall the following definitions concerning the asymp-
totic behavior of the system (1).

Definition 2.6 (i) The system (1) is weakly (resp. strongly)
stabilizable if there exists a feedback control p(t) =
ϕ(y(t)), where ϕ : H −→ R, such that the correspond-
ing unique mild solution satisfies the properties:

1. for each y0 ∈ H , there exists a unique mild solution
y(t), defined for all t ∈ R+ of the system (1),

2. {0} is a an equilibrium of the system (1),
3. y(t)⇀0, weakly (resp. y(t) → 0, strongly), as t →

+∞ for all y0 ∈ H .

(ii) Furthermore, in addition of 1 and 2, the system (1) is said
polynomially stable, if there exist two constants β >

0 and M > 0 (depending on y0) such that ‖y(t)‖ ≤
M

tβ
, ∀t > 0 for all sufficiently smooth initial data.

Remarks 2.1 1. Remarking that 1 + p∗(t) > 0, ∀t ≥ 0,
then p∗

log
(t) is well defined.

2. It is readily seen that p∗
log

(t)〈By(t), y(t)〉 ≤ 0, ∀t ≥ 0.
3. The strong stability ⇒ weak stability. The converse is

not true in general.

2.1 Assumptions

In this paper, we consider the nonlinear operators B and N
satisfy the following hypotheses:

(H1): B(0) = N (0) = 0, so that 0 remain an equilibrium
state for the nominal semilinear system (1).

(H2): The operators B and N are locally Lipschitz, i.e.,
∀R > 0 and ∀y, z ∈ BR = {φ ∈ H ; ‖φ‖ ≤ R},

we have ‖Bz− By‖ ≤ LR‖z− y‖ and ‖Nz−Ny‖ ≤
LR‖z − y‖, LR > 0.

(H3): 〈Nϕ, ϕ〉 ≤ 0, ∀ϕ ∈ H .

(H4): |〈Bϕ, ϕ〉| ≥ μ‖Nϕ‖2, ∀ϕ ∈ H , μ > 0.

Remark 2.1 From (H2), one can deduce that LR =
max

{
sup

y,z∈BR(0); z �=y

‖Nz−Ny‖
‖z − y‖ , sup

y,z∈BR(0); z �=y

‖Bz−By‖
‖z − y‖

}
.

3 Strong stabilisation and decay estimate

Before we state our main result in this section, the following
lemma will be needed.

Lemma 3.1 Let ϕ : R+ �−→ R+ be a nonincreasing func-
tion and satisfying

Cϕ1+γ (t) ≤ ϕ(t) − ϕ(t + T ), ∀t ≥ 0, (10)

where C > 0, γ > 0 and T > 0 are three constants. Then,
we have

ϕ(t) = O(t−
1
γ ) as t → +∞. (11)

Proof It follows from (10) by putting ψ(t) = ϕ−γ (t), that

ψ(t + T ) − ψ(t) =
∫ T

0

d

dθ

( θ

T
ϕ(t + T )

+ (1 − θ

T
)ϕ(t)

)−γ
dθ

= γ

T

(
ϕ(t) − ϕ(t + T )

) ∫ T

0

( θ

T
ϕ(t + T )

+ (1 − θ

T
)ϕ(t)

)−1−γ
dθ ≥ γC .

Then, for any n ∈ N, one can deduce

ψ((n + 1)T ) ≥ ψ(0) + (n + 1)γC .

This last inequality leads us to the following relation

ϕ((n + 1)T ) ≤ 1(
ϕ−γ (0) + (n + 1)γC

) 1
γ

. (12)

Let us now set n = [ t
T

], (where [x] designs the integer part
of x). In view of (12) we infer that

ϕ(t) ≤ 1(
ϕ−γ (0) − γC + γC

T t
) 1

γ

, ∀t ≥ T .

This achieves the proof of the Lemma 3.1. ��
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Inwhat follows,wewill analyze the existence and the unique-
ness of the global mild solution of the semilinear system (1).
Additionally, we will establish a useful estimate which will
be crucial to establish the weak and the strong stability of the
system (1).

Theorem 3.1 Let A generate a semigroup of contractions
S(t) on H , and let B and N two nonlinear operators verify
the hypotheses (H1) − (H4). Then, the system (1) possesses
a unique mild solution y ∈ C(R+; H) for each y0 ∈ H and
satisfies the following estimate:

∫ T

0
|〈BS(τ )y(t), S(τ )y(t)〉|dτ = O

(
‖y(t)‖

( ∫ t+T

t
| log(1

− 〈By(τ ), y(τ )〉
1 + |〈By(τ ), y(τ )〉| )〈By(τ ), y(τ )〉|dτ

) 1
4
)

as t → +∞, (13)

for each T > 0.

Proof Let us consider the function g = f + N , where f is
defined by:

f (ϕ) = ρ log(1 − 〈Bϕ, ϕ〉
1 + |〈Bϕ, ϕ〉| )Bϕ, ∀ϕ ∈ H .

In this case the semilinear system (1) can be written as fol-
lows:

dy(t)

dt
= Ay(t)+ f (y(t))+Ny(t) = Ay(t)+g(y(t)), t > 0.

(14)

In order to study the stabilization problem of the system (14)
it may be shown first of all that (14) admits a global mild
solution. For this end, we shall show that the function g is
locally lipschitz. For this reason, it suffice to show that f is
locally lipschitz since N is. For any R > 0 and∀y, z ∈ BR(0)
i.e., ‖y‖ ≤ R and ‖z‖ ≤ R, we have

‖ f (z) − f (y)‖ = ρ‖ log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)
Bz

− log

(
1 − 〈By, y〉

1 + |〈By, y〉|
)
By‖

≤ ρ‖ log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)
Bz

− log

(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)
By‖

+ ρ‖ log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)
By

− log

(
1 − 〈By, y〉

1 + |〈By, y〉|
)
By‖.

≤ ρLR

∣∣∣∣log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)∣∣∣∣ ‖z − y‖

+ ρLR‖y‖
∣∣∣∣log

(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)

− log

(
1 − 〈By, y〉

1 + |〈By, y〉|
)∣∣∣∣ . (15)

To do this, two cases arise.

Case 1 〈Bz, z〉 ≥ 0. In this case, we have

∣∣∣∣log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)∣∣∣∣

= | log(1 + 〈Bz, z〉)| ≤ |〈Bz, z〉|
≤ R2LR, (log(1 + x) ≤ x, ∀x ∈ [0,+∞[).

