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Abstract
This paper presents sliding mode control (SMC) technique for stabilization and synchronization of a class of
chaotic/hyperchaotic systems in master–slave configuration. Here, a detailed procedure for deriving a single controller using
SMC technique based proportional-integral sliding surface is proposed. Adaptation laws have been derived for the system
parameters when the systems are subject to parametric uncertainties. Further, explicit criteria to decide the minimum number
of control inputs required to meet out the desired operation of stabilization and synchronization is also proposed. Lyapunov
stability theory is utilized to accomplish the desired objective. The proposed controller ensures the occurrence of sliding
motion and achieves synchronization for the addressed class of chaotic/hyperchaotic systems in master–slave configuration.
To validate the analytical results, example of four dimensional Lorenz–Stenflo hyperchaotic system is considered. Finally,
detailed simulation results are provided to illustrate the effectiveness of the proposed controller.

Keywords Chaotic system · Synchronization · Sliding mode control · Lyapunov stability theory

1 Introduction

Controlling chaotic systems and exploiting their complex
behaviour in stabilization and synchronization applications
have been extensively investigated in past few decades and
still this area receives a great deal of attention from research
community. Since early attractors proposed by Lorenz in
1963 [1], many benchmark chaotic systems have been pro-
posed in literature [2–5]. Control of these chaotic systems
and their applications are widely explored since the pio-
neer work of Ott, Grebogi and York (OGY) on chaos control
[6]. Chaotic systems are dynamical systems that are highly
sensitive to initial conditions and parametric variations. As
a result, these systems display complex noise like unpre-
dictable behaviour. Due to the presence of more than one
positive Lyapunov exponents, generally, hyperchaotic sys-
tems exhibitmore complexdynamical behaviour than chaotic
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systems.Different hyperchaotic systems and associated com-
plex behaviours are reported in literature [7–14]. In context to
chaotic/hyperchaotic systems, their complex unpredictable
behaviour may be undesirable and may adversely affect
the operation and performance of electrical and mechani-
cal systems [15]. This complex dynamical behaviour may
sometimes induce unwanted oscillations resulting in reso-
nance which can lead to physical damage in some systems.
Suppression of chaotic behaviour in mechanical systems has
been intensively studied by many researchers. Suppression
of chaos in micro-electromechanical system resonators have
been presented by Shang et al. in [16]. Several studies have
investigated the nonlinear dynamics in magnetically levi-
tated systems [17,18]. Therefore, chaos stabilization is of
special importance and can be observed in systems involv-
ing chemical reactions [19,20], biological systems [21–25],
applied physics [26–28] etc. Keeping in view all these
contributions, it can be concluded that chaos control and sup-
pression have been addressed a great deal over the last few
decades. Further studies related to suppression of chaotic
oscillations can be found in [29–31] and the references
therein.

Along with chaos control, synchronization of chaotic/hy-
perchaotic systems has also attracted tremendous interest of
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many researchers keeping in view its possible applications
in secure communication [32,40,41,44]. Concept of synchro-
nization of chaotic systems was first studied and presented
by Pecora and Carroll [33,34]. Chaotic system synchro-
nization deals with the possibility of two or more chaotic
systems oscillating in a synchronized manner [35,36]. In
literature, various types of synchronization phenomenon
have been studied such as complete synchronization, phase
synchronization, partial synchronization, generalized syn-
chronization and projective synchronization etc. [37–40].
These schemes find applications in many potential fields
like secure communication, neural networks, optimization
of nonlinear system performance, modelling brain activity,
system identification and pattern recognition etc. [41–43].
In secure communication, due to the presence of highly
complex attractor, hyperchaotic systems are preferred to
enhance the security in communication applications by gen-
eratingmore complex dynamics [44]. In order to synchronize
chaotic systems, many effective control techniques like
active control [45], contraction theory [46,47], backstep-
ping design method [48], adaptive control [49], feedback
linearization [50], sliding mode control [51–56] etc. have
been used.