Case 2 〈Bz, z〉 ≤ 0. In particular, in this, it is easy to see
that
∣∣∣∣log

(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)∣∣∣∣ ≤ |〈Bz, z〉|

1 + |〈Bz, z〉| ≤ |〈Bz, z〉|
≤ R2LR, (log(1 + x) ≤ x, ∀x ∈ [0,+∞[).

Then, in both cases, we have

∣∣∣∣log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)∣∣∣∣ ≤ |〈Bz, z〉|, ∀z ∈ H . (16)

It yields, by (15) that

‖ f (z) − f (y)‖ ≤ ρR2L2
R‖z − y‖

+ ρRLR

∣∣∣∣log
(
1 − 〈Bz, z〉

1 + |〈Bz, z〉|
)

− log

(
1 − 〈By, y〉

1 + |〈By, y〉|
)∣∣∣∣ . (17)

It remains to show that the map h defined by:

h(ϕ) = log(1 − 〈Bϕ, ϕ〉
1 + |〈Bϕ, ϕ〉| ) = (log ◦ k)(ϕ), ∀ϕ ∈ H ,

is locally Lipschitz, where k(ϕ) = 1 − 〈Bϕ, ϕ〉
1 + |〈Bϕ, ϕ〉| .

Since the function log is of C1 on the interval Im(k) :=
[ 1
1+R2LR

, 1 + 2R2LR], it suffice to show that the function k
is locally Lipschitz. Indeed, ∀R > 0 and ∀y, z ∈ BR(0)with
the fact that ∀a, b ∈ R, ||a| − |b|| ≤ |a − b|, we infer that

|k(z) − k(y)|
=

∣∣∣ 〈Bz, z〉+〈Bz, z〉|〈By, y〉|−〈By, y〉−〈By, y〉|〈Bz, z〉|
(1 + |〈Bz, z〉|)(1 + |〈By, y〉|)

∣∣∣
≤

∣∣∣〈Bz, z〉 − 〈By, y〉
∣∣∣ +

∣∣∣〈Bz, z〉|〈By, y〉|
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− |〈Bz, z〉|〈By, y〉
∣∣∣

≤ |〈Bz, z − y〉 + 〈Bz − By, y〉|
+

∣∣∣〈Bz, z〉|〈By, y〉| − 〈Bz, z〉|〈Bz, z〉|
+ 〈Bz, z〉|〈Bz, z〉| − |〈Bz, z〉|〈By, y〉

∣∣∣
≤ 2RLR‖z − y‖ + 2R2LR |〈Bz, z〉 − 〈By, y〉|
≤ 2RLR‖z−y‖+2R2LR

∣∣∣〈Bz, z−y〉 + 〈Bz − By, y〉
∣∣∣

≤ 2RLR(1 + 2R2LR)‖z − y‖.

That means that the function k is locally Lipschitz, and then
h is. Consequently, f is locally Lipschitz. Then, the system
(14) admits a unique mild solution defined on a maximal
interval [0, tmax[, by the variation of constant formula:

y(t) = �(t)y0 = S(t)y0 +
∫ t

0
S(t − τ)g(y(τ ))dτ

= S(t)y0 +
∫ t

0
S(t − τ)

(
ρ log

(
1

− 〈By(τ ), y(τ )〉
1 + |〈By(τ ), y(τ )〉|

)
By(τ ) + Ny(τ )

)
dτ, (18)

where �(t) define a nonlinear semigroup (see [8]). Next we
will show that this solution is globally defined. Indeed, if y0 ∈
D(A), the solution of the system (14) becomes a classical one
(see [8]). It follows after multiplying (14) by y(t) and using
the fact that S(t) is a semigroup of contractions together with
(H3) that

d‖y(t)‖2
dt

≤ 2ρ log

(
1 − 〈By(t), y(t)〉

1 + |〈By(t), y(t)〉|
)

〈By(t), y(t)〉
+ 2〈Ny(t), y(t)〉 ≤ 0, ∀t ≥ 0, (19)

which implies

‖y(t)‖ ≤ ‖y0‖, ∀t ∈ [0, tmax[. (20)

To show that (20) holds for all initial states y0 ∈ H , we will
establish the Lipschitz continuity of y(t) with respect to y0.
To this end, let t ∈ [0, tmax[ be fixed and let y0 ∈ H . For any
initial state w0 ∈ H , the corresponding solution w(t) of the
system (14) verifies

w(τ) − y(τ ) = S(τ )(w0 − y0) +
∫ τ

0
S(τ − s)

(
g(w(s))

− g(y(s))
)
ds, ∀τ ∈ [0, t].

Hence, using the fact that g is locally Lipschitz function and
S(t) is a semigroup of contractions, we obtain

‖w(τ) − y(τ )‖ ≤ ‖w0 − y0‖ + L
∫ t

0
‖w(s)

− y(s)‖ds, ∀τ ∈ [0, t],

where L is the Lipschitz constant of the function g. It follows
from the Gronwall’s inequality, that

‖w(τ) − y(τ )‖ ≤ ‖w0 − y0‖eLt , ∀τ ∈ [0, t]. (21)

Thus the map y0 �−→ y(t) is Lipschitz from H to H , which
enables us, sinceD(A) is dense in H , to extend (20) to y0 ∈
H , and hence y(t) is a global solution i.e., tmax = +∞, (see
[8]). Next, we will prove the estimate (13). From (18) the
solution of the system (14) can be represented as follows:

y(t) = S(t)y0 + ρ

∫ t

0
S(t − τ) log (1

− 〈By(τ ), y(τ )〉
1 + |〈By(τ ), y(τ )〉|

)
By(τ )dτ

+
∫ t

0
S(t − τ)Ny(τ )dτ. (22)

Combining the Schwartz’s and Hölder’s inequalities with the
fact that S(t) is a semigroup of contractions and employing
(16) and (20) we get for all t ∈ [0, T ], that

‖y(t) − S(t)y0‖ ≤ ρL‖y0‖‖y0‖∫ t

0

∣∣∣ log (
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)
|dτ

+
∫ t

0
‖Ny(τ )‖dτ ≤ ρL‖y0‖‖y0‖

∫ t

0
| log

(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)
〈By(τ ), y(τ )〉| 12 dτ

+
∫ t

0
‖Ny(τ )‖dτ ≤ ρT

1
2 L‖y0‖‖y0‖

( ∫ T

0

∣∣ log (
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)
〈By(τ ), y(τ )〉∣∣dτ

) 1
2

+ T
1
2

( ∫ T

0
‖Ny(τ )‖2dτ

) 1
2

. (23)

On the other hand, we have

〈BS(τ )y0, S(τ )y0〉 = 〈BS(τ )y0 − By(τ ), S(τ )y0〉
− 〈By(τ ), z(τ )〉 + 〈By(τ ), y(τ )〉, (24)

where z(t) = ρ

∫ t

0
S(t−τ) log(1− 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉| )By

(τ )dτ +
∫ t

0
S(t − τ)Ny(τ )dτ. Then, from (24) it comes

|〈BS(τ )y0, S(τ )y0〉| ≤ 2L‖y0‖‖y(τ ) − S(τ )y0‖‖y0‖
+ |〈By(τ ), y(τ )〉|. (25)

Replacing y0 by y(t) in both (23) and (25) and using the
semigroup property of the solution y(t) together with the
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hypothesis (H4) and the fact that the function t �−→ ‖y(t)‖
is decreases for all t ≥ 0, we find that

|〈BS(τ )y(t), S(τ )y(t)〉| ≤ 2ρT
1
2 L2‖y0‖‖y(t)‖2(∫ T

0
| log

(
1 − 〈By(t + τ), y(t + τ)〉

1 + |〈By(t + τ), y(t + τ)〉|
)

〈By(t + τ), y(t + τ)〉∣∣dτ

) 1
2

+ 2T
1
2 L‖y0‖‖y(t)‖

( ∫ T

0
‖Ny(t + τ)‖2dτ

) 1
2

+ |〈By(t + τ), y(t + τ)〉|
≤ 2ρT

1
2 L2‖y0‖‖y(t)‖2

( ∫ t+T

t
| log

(
1

− 〈By(τ ), y(τ )〉
1 + |〈By(τ ), y(τ )〉|

)
〈By(τ ), y(τ )〉∣∣dτ

) 1
2

+ 2T
1
2 L‖y0‖‖y(t)‖

μ
1
2

( ∫ t+T

t
|〈By(τ ), y(τ )〉|dτ

) 1
2

+ |〈By(t + τ), y(t + τ)〉|. (26)

To show the estimate (13) two cases are distinguished.

Case 1 〈By(τ ), y(τ )〉 ≤ 0. In this case, using the follow-

ing inequality x − x2

2
≤ log(1+ x), ∀x ∈ [0,+∞[, we

have

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣

≥ |〈By(τ ), y(τ )〉|
1 + |〈By(τ ), y(τ )〉|

(
1 − |〈By(τ ), y(τ )〉|

2(1 + |〈By(τ ), y(τ )〉|)
)

≥ |〈By(τ ), y(τ )〉|
2(1 + |〈By(τ ), y(τ )〉|) .

Case 2 〈By(τ ), y(τ )〉 ≥ 0. In this case, using the fact
that log is nondecreasing function on ]0,+∞[, we get

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣ = | log(1

+〈By(τ ), y(τ )〉)| ≥
∣∣∣∣log

(
1 + |〈By(τ ), y(τ )〉|

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣ .

From the first case, we deduce that

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣ ≥ |〈By(τ ), y(τ )〉|

2(1 + |〈By(τ ), y(τ )〉|) .

Then, more precisely in the two cases, we have

|〈By(τ ), y(τ )〉|
≤ 2(1 + |〈By(τ ), y(τ )〉|)

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣

≤ 2(1 + L‖y0‖‖y(τ )‖2)
∣∣∣∣log

(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)∣∣∣∣ .

(27)

It yields from (26) by using (27) and Schwartz’s inequality,
that

|〈BS(τ )y(t), S(τ )y(t)〉| ≤ 2ρT
1
2 L2‖y0‖‖y(t)‖2(∫ t+T

t

∣∣∣∣ log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣dτ

) 1
2

+ 2
3
2 T

3
4 L‖y0‖‖y(t)‖(1 + L‖y0‖‖y0‖2)

1
2

μ
1
2

(∫ t+T

t

∣∣∣∣ log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣dτ

) 1
4

+ 2
1
4 L

1
2‖y0‖(1 + L‖y0‖‖y0‖2)

1
4 ‖y(t + τ)‖

∣∣∣∣
log

(
1 − 〈By(t + τ), y(t + τ)〉

1 + |〈By(t + τ), y(t + τ)〉|
)

〈By(t + τ), y(t + τ)〉| 14 .

One can deduce by using (16) with Schwartz’s and Holder’s
inequalities that

|〈BS(τ )y(t), S(τ )y(t)〉| ≤ 2ρT
3
4 L

5
2‖y0‖‖y(t)‖3(∫ t+T

t

∣∣∣∣ log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉∣∣dτ

) 1
4

+ 2
3
2 T

3
4 L‖y0‖‖y(t)‖(1 + L‖y0‖‖y0‖2)

1
2

μ
1
2

(∫ t+T

t

∣∣∣∣ log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉∣∣dτ

) 1
4

+ 2
1
4 L

1
2‖y0‖(1 + L‖y0‖‖y0‖2)

1
4 ‖y(t)‖

∣∣∣∣
log

(
1 − 〈By(t + τ), y(t + τ)〉

1 + |〈By(t + τ), y(t + τ)〉|
)

〈By(t + τ), y(t + τ)〉| 14 .

(28)

Integrating the inequality (28)with respect τ over the interval
[0, T ] and using Schwartz’s inequality, we arrive at

∫ T

0
|〈BS(τ )y(t), S(τ )y(t)〉|dτ ≤ C‖y(t)‖
(∫ t+T

t

∣∣∣∣ log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣dτ

) 1
4

,

(29)

where

C :=T
3
4 L

1
2‖y0‖

(
1+2ρT L2‖y0‖‖y0‖2+

2
3
2 T L

1
2‖y0‖(1+L‖y0‖‖y0‖2)

1
2

μ
1
2

)
.

Therefore, this complete the proof of the Theorem 3.1. ��
Based on the previous results, we are able to establish the
polynomial stability of the system (1), which leads us to the
following theorem.
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Theorem 3.2 Let A generate a semigroup of contractions
S(t) on H , and let B and N are two nonlinear operators
satisfy (H1) − (H4). Then (7) strongly stabilizes the system
(1) with the explicit decay estimate:

‖y(t)‖ = O(
1√
t
), as t → +∞, (30)

provided that (5) holds.

Proof Multiplying (14) by y(t) and using the fact that A gen-
erates a semigroupof contractions togetherwith the condition
(H3), we obtain:

d‖y(t)‖2
dt

≤ 2ρ log

(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(t), y(t)〉. ∀y0 ∈ D(A).