Todealwith stabilization and synchronization of uncertain
chaotic/hyperchaotic systems, slidingmode control approach
has been widely used in literature [51–56]. Active sliding
mode control based technique to realize synchronization of
chaotic systems with parametric uncertainty is proposed by
Zhang et al. [52]. The sufficient condition to ensure robust
stability of error dynamics is explored in this work. A robust
sliding mode control scheme for the synchronization of uni-
fied chaotic systems is presented byYan et al. in [53]. In there
work, a novel proportional integral (PI) switching surface
is introduced for determining the synchronization perfor-
mance of the system in sliding motion. Chaos control for
uncertain unified chaotic system by means of sliding mode
control approach is addressed by Ablay in [54]. Roopaei
et al. in [55] introduced a class of unknown chaotic sys-
tems and have utilized an adaptive sliding mode controller
to stabilize the new chaotic class. Design of adaptive sliding
mode control scheme for the synchronization of Genesio–
Tesi chaotic system is proposed by Ghamati et al. in [56].
Further a switching surface is proposed and based on the
selection of switching surface, two sliding mode control
schemes have been presented to ensure the occurrence of
sliding motion.

To the best of our knowledge, majority of the works avail-
able on SMC based stabilization and synchronization targets
only third order chaotic systems and utilize more than one
control inputs and are confined to some specific chaotic sys-
tems like unified system, Genesio–Tesi system etc. However,
in the present work, sliding mode control scheme is utilized
to address the problemof stabilization and complete synchro-

nization for a wider class of chaotic as well as hyperchaotic
systems. Based on Lyapunov stability analysis, a framework
for deriving single controller structure to address the synchro-
nization problem with and without uncertainties in system
parameters is developed. To ensure the occurrence of slid-
ing motion, a proportional-integral (PI) switching surface
is also derived. Moreover, attempt has also been made to
develop explicit criteria to decide the minimum number of
control inputs required to meet out the objective of stabiliza-
tion and synchronization. Numerical example showing the
detailed design methodology is presented for hyperchaotic
Lorenz–Stenflo system. Simulations are presented at the end
to show the convergence behaviour of system states aswell as
the time evolution of uncertain system parameters. The pro-
posed methodology can be easily adopted to address other
systems as well which are not part of identified class with
slight modification of procedure. In this regard, necessary
remarks are made in the paper at appropriate places. Over-
all, key contributions of this paper can be summarized as
follows:

i. Detailed analytical procedure for deriving single stabiliz-
ing controller using SMC technique based on PI sliding
surface for identified class of chaotic and hyperchaotic
systems is proposed and

ii. The procedure is extended to achieve two system syn-
chronization using single controller.

iii. Analytical results for controller design and adaptation
laws for parameters are derived when the systems are
subjected to limited parametric uncertainty and global
asymptotic stability is established in all cases using
Lyapunov stability theory. Finally, Simulation results to
support the analytical results are presented to highlight
the efficacy of proposed strategy.

This paper is organized as follows: In Sect. 2, problem
formulation for stabilizing a class of chaotic/hyperchaotic
systems is presented. Detailed procedure for addressing
the synchronization problem for the same class of sys-
tems is presented in Sect. 3. Section 4, presents analytical
results for adaptive synchronization when systems are sub-
jected to parametric uncertainties. Section 5, deals with the
description of fourth order hyperchaotic Lorenz–Stenflo sys-
tem taken as an example to validate the derived results.
Further, in this section, the results derived in previous
section are applied to achieve stabilization and synchro-
nization of chaotic systems in master–slave configura-
tion. Detailed numerical simulations showing the effec-
tiveness of the applied approach are presented in Sect. 6.
Finally, Sect. 7 concludes the contribution made in this
paper.
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2 Problem formulation for stabilization
problem

In this section, problem formulation for the stabilization of
proposed class of chaotic/hyperchaotic systems using sliding
mode control technique is given. Lyapunov stability analysis
is used to derive the analytical results related to the design of
proportional-integral (PI) switching surface and associated
control law.

2.1 SMC based stabilizing controller design

In the present subsection, the basic application of SMC
approach to stabilization problem is highlighted, which is
commonly adopted in majority of control literature. To
develop slidingmode control (SMC) based stabilization con-
troller design procedure, consider the following class of
nonlinear systems:

ẋ = Ax + Bf (x) (1)

where x ∈ �n is the state vector, A ∈ �n×n is matrix of
system parameters , B ∈ �n×n is matrix associated with
nonlinear part of system dynamics and f : �n → �n is a
nonlinear vector function of system states.