That is

‖y(t + T )‖2 − ‖y(t)‖2 ≤ 2ρ
∫ t+T

t
log (1

− 〈By(τ ), y(τ )〉
1 + |〈By(τ ), y(τ )〉|

)
〈By(τ ), y(τ )〉dτ ≤ 0. (31)

The last inequality (31) holds by density argument for all
y0 ∈ H . It yields, by combining (5) with (29) that

K‖y(t)‖4 ≤ ‖y(t)‖2 − ‖y(t + T )‖2, ∀t ≥ 0, (32)

where K := 2ρδ4T

C4 . If we set ϕ(t) = ‖y(t)‖2, we obtain

from (32) that Kϕ1+γ (t) ≤ ϕ(t)−ϕ(t + T ), ∀t ≥ 0, where
γ = 1. Then, the required estimate (30) follows easily from
the Lemma 3.1. ��
Remark 3.1 1. We note that δT = inf‖y‖=1

∫ T

0
|〈BS(t)y,

S(t)y〉|dt .
2. We have |p∗

log
(t)| ≤ |p∗(t)| < 1 provided that 0 < ρ ≤

1
1+L‖y0‖‖y0‖2 . In the rest of this paper we will choose ρ ∈
(0, 1

1+L‖y0‖‖y0‖2
]
.

3. Since ‖y(t)‖ decreases, then ∃t0 ≥ 0, y(t0) = 0 ⇔
y(t) = 0, ∀t ≥ t0.

4. We have 〈By(t), y(t)〉 = 0, ∀t ≥ 0 ⇒ p∗
log

(y(t)) = 0.
This implies from (H4) that N = 0. Then, the solution
of the system (1) can be written as y(t) = S(t)y0. From
(5) we get y(t) = 0, ∀t ≥ 0.

5. We have (5) implies (3) but the converse is not true in
general.

6. In the finite dimensional case, we have (3) implies (5)
(see [9]).

In the following next result we give a necessary condition for
the strong stability of the system (1).

Proposition 3.1 If the system (1) is polynomially stable such
that (H1)− (H4) are satisfied. Then, for all ϕ ∈ H , we have

BS(t)ϕ = 0, ∀t ≥ 0 ⇒ ‖S(t)ϕ‖ = O(t−
1
γ ), γ

> 0, as t → +∞. (33)

Proof We suppose that the system (1) is strongly stable, and
let ϕ ∈ H be such that BS(t)ϕ = 0, ∀t ≥ 0. Then, by using
(H4), we obtain y(t) = S(t)ϕ is the unique mild solution
of (1) starting at y(0) = ϕ. Consequently, the strong stabi-

lization hypothesis implies that ‖S(t)ϕ‖ = O(t−
1
γ ), γ >

0, as t → +∞. ��

4 Weak stabilization

The exact observability condition (5) does not holds when
the nonlinear operator B is sequentially continuous. In the
following next result, we will show that if B is sequentially
continuous, then the assumption (5) can be relaxed to the
weaker assumption (3) and the control (7) ensures the weak
stabilization of the system (1).

Theorem 4.1 Let A generate a semigroup S(t) of contrac-
tions on H , and let B is sequentially continuous as well as
(H1)− (H4) hold. Then, the control (7) weakly stabilizes (1)
provided that (3) holds.

Proof We have

d

dt
‖y(t)‖2≤2ρ log

(
1− 〈By(t), y(t)〉

1+|〈By(t), y(t)〉|
)

〈By(t), y(t)〉
+ 2〈Ny(t), y(t)〉 ≤ 0, ∀y0 ∈ D(A).

The last estimate implies by using (H3) that

ρ

∫ t

0

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣ dτ

≤ ‖y0‖2, ∀t ≥ 0. (34)

The inequality (34) holds, by density argument, for all y0 ∈
H . It follows then, that the following integral

∫ t

0

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣ dτ

converges for all y ∈ H . So, from the Cauchy criterion, we
deduce for any T > 0, that

∫ t+T

t

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣ dτ

→ 0 as t → +∞. (35)
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Let us now show that y(t)⇀0 as t → +∞, (where ⇀ refers
to weak convergence). Therefore, in view of (20) and the fact
that the state space H is reflexive, we obtainωw(y0) �= ∅ and
invariant subset of H . Then, there exists a sequence (tn) and
ψ ∈ ωw(y0) such that tn → +∞ and y(tn)⇀ψ asn → +∞.

Then, from (35) we have

∫ tn+T

tn

∣∣∣∣log
(
1 − 〈By(τ ), y(τ )〉

1 + |〈By(τ ), y(τ )〉|
)

〈By(τ ), y(τ )〉
∣∣∣∣ dτ

→ 0 as n → +∞, (36)

which implies by (13) and the fact that t �−→ ‖y(t)‖
decreases on R+, that

∫ T

0
|〈BS(τ )y(tn), S(τ )y(tn)〉|dτ → 0 as n → +∞. (37)

In view of B is sequentially continuous and S(τ ) is con-
tinuous ∀τ ≥ 0, we infer that S(τ )y(tn)⇀S(τ )ψ and
BS(τ )y(tn) → BS(τ )ψ as n → +∞. Then lim

n→+∞〈
BS(τ )y(tn), S(τ )y(tn)〉 = 〈BS(τ )ψ, S(τ )ψ〉.Hence, by the
dominated convergence theorem, we have lim

n→+∞∫ T

0
|〈BS(τ )y(tn), S(τ )y(tn)〉|dτ =

∫ T

0
|〈BS(τ )ψ,

S(τ )ψ〉|dτ.Moreover, it comes from(37) that
∫ T

0
|〈BS(τ )ψ,

S(τ )ψ〉|dτ = 0. Since the map τ �−→ S(τ )ψ is continuous
on [0,+∞), we deduce that 〈BS(τ )ψ, S(τ )ψ〉 = 0, ∀τ ≥
0. By virtue of the weak observability condition (3) we get
ψ = 0. Hence ωw(y0) = {0}, i.e., y(t)⇀0 as t → +∞.

Hence, the proof of Theorem 4.1 is completed. ��
In what follows we will give a necessary condition for the
weak stability of the system (1).

Proposition 4.1 If the system (1) is weakly stable such that
(H1) − (H4) hold. Then for all ϕ ∈ H , we have

BS(t)ϕ = 0, ∀t ≥ 0 ⇒ S(t)ϕ⇀0 as t → +∞. (38)

Proof Suppose that the system (1) is weakly stabilizable,
and let ϕ ∈ H be such that BS(t)ϕ = 0, ∀t ≥ 0. Then, it
follows by using (H4), that y(t) = S(t)ϕ is the unique mild
solution of (1) starting at y(0) = ϕ. Consequently, the weak
stabilization hypothesis implies that S(t)ϕ⇀0 as t → +∞.