In stabilization of a system, the idea is to design an appro-
priate control input u ∈ �m , such that under the effect of the
designed control function, the states of the system converge
to equilibrium point or origin.

To achieve this goal, the dynamics of system (1) with
stabilizing controller u can be written as

ẋ = Ax + Bf ( x ) + Du (2)

where D ∈ �n×m is a matrix having non-zero entries corre-
sponding to the dynamics of those states to which the control
term is required to be associated to meet out the stabilization
requirements.

Here, the objective is to design the control input u ∈ �m

such that system states are stabilized i.e.

limt→∞ ‖x (t) ‖ → 0 (3)

By suitably selecting the proportional-integral (PI) based
sliding surfaces si (t) = 0, for i = 1, 2, . . . ,m, and m < n,
the original system dynamics in (1) can be replaced by an
equivalent dynamics expressed as follows:

ẋ (t) = A′x(t) + B ′f ′ (x(t)) (4)

The selection of sliding surfaces is made such that the
Lyapunov function V1 (x (t)) = xT x establishes the follow-
ing stability condition for the modified system dynamics in
(4):

V̇1 (x (t)) ≤ 0 (5)

Further, in order to drive the system trajectories to the sliding
surfaces si (t) = 0, for i = 1, 2, . . . .m, proper selection
of the control inputs ui (t) is required to be made. This is
achieved by selecting new Lyapunov function defined as

V2 (si (t)) = 0.5s2i (t) ; i = 1, 2, . . . ,m (6)

and then establishing

V̇2 (si (t)) < 0; i = 1, 2, . . . ,m (7)

It guarantees the existence of sliding mode for the system
given in (1). Based on the above preliminary description,
the main results of the paper are derived in the subsequent
sections.

2.2 Procedure to design stabilization controller for a
class of chaotic/hyperchaotic systems

In this subsection, procedure for the selection of controllers
and appropriate switching surfaces is elaborated for a class
of chaotic/hyperchaotic systems. In order to design suitable
SMC based controller and appropriate sliding surface, the
sub-class of nonlinear systems belonging to the wider class
presented in (1) is considered as follows:

ẋi =
∑n

k=1
θik xk +

∑n

j=2
Fi j ; i = 1, 2, 3, . . . , n (8)

here xi is the i th state variable of the system, elements θik
are linked to the actual system parameters and are coeffi-
cients associated with linear part of dynamics with θi i < 0
for i = 1, 2, 3, . . . , n, which will constitute the entries of A
matrix in (1) and

∑n
j=2 Fi j is the nonlinear part of the system

associated with i th state space equation. The above descrip-
tion covers a variety of chaotic/hyperchaotic systems like
chaotic Lorenz system [57], four dimensional hyperchaotic
Lorenz type system [58], Lorenz–Stenflo system [59,60] etc.
These systems have product type quadratic terms as part of
nonlinearities. The dynamics of the nonlinear system (8)with
controller applied to the lth state equation of the system can
be represented as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
n∑

k=1
θ1k xk + ∑n

j=2 F1 j

ẋ2 =
n∑

k=1
θ2k xk + ∑n

j=2 F2 j

...

ẋl =
n∑

k=1
θlk xk + ∑n

j=2 Fl j + ul

ẋl+1 =
n∑

k=1
θl+1,k xk + ∑n

j=2 Fl+1, j

...

ẋn =
n∑

k=1
θnk xk + ∑n

j=2 Fnj

(9)

The description in Eq. (9) has product type nonlinearities

defined as Fi j = x1
(
−∑n

j=2, j>i x j + ∑n
j=2, j<i x j

)
; for

i = 1, 2, 3, . . . , n.

Assumption 1 For the class of nonlinear system described in
(8), following assumptions are taken:

• All diagonal entries of the system matrix A associ-
ated with linear part are negative i.e. in matrix A =⎡

⎢⎢⎢⎣

θ11 θ12 · · · θ1n
θ21 θ22 · · · θ2n
...

... · · · ...

θn1 θn2 · · · θnn

⎤

⎥⎥⎥⎦; θi i < 0, ∀i = 1, 2, 3, . . . , n.

• The rest of the entries of matrix A are such that for i = l,
θl j 
= 0, for some j and θl j 
= −θ jl for all non-zero θl j .
Further, θi j = θ j i = 0 or θi j = −θ j i ; ∀i 
= l.

Remark 1 The Assumption 1 is followed by the members
of proposed class of systems in (9) and it helps in deriving
detailed procedure for stabilizing controller design analyti-
cally.

Remark 2 The proposed strategy can be extended to other
systemswhichdeviate in description as given in (8). If θi i > 0
for any i , then single controller is needed if assumption 1 is
also true for l = i .

Remark 3 For the case, where l 
= i , two controllers ui and
ul are required to be used along with two sliding surfaces
si and sl and the procedure as per Sect. 2.1 can be easily
adopted for such cases.

To achieve this objective using SMC approach, selection
of appropriate switching surface is made which guarantees
the stability of the equivalent dynamics as in (4) in sliding
mode so that the system states converge to zero. Then, a
sliding mode control law is established, which guarantees
the existence of sliding surface sl = 0.

In order to ensure asymptotic stability of slidingmode, the
proportional-integral switching surface sl can be selected as
follows:

sl = xl +
t∫

0

{
β1xl +

∑n

i=1,i 
=l
θil xi

+ 1

xl

⎛

⎝
n∑

i=1,i 
=l

xi
∑n

j=2
Fi j

⎞

⎠

⎫
⎬

⎭ dτ (10)

whereβ1 is a positive constant to be specified by the designer,
appropriately. When the system operates in sliding mode,
following Utkin condition [61] holds:

ṡl = 0 (11)

From (10), sliding mode dynamics can be obtained as fol-
lows:

ṡl = ẋl + β1xl +
∑n

i=1, i 
=l
θil xi (12)

+ 1

xl

(∑n

i=1, i 
=l
xi

∑n

j=2
Fi j

)

Using (12), one can write

ẋl = −β1xl −
∑n

i=1,i 
=l
θil xi − 1

xl

(∑n

i=1,i 
=l
xi

∑n

j=2
Fi j

)

(13)

Therefore, the equivalent slidingmode dynamics can bewrit-
ten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
n∑

k=1
θ1k xk + ∑n

j=2 F1 j

ẋ2 =
n∑

k=1
θ2k xk + ∑n

j=2 F2 j

...

ẋl = −β1xl −
n∑

i=1, i 
=l
θil xi − 1

xl

(∑n
i=1, i 
=l xi

∑n
j=2 Fi j

)

ẋl+1 =
n∑

k=1
θl+1,k xk + ∑n

j=2 Fl+1, j

...

ẋn =
n∑

k=1
θnk xk + ∑n

j=2 Fnj

(14)

To ensure the occurrence of sliding motion and stabilization
of the system dynamics, PI based sliding mode controller ul
in (9) is required to be suitably designed.

Theorem 1 For the system state description in (9), for any
i = l, the PI sliding surface selected as in (10) along with a
single sliding mode controller selected as

ul = −
n∑

k=1

θlk xk −
n∑

j=2

Fl j − β1xl
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−
∑n

i=1,i 
=l
θil xi − 1

xl

⎛

⎝
n∑

i=1,i 
=l

xi
∑n

j=2
Fi j

⎞

⎠

− σ sign (sl) ; σ > 0 (15)

Associated with lth state of the system dynamics are sufficient
to ensure convergence of system trajectories to the slid-
ing surface sl = 0. Further, global asymptotic stabilization
(GAS) of the state trajectories is achieved with control func-
tion (15) i.e. limt→∞ ‖xi (t) ‖ → 0, for i = 1, 2, 3, . . . , n.