��
Remark 4.1 1. Note that the sequential continuity notion

coincideswith the compactness condition,when the oper-
ator is linear.

2. The inequality (5) is not satisfied when the semigroup
S(t) is compact. Indeed, if (ϕk) is an orthonormal basis
of the Hilbert space H , then applying (5) for y = ϕk

and using the fact that ϕk⇀0, as k → +∞, we obtain

the contradiction δT = 0. Hence, our exponential stabi-
lization result here does not applied. However, the weak
stabilization does.

3. If we replace the sequential continuous condition of B by
the compactness condition of S(t), we retrieve the same
result of the Theorem 4.1.

5 Optimal control

In this section we are concerned with the following mini-
mization problem:

min
p∈Vad

Q(p)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ +∞

0

{ |〈By(t), y(t)〉|
|h(y(t))| p2(t) + |h(y(t))〈By(t), y(t)〉|

+ 2|〈Ny(t), y(t)〉|
}
dt, 〈By(t), y(t)〉 �= 0

0, 〈By(t), y(t)〉 = 0

(39)

whereh(ϕ) = ρ log(1− 〈Bϕ,ϕ〉
1+|〈Bϕ,ϕ〉| ), ϕ ∈ H andVad is the set

of all controls pwhich are bounded, i.e.,∃pmax > 0, |p(t)| ≤
pmax , ∀t ≥ 0 such that the corresponding solution y(.) to
(1) exists on the interval [0,+∞[, and satisfies ‖y(t)‖ ≤
M, ∀t ≥ 0, where M ≥ 0 and Q(p) < +∞.

The following result provides significant information on
the continuity of the state function with respect to the con-
trols, and its stated as follows.

Theorem 5.1 Let A generates a semigroup S(t) of contrac-
tions on H and that B and N are two nonlinear operators
satisfy (H1)−(H4). Then, for all y0 ∈ H and t > 0, the map
p �−→ y is continuous from L2([0, t];R) to C([0, t], H).

Proof Let y0 ∈ H and t > 0 be fixed. Let p ∈ L2([0, t];R)

and (pn) ⊂ L2([0, t];R) such that pn → p in L2([0, t];R)

as n → +∞ and let y(t) and ypn (t) are the solutions of the
system (1) associated with control p(t) and pn(t) respec-
tively. Then, the variation of constants formula gives:

ypn (t) − y(t) =
∫ t

0
S(t − τ)(pn(τ ) − p(τ ))By(τ )dτ

+
∫ t

0
S(t − τ)pn(τ )(Bypn (τ ) − By(τ ))dτ

+
∫ t

0
S(t − τ)(Nypn (τ ) − Ny(τ ))dτ.

Hence, using Schwartz’s inequality, we obtain ‖ypn (t) −
y(t)‖ ≤ αn+LM

∫ t

0
(1+|pn(τ )|)‖ypn (τ )−y(τ )‖dτ,where

αn = LM‖pn − p‖L2([0,t])
( ∫ t

0
‖y(τ )‖2dτ

) 1
2
. It follows
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from the Gronwall’s inequality that

‖ypn (t) − y(t)‖ ≤ αne
LM (t+1)

∫ t

0
|pn(τ )|dτ

.

Then, using once again the Schwartz’s inequality, we get

‖ypn (t) − y(t)‖ ≤ αne
LM (t+1)

√
t

( ∫ t

0
|pn(τ )|2dτ

) 1
2

,

which tends to zero as n → +∞ and hence ypn (t) → y(t)
in H and ypn → y in L2([0, t]; H) as n → +∞. ��
In what follows, we use the crucial following lemma to solve
the optimal control problem (39).

Lemma 5.1 Let A generate a semigroup S(t) of contrac-
tions on H and let B and N are two nonlinear operators
satisfy (H1) − (H4). Then, for all p ∈ Vad , there exists
K = K (ρ, T , M, LM , pmax) > 0 such that

∫ T

0
|〈BS(τ )y(t), S(τ )y(t)|dτ

≤ K (1 + e(1+pmax )T LM )‖y(t)‖

×
{( ∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| |p(s)|2ds

) 1
2

+
( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉|dτ

) 1
4
}
. (40)

Proof In view of

d

dt
‖y(t)‖2 ≤ 2ρ log

(
1 − 〈By(t), y(t)〉

1 + |〈By(t), y(t)〉|
)

×〈By(t), y(t)〉 + 2〈Ny(t), y(t)〉 ≤ 0, ∀y0 ∈ D(A),

we deduce that (7) is an admissible control, so Vad �= ∅. Let
p ∈ Vad , t ≥ 0. The solution of the system (1) satisfies:

y(τ ) = S(τ − t)y(t) +
∫ τ

t
S(τ − s)p(s)By(s)ds

+
∫ τ

t
S(τ − s)Ny(s)ds, τ ≥ t . (41)

Applying the Gronwall’s inequality, we get

‖y(τ )‖ ≤ ‖y(t)‖e(1+pmax )T LM , ∀τ ∈ [t, t + T ]. (42)

It follows by using Schwartz’s inequality and (42) from the
expression:

〈BS(τ − t)y(t), S(τ − t)y(t)〉 = 〈BS(τ

− t)y(t) − By(τ ), S(τ − t)y(t)〉 − 〈By(τ ), z(τ )〉

+ 〈By(τ ), y(τ )〉 (43)

where z(τ ) =
∫ τ

t
p(s)S(τ − s)By(s)ds +

∫ τ

t
S(τ −

s)Ny(s)ds, that

|〈BS(τ − t)y(t), S(τ − t)y(t)〉|
≤ (1 + e(1+pmax )T LM )LM‖y(t)‖‖y(τ ) − S(τ − t)y(t)‖

+ |〈By(τ ), y(τ )〉|, ∀τ ∈ [t, t + T ]. (44)

From (41) by combining the Schwartz’s and Hölder’s
inequalities with the fact that S(t) is a semigroup of con-
tractions and employing the hypotheses (H4) and ‖y(t)‖ ≤
M, ∀t ≥ 0, we get for all τ ∈ [t, t + T ], that

‖y(τ ) − S(τ − t)y(t)‖ ≤ MLM

∫ t+T

t
|p(s)|ds

+
∫ t+T

t
‖Ny(s)‖ds

≤ MLM

∫ t+T

t

|〈By(s), y(s)〉| 12
|h(y(s))| 12

× |p(s)| × |h(y(s))| 12
|〈By(s), y(s)〉| 12

ds

+
√
T√
μ

( ∫ t+T

t
|〈By(s), y(s)〉|ds

) 1
2

≤ √
ρT MLM

(∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| p2(s)ds

) 1
2

+
√
T√
μ

( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉| 12 |〈By(s), y(s)〉| 12

|h(y(s))| 12
ds

) 1
2

.