Proof For the modified dynamics in (14), the stability of
sliding mode dynamics is analyzed using Lyapunov stability
theory. For this purpose, let the Lyapunov function candidate
be selected as follows:

V3 = 0.5

(
n∑

i=1

x2i

)
(16)

The time derivative of Lyapunov function in (16), along the
trajectories of system in (14), can be written as follows:

V̇3 =
n∑

i=1

xi ẋi = xl ẋl +
∑n

i=1, i 
=l
xi ẋi

= xl ẋl +
n∑

i=1, i 
=l

xi
(∑n

k=1
θik xk +

∑n

j=2
Fi j

)

= xl ẋl +
n∑

i=1, i 
=l

xi
∑n

k=1
θik xk

+
∑n

i=1, i 
=l
xi

∑n

j=2
Fi j

= xl ẋl + xl

n∑

i=1, i 
=l

θil xi

+
n∑

i=1, i 
=l

xi

n∑

k=1, k 
=l

θik xk

+
n∑

i=1, i 
=l

xi

n∑

j=2

Fi j

⇒ V̇3 = xl

⎛

⎝ẋl +
n∑

i=1, i 
=l

θil xi

+ 1

xl

⎧
⎨

⎩
∑n

i=1, i 
=l
xi

n∑

j=2

Fi j

⎫
⎬

⎭

⎞

⎠

+
∑n

i=1, i 
=l
xi

n∑

k=1, k 
=l

θik xk

Using ẋl from (13), V̇3 reduces to

V̇3 = −β1x
2
l +

n∑

i=1, i 
=l

xi

n∑

k=1, k 
=l

θik xk = −ξ T Pξ ≤ 0

(17)

where ξ = [
x1 x2 · · · xn

]T
is state vector. The matrix P

turns out to be a real symmetric matrix in (17) which can be
expressed as follows:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−θ11
(θ12+θ21)

2 · · · 0 · · · (θ1n+θn1)
2

(θ21+θ12)
2 −θ22 · · · 0 · · · (θ2n+θn2)

2
...

...
...

...
...

...

0 0 · · · β1 · · · 0
...

...
...

...
...

...
(θn1+θ1n)

2
(θn2+θ2n)

2 · · · 0 · · · −θnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

As per Assumption 1, all the diagonal entries of the system
matrix A in (1) are negative and by selecting design gain
β1 > 0, the real symmetric matrix P reduces to following:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

− θ11 0 · · · 0 · · · 0
0 − θ22 · · · 0 · · · 0
...

...
...

...
...

...

0 0 · · · β1 · · · 0
...

... · · · ...
...

...

0 0 0 0 0 − θnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is positive definite matrix.
With θi i < 0 and P being positive definite matrix in

(17), it can be established that the zero equilibrium point
(x1 = x2 . . . = xn = 0) of the system (9) is globally asymp-
totically stable (GAS) as the Lyapunov function is radially
bounded [62–64].

To ensure that the system states are directed towards the
sliding surface (10), if the controller ul in (15) is applied to
the lth state of the system (9), then the system states converge
to the sliding surface ensuring that limt→∞ ‖xi‖ → 0, for
i = 1, 2, 3, . . . , n.

In order to accomplish the objective of convergence of
system trajectories to sliding surface, consider newLyapunov
function as

V4 = 0.5s2l (19)

Taking time derivative of (19) and using (9) and (12), one
can get

V̇4 = sl ṡl

123



Controller design scheme for stabilization and synchronization of a class of chaotic and... 261

= sl

⎛

⎝ẋl + β1xl +
n∑

i=1, i 
=l

θil xi

+ 1

xl

⎛

⎝
n∑

i=1, i 
=l

xi

n∑

j=2

Fi j

⎞

⎠

⎞

⎠

= sl

⎛

⎝
n∑

k=1

θlk xk+
n∑

j=2

Fl j +β1xl+
n∑

i=1, i 
=l

θil xi

+ 1

xl

⎛

⎝
n∑

i=1, i 
=l

xi

n∑

j=2

Fi j

⎞

⎠ + ul

⎞

⎠

Using the control function ul as given in (15), one can get

V̇4 ≤ −slσ sign (sl) ≤ −σ |sl | (20)

As V̇4 ≤ 0, thus, according to Lyapunov stability analysis,
all the system trajectories converge to the sliding surface
and the state dynamics in the sliding mode is asymptotically
stable, which implies that limt→∞ ‖xi (t) ‖ → 0, for i =
1, 2, 3, . . . , n.

Thus, objective of stabilization of class of system in (9) is
accomplished. �

3 Problem formulation for SMC based
synchronizing controller design

In this section, basic formulation for synchronizing controller
design for two chaotic/hyperchaotic systems in master–slave
configuration is presented and later on, detailed procedure
for a sub-class of chaotic/hyperchaotic systems as in (9) in
master–slave configuration is proposed.