(45)

In view of (44) by using the last inequality (45) we infer for
all τ ∈ [t, t + T ], that

|〈BS(τ − t)y(t), S(τ − t)y(t)〉|
≤ √

ρT ML2
R(1 + e(1+pmax )T LM )‖y(t)‖

×
( ∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| p2(s)ds

) 1
2

+
√
T√
μ

(1 + e(1+pmax )T LM )LM‖y(t)‖

×
( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉| 12 |〈By(s), y(s)〉| 12

|h(y(s))| 12
ds

) 1
2

+ |〈By(τ ), y(τ )〉|
≤ √

ρT ML2
M (1 + e(1+pmax )T LM )‖y(t)‖

×
( ∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| p2(s)ds

) 1
2

+
√
T√
μ

(1 + e(1+pmax )T LM )LM‖y(t)‖

×
( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉| 12 |〈By(s), y(s)〉| 12

|h(y(s))| 12
ds

) 1
2

+ L
1
2
Me(1+pmax )T LM ‖y(t)‖|h(y(s))〈By(τ ), y(τ )〉| 14
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× |〈By(τ ), y(τ )〉| 14
|h(y(τ ))| 14

. (46)

It yields from (46) by using (27) and using still ‖y(t)‖ ≤
M, ∀t ≥ 0, with Schwartz’s inequality that

|〈BS(τ − t)y(t), S(τ − t)y(t)〉|
≤ √

ρT ML2
M (1 + e(1+pmax )T LM )‖y(t)‖

×
( ∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| p2(s)ds

) 1
2

+ (2ρ−1T 3(1+LMM2))
1
4√

μ
(1+e(1+pmax )T LM )LM‖y(t)‖

×
( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉|ds

) 1
4

+ (2ρ−1(1 + LMM2))
1
4 L

1
2
Me(1+pmax )T LM

×‖y(t)‖|h(y(τ ))〈By(τ ), y(τ )〉| 14 . (47)

Integrating the last inequality with respect τ over [t, t + T ],
and using twice the Schwartz’s inequality, then yields the

desired estimate (40) where K := max
{√

ρT
3
2 MLMT ,

(2ρ−1T 3LM )
1
4 (1 + L

1
2
M

μ
1
2
)
}
. ��

Theorem 5.2 Let A generate a semigroup S(t) of isometries
on H and let B and N are two nonlinear operators satisfy
(H1)−(H4) such that (5) holds. Then, any admissible control
is a strongly stabilizing one and furthermore, the control (7)
is the unique solution of (39).

Proof Integrating the relation (19), we obtain

2
∫ t

0
|〈By(τ ), y(τ )〉h(y(τ ))|dτ

+ 2
∫ t

0
|〈Ny(τ ), y(τ )〉|dτ ≤ ‖y0‖2, ∀t ≥ 0. (48)

This last inequality holds ∀y0 ∈ H , since by virtue of
(21), the function y0 �−→ y(t) is continuous from H to
L2(0, t; H). Then p∗

log
∈ Vad and then Vad �= ∅. Let t > 0,

p ∈ C1([0, t]), and let y(.) be the corresponding solution
of the system (1). For y0 ∈ D(A) and s ∈ [0, t], we have
y(s) ∈ D(A) and s �−→ y(s) is differentiable. This asser-
tion follows from [8]. So, for all p ∈ Vad there exists a
sequence (pn) ⊂ C1([0, t]) such that pn → p in L2(0, t, H)

as n → +∞. Then, since A is skew-adjoint and the fact that
pn ∈ C1([0, t]) then the corresponding solution ypn (t) to
pn(t) verifies

d‖ypn (t)‖2
dt

= |〈Bypn (t), ypn (t)〉|
|h(ypn (t))|

{
h(ypn (t)) − pn(t)

}2

− |〈Bypn (t), ypn (t)〉|
|h(ypn (t))|

{
h2(ypn (t)) + p2n(t)

}

− 2|〈Nypn (t), ypn (t)〉|.

This means that

∫ t

0

{ |〈Bypn (t), ypn (t)〉|
|h(ypn (t))|

|pn(t)|2

+|h(ypn (t))〈Bypn (t), ypn (t)〉|
}
dτ

=
∫ t

0

|〈Bypn (t), ypn (t)〉|
|h(ypn (t))|

|h(ypn (τ )) − pn(τ )|2dτ

− 2
∫ t

0
|〈Nypn (t), ypn (t)〉|dτ +‖ypn (0)‖2−‖ypn (t)‖2.

(49)

Letting n → +∞, and using the fact that the two maps
y0 �−→ y(t) and p �−→ y(t) are continuous, we obtain

∫ t

0

{ |〈By(t), y(t)〉|
|h(y(t))| |p(t)|2 + |h(y(t))〈By(t), y(t)〉|

}
dτ

= − 2
∫ t

0
|〈Ny(t), y(t)〉|dτ + ‖y0‖2 − ‖y(t)‖2

+
∫ t

0

|〈By(t), y(t)〉|
|h(y(t))| |h(y(τ )) − p(τ )|2dτ. (50)

In view of (5) and (40) we deduce that

δ‖y(t)‖ ≤ K (1 + e(1+pmax )T LM )

×
{( ∫ t+T

t

|〈By(s), y(s)〉|
|h(y(s))| |p(s)|2ds

) 1
2

+
( ∫ t+T

t
|h(y(s))〈By(s), y(s)〉|dτ

) 1
4
}
. (51)

Since Q(p) < +∞, by Cauchy criterion, we have

∫ t+T

t

|〈By(τ ), y(τ )〉|
|h(y(τ ))| |p(τ )|2dτ → 0 and

×
∫ t+T

t
|h(y(τ ))〈By(τ ), y(τ )〉|dτ → 0 as t → +∞.

Then, from (51) one can deduce that ‖y(t)‖ → 0 as t →
+∞. In other words p is a strongly stabilizing control. Then,
letting t → +∞ in (50), we get

Q(p) = ‖y0‖2+
∫ +∞

0

|〈By(t), y(t)〉|
|h(y(t))| |h(y(τ ))− p(τ )|2dτ,

(52)

which implies that Q(p) ≥ ‖y0‖2 = Q(p∗
log

), ∀p ∈ Vad ,

so that (7) is an optimal control of the problem (39). Let
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pi (t), i = 1, 2, be two solutions of the problem (39). From
(52) we deduce that pi (t) = h(yi (t)), where yi (t) verifies

dy(t)

dt
= Ay(t) + h(y(t))By(t) + Ny(t), y(0) = y0,

thus y1(t) = y2(t) and hence p1(t) = p2(t). ��

6 Applications

The main goal of this section is to present same applications
to illustrate the previous theoretical results.

6.1 Strong stabilization

Example 6.1 Applications to Liénard’s equations.
Let us consider the two-dimensional system:

ÿ(t) = − y(t) + p(t) f (y(t))ẏ(t) + g(y(t))ẏ(t), t > 0;
(y(0), ẏ(0)) = (y0, y1) (53)

where f , g : R �−→ R are two locally Lipschitz functions
such that f (0) = g(0) = 0 and g ≤ 0. Here the space
H = R2. The inner product is defined by:

〈y, z〉 = y1z1 + y2z2, ∀y = (y1, y2), z = (z1, z2) ∈ R2.

If we set A =
(

0 1
−1 0

)
, B

(
y1
y2

)
=

(
0

y2 f (y1)

)
and

N

(
y1
y2

)
=

(
0

y2g(y1)

)
, ∀(y1, y2) ∈ H , one can easy

deduce that the system (53) has the same form as (1). The

operator A is skew adjoint and et A =
(

cos(t) sin(t)
− sin(t) cos(t)

)

(see e.g [10]). Moreover, we have

〈
Bet A

(
y1
y2

)
, et A

(
y1
y2

)〉
= (y2 cos(t)

− y1 sin(t))
2 f (y1 cos(t) + y2 sin(t)).

If f (y1) > 0, ∀y1 �= 0, then (3) holds, as well as (5) since
dim(H) < +∞ (see [9]). Moreover, (H4) is verified if there
exists γ > 0 such that |g(y1)| ≤ γ

√| f (y1)|, ∀y1 ∈ R.

Hence, based on the Theorem 3.2 results, the solution of the
system (53) satisfies:

y2(t) + ẏ2(t) = O(
1

t
) as t → +∞, if (y(t),

ẏ(t)) �= (0, 0)

using the feedback control defined by:

p∗
log

(t) =
⎧⎨
⎩ ρ log(1 − ẏ2(t) f (y(t))

1 + ẏ2(t)| f (y(t))|) (y(t), ẏ(t)) �= (0, 0)

0, (y(t), ẏ(t)) = (0, 0).

The resulting stabilized semilinear system (53) constitutes a
special class of Liénard equations which is more general than
that treated in ([11,12]) when they considered only the case
g = 0. Furthermore, the stabilizing feedback control p∗

log
(t)

minimizes the following cost:

Q(p) =
∫ +∞

0

{( p2(t)

ρ log(1 + f (y(t))ẏ2(t))

+ ρ log(1 + f (y(t))ẏ2(t))
)
f (y(t))ẏ2(t))

+ 2g(y(t))ẏ2(t)
}
dt, ∀p ∈ Vad ,

more precisely, we have Q(p∗
log

) = y2(0) + ẏ2(0).

Example 6.2 The beam equation.
In this example we consider the monodimensional beam
equation with Neumann boundary conditions, which is given
by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y

∂t2
(x, t) = − ∂4y(x, t)

∂x4
+ p(t)

∂ y

∂t
(x, t)

−
∂ y

∂t
(x, t)

1 + |∂ y
∂t

(x, t)|
(x, t) ∈ (0, 1) × (0,+∞)

y(ξ, t) = ∂2y

∂x2
(ξ, t) = 0 (ξ, t) ∈ {0, 1} × [0,+∞).

(54)

Let us note that A1 = − ∂4

∂x4
, we have D(A1) = {y ∈

L2(0, 1); A1y ∈ L2(0, 1), y(x, .) = ∂2y

∂x2
(x, .) = 0, x ∈

{0, 1}}; and V = D(A
1
2
1 ) is a Hilbert space endowed with the

inner product

〈y1, y2〉V = 〈A
1
2
1 y1, A

1
2
1 y2〉L2(0,1) =

∫ 1

0

∂2y1(t)

∂x2
∂2y2(t)

∂x2
dx

(see [1]). Let ϕ j = √
2 sin ( jπx), ∀ j ∈ IN∗, denote the

normalized eigenfunctions of A1 and its spectrum is formed
by an increasing positive sequence (λ j ) j∈N∗ of correspond-
ing eigenvalues, where λ j = ( jπ)4. Here the state space
H = (H2(0, 1) ∩ H1

0 (0, 1)) × L2(0, 1) endowed with the
inner product:

〈y, z〉 = 〈y1, z1〉V + 〈y2, z2〉L2(0,1) =
∫ 1

0

∂2y1(t)

∂x2
∂2z1(t)

∂x2
dx
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+
∫ 1

0
y2(t)z2(t)dx, ∀ y = (y1, y2), z = (z1, z2) ∈ H .

If we denote A =
(

0 I
A1 0

)
, B =

(
0 0
0 I

)
and N =

(
0 0
0 f

)

where f (φ) = − φ

1 + |φ| . The system (54) can be rewritten

to the abstract initial form (1). It is easy to see that (H1) −
(H4) are satisfied. Furthermore, the condition (5) is verified.

Indeed, let y =
+∞∑
j=1

(
α j√
λ j β j

)
ϕ j ∈ H . Using separation

of variables argument of the semigroup S(t) generated by the
skew adjoint operator A, we obtain

S(t)y =
+∞∑
j=1

(
α j cos (

√
λ j t) + β j sin (

√
λ j t)

−α j
√

λ j sin (
√

λ j t) + β j
√

λ j cos (
√

λ j t)

)

ϕ j , ∀t ≥ 0, (55)

which implies

〈BS(t)y, S(t)y〉=
+∞∑
j=1

λ j

(
α j sin (

√
λ j t)−β j cos (

√
λ j t)

)2

=
+∞∑
j=1

λ j

(
α2
j sin

2 (
√

λ j t) − α jβ j sin (2
√

λ j t)

+β2
j cos

2 (
√

λ j t)
)
.

It yields by integrating the last equality from 0 to 1
π
, that

∫ 1
π

0
|〈BS(t)y, S(t)y〉|dt= 1

2π

+∞∑
j=1

λ j (α
2
j + β2

j )=
1

2π
‖y‖2.

So, the inequality (5) is verified for T = 1
π
and δ 1

π
= 1

2π .