For the synchronization of nonlinear dynamical systems
(chaotic systems/hyperchaotic systems) inmaster–slave con-
figuration, consider the dynamics of the master system as
follows:

ẋ = Ax + Bf (x) (21)

where x ∈ �n is the state vector of the master system, A ∈
�n×n is matrix of system parameters, B ∈ �n×n is matrix
associated with nonlinear part of system dynamics and f :
�n → �n is a nonlinear vector function of states of the
master system.

By associating the control input signal u ∈ �m suitably,
the controlled dynamics of the slave system can be expressed
as follows:

ẏ = Ay + Bf (y) + Du (22)

where y ∈ �n is the state vector of the slave system,
A ∈ �n×n is matrix of system parameters , B ∈ �n×n is
matrix associatedwith nonlinear part of slave system dynam-
ics and f : �n → �n is a nonlinear vector function of slave
system states. Here, again D ∈ �n×m is a matrix with non-
zero entries corresponding to the states to which the control
function is required to be associated to meet out the objective
of synchronization in master–slave configuration.

In synchronization problem, idea is to identify the control
input or signal u ∈ �msuch that the trajectories of the slave
system follow the trajectories of the master system or the
control input is designed in such a way that makes the slave
system states to evolve in a similar manner as that of the
master system with time. Synchronization in master–slave
configuration can be shown by Fig. 1, where error between
the states of the identical master and slave system is used as
driving signal. Thus when y → x, then e → 0, which implies
that the objective of synchronization has been achieved.

To achieve this objective, error between the states of mas-
ter system and slave system is defined as follows:

e = y − x, where eT = [
e1 e2 . . . en

]
.

Using above definition, the synchronization error dynam-
ics using Eqs. (21) and (22) is obtained as:

ė = ẏ − ẋ = Ay + Bf (y) + Du − Ax − Bf (x)

= A (y-x) + B (f (y ) − f ( x)) + Du

= Ae + Bh (x,y) + Du (23)

where vector function h (x,y) = (f (y) − f (x)), accommo-
dates the nonlinear terms of both master and slave systems.

Here the objective is to design the controller u ∈ �msuch
that

lim
t→∞ ‖e (t) ‖ → 0 (24)

First of all, suitable selection of the sliding surfaces si (t) = 0
is made for i = 1, 2, . . . ,m i.e.

si (t) = fi (e (t) , y) = 0 (25)

To maintain the system trajectories in sliding mode, it is
ensured that ṡi (t) = 0. Further, the modified or equivalent
dynamics of the error system can be written as:

ė (t) = A′e (t) + h′ (e (t) , y) (26)

The selection of sliding surface si (t) is made such that
Lyapunov function V5 (e (t)) = eT e establishes following
asymptotic stability condition:

V̇5 (e (t)) ≤ 0 (27)
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Fig. 1 Complete
synchronization scheme in
master–slave configuration

( )

Master system Controller Slave system−
+

In addition to the selection of the appropriate sliding sur-
face, selection of the control input ui (t) has to be done so
that system trajectories are driven and confined to the sliding
surfaces si (t) = 0, for i = 1, 2, . . . ,m.

To achieve this goal, selection of the new Lyapunov func-
tion is made as follows:

V6 (si (t)) = 0.5s2i (t) ; i = 1, 2, . . . ,m (28)

Further, by selecting ui (t) appropriately, time derivative of
V6 (si (t)) may be shown to be negative definite i.e.

V̇6 (si (t)) < 0 (29)

The above result ensures the existence of sliding mode
for the synchronization problem under consideration and
implies that the error dynamics in sliding manifold is
asymptotically stable according to (27), which shows that
limt→∞ ‖e (t) ‖ → 0 and the master and the slave systems
are synchronized with each other.

3.1 Procedure for the synchronization of proposed
class of systems

In order to achieve the objective of synchronization using
slidingmode control approach, the dynamics of the sub-class
described in (8) is considered as master system.

Similarly, the dynamics of the slave system can be written
as

ẏi =
n∑

k=1

θik yk +
n∑

j=2

F ′
i j ; i = 1, 2, 3, . . . , n. (30)

here yi represent the i th state variable and θik
′s are the

coefficients associated with the linear part of the system
dynamics with θi i < 0, which will constitute the entries
of system matrix A of (22) similar to master system case.
∑n

j=2 F
′
i j = y1

(
−∑n

j=2, j>i y j + ∑n
j=2, j<i y j

)
is the

nonlinear part of the system.
The master system dynamics is similar to the system con-

sidered in (9) and is reproduced here:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
n∑

k=1
θ1k xk +

n∑
j=2

F1 j

ẋ2 =
n∑

k=1
θ2k xk +

n∑
j=2

F2 j

...

ẋl =
n∑

k=1
θlk xk +

n∑
j=2

Fl j

ẋl+1 =
n∑

k=1
θl+1,k xk +

n∑
j=2

Fl+1, j

...

ẋn =
n∑

k=1
θnk xk +

n∑
j=2

Fnj

(31)

Similarly, the dynamics of the slave system with controller
applied to the lth state of the slave system dynamics can be
expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 =
n∑

k=1
θ1k yk +

n∑
j=2

F ′
1 j

ẏ2 =
n∑

k=1
θ2k yk +

n∑
j=2

F ′
2 j

...

ẏl =
n∑

k=1
θlk yk +

n∑
j=2

F ′
l j + ul

ẏl+1 =
n∑

k=1
θl+1,k yk +

n∑
j=2

F ′
l+1, j

...

ẏn =
n∑

k=1
θnk yk +

n∑
j=2

F ′
nj

(32)

To establish complete synchronization between master sys-
tem (31) and the slave system (32), the error can be defined
as follows:

ei = yi − xi ; i = 1, 2, 3, . . . , n. (33)

Using the dynamics in (31) and (32), the resulting error
dynamics can be written as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 =
n∑

k=1
θ1kek +

n∑
j=2

Ψ1 j

ė2 =
n∑

k=1
θ2kek +

n∑
j=2

Ψ2 j

...

ėl =
n∑

k=1
θlkek +

n∑
j=2

Ψl j + ul

ėl+1 =
n∑

k=1
θl+1,kek +

n∑
j=2

Ψl+1, j

...

ėn =
n∑

k=1
θnkek +

n∑
j=2

Ψnj

(34)

Here, nonlinear function Ψi j = y1

(
−

n∑
j=2, j>i

e j

+
n∑

j=2, j<i
e j

)
+ e1

(
−∑n

j=2, j>i y j + ∑n
j=2, j<i y j

)
+

e1
(∑n

j=2, j>i e j − ∑n
j=2, j<i e j

)
; for i = 1, 2, 3, . . . , n.

The uncontrolled trajectories of the nonlinear systems
described in (31) and (32) will separate out quickly, with dif-
ferent initial conditions, being member of assumed chaotic/
hyperchaotic class. Therefore, in order to synchronize two
systems in master–slave configuration one has to design a
suitable SMC based controller such that limt→∞ ‖e (t) ‖ →
0 ⇒ limt→∞ ‖e1 e2 · · · en‖ → 0.

To ensure that the slave system follows the trajectories
of the master system, leading to meet out the objective of
synchronization, the proportional-integral switching surface
sl can be selected as follows:

sl = el+
t∫

0

⎧
⎨

⎩β1el+
n∑

i=1,i 
=l

θil ei + 1

el

⎛

⎝
n∑

i=1,i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠

⎫
⎬

⎭ dτ

(35)

where β1 is a positive constant to be suitably selected by the
designer. When the system operates in sliding mode ṡl = 0,
the following equation holds:

ṡl = ėl + β1el +
n∑

i=1, i 
=l

θil ei

+ 1

el

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ = 0 (36)

It further implies that

ėl = −β1el −
n∑

i=1, i 
=l

θil ei − 1

el

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ (37)

Therefore, from (34) and (37), the equivalent sliding mode
dynamics can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 =
n∑

k=1
θ1kek +

n∑
j=2

Ψ1 j

ė2 =
n∑

k=1
θ2kek +

n∑
j=2

Ψ2 j

...

ėl = −β1el −
n∑

i=1, i 
=l
θil ei − 1

el

(
n∑

i=1, i 
=l
ei

n∑
j=2

Ψi j

)

ėl+1 =
n∑