We conclude by using Theorem 3.2 that the control:

p∗
log

(t) =

⎧⎪⎨
⎪⎩

−ρ log(1 + ∫ 1
0(

∂
∂t y(x, t)

)2
dx), if (y(., t), ∂

∂t y(., t)) �= (0, 0)
0, otherwise,

(56)

satisfies:

∫ 1

0

( ∂2

∂x2
y(x, t)

)2
dx +

∫ 1

0

( ∂

∂t
y(x, t)

)2
dx

= O(1
t

)
as t → +∞,

where ρ > 0. Moreover, the stabilizing feedback control
p∗
log

(t) minimizes the following cost:

Q(p) =
∫ +∞

0

{[ p2(t) + ρ2 log2(1 + ∫ 1
0

(
∂
∂t y(x, t)

)2
dx)

ρ log(1 + ∫ 1
0

(
∂
∂t y(x, t)

)2
dx)

]

×
∫ 1

0

( ∂

∂t
y(x, t)

)2
dx + 2

∫ 1

0

(
∂
∂t y(x, t)

)2
1 + | ∂

∂t y(x, t)|
dx

}
dt, ∀p ∈ Vad .

Example 6.3 Transport equation.
Consider the system defined on H = L2(0,+∞) by the
following equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ y

∂t
(x, t) = − ∂ y(x, t)

∂x+p(t)a(x)y(x, t)

− y(x, t)

1 + ‖y(t)‖H

, (x, t) ∈ (0,+∞) × (0,+∞)

y(x, 0) = y0(x), x ∈ (0,+∞).

(57)

In the sequel, we take a ∈ L∞(0,+∞) such that a ≥ c > 0
in (2,+∞) and

a(x) =
{−3, 0 < x < 1
3, 1 ≤ x ≤ 2.

Here, we take Ay= − ∂ y

∂x
, ∀y ∈ D(A)={H1(0,+∞); y(0)

= 0}. Furthermore, the inner product is defined by:

〈y1, y2〉 =
∫ +∞

0
y1(t)y2(t)dt, ∀y1, y2 ∈ L2(0,+∞).

The operator A generates the semigroup of contractions
S(t), t ≥ 0 defined, for all y0 ∈ H , by

S(t)y0(x) =
{
y0(x − t), if x > t
0, if x ≤ t,

(see e.g. [13]). Furthermore, it is evidently to see that (H1)−
(H4) are satisfy. We will establish (5)) for T = 2. We have

∫ 2

0
|〈BS(t)y0(x), S(t)y0(x)〉|dt

=
∫ 2

0

∫ +∞

t
|a(x)|y20 (x − t)dxdt

=
∫ +∞

0
y20 (x)

∫ 2

0
|a(x + t)|dtdx

≥ 2min{3, c}‖y0‖2H .

This implies (5). Hence, the following control p∗
log

(t) =
log(1 −

∫ +∞
0 a(x)y(x)dx

1+| ∫ +∞
0 a(x)y(x)dx | ) strongly stabilizes (57) with the

decay estimate:
∫ +∞

0
y2(x, t)dx = O(

1

t
) as t → +∞.
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6.2 Weak stabilization

Example 6.4 The heat equation.
Let us consider the semilinear heat equation with Neumann
boundary conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ y

∂t
(x, t) = ∂2y(x, t)

∂x2+p(t)By(x, t) + Ny(x, t), (x, t) ∈ (0, 1) × (0,+∞)
∂ y

∂x
(0, t) = ∂ y

∂x
(1, t) = 0, ∀t ≥ 0,

(58)

Here H = L2(0, 1); A = ∂2

∂x2
and D(A) = {y ∈

H2(0, 1); ∂ y

∂x
(0, t) = ∂ y

∂x
(1, t) = 0}. Moreover, the inner

product is defined by:

〈y1, y2〉 =
∫ 1

0
y1(x)y2(x)dx, ∀y1, y2 ∈ L2(0, 1).

The normalized eigenfunctions of A are given by ϕ1(x) =
1 and ϕ j (x) = √

2 cos (( j − 1)πx), associated with its
eigenvalues λ1 = 0 and λ j = − ( j −1)2π2, ∀ j ≥ 2 respec-
tively. The operator A generates a semigroup of contractions

S(t) such that S(t)y =
+∞∑
j=1

eλ j t 〈y, ϕ j 〉ϕ j and we consider

By =
+∞∑
j=1

α j 〈y, ϕ j 〉ϕ j , where α j > 0, ∀ j ≥ 1, such that

+∞∑
j=1

α2
j < +∞. Clearly B is compact. Moreover, we have

〈BS(t)y, S(t)y〉 =
+∞∑
j=1

α j e
2λ j t |〈y, ϕ j 〉|2, ∀t ≥ 0. Besides,

we set Ny = −
+∞∑
j=1

√
α j

1 + ‖y‖〈y, ϕ j 〉ϕ j , ∀y ∈ L2(0, 1). It is

clear that (3) holds as well as all the hypotheses (H1)−(H4).

Consequently, by Theorem 4.1 result, the control:

p∗
log

(t) =
{−ρ log(1 + ∑+∞

j=1 α j |〈y, ϕ j 〉|2) if y(., t) �= 0
0 otherwise,

weakly stabilizes (58).

Remark 6.1 With the usual homogeneousDirichlet boundary
conditions, the eigenvalues of the operator � are all λ j < 0,
for any j ≥ 1. Then, using the hypothesis (H3), the system
(58) is exponentially stable (taking p(t) = 0).

7 Simulations

In this section,we give simulations of the system (53). Taking
ρ = 0.2 which satisfies the second point of the Remark 3.1.
Furthermore, we take f (y) = |y|, g(y) = 10−3y2, y(0) = 2
and ẏ(0) = 0. Then, we obtain the results shown in the
Figs. 1, 2, 3 and 4.

From Fig. 4, one can deduce that |p∗
log| = o(|p∗|) as

t → +∞.

Fig. 1 The norm of the
stabilized state
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Fig. 2 The norm of the free state

Fig. 3 The evolution of the
stabilizing control

Fig. 4 The evolution of
p∗
log(.)

p∗(.)

7.1 Conclusion

Under the exact observability inequality (5) we have estab-
lished the polynomial stabilization for infinite dimensional
semilinear systems with a new constrained multiplicative
feedback control. The rate of polynomial convergence is
explicitly expressed.We also have considered the question of

weak stabilization by the same feedback control. Moreover,
the stabilizing feedback is the unique minimizing control
of an appropriate functional cost. Furthermore, some appli-
cations are given to illustrates our main results. Also, the
simulations illustrate perfectly the established theoretical
results.
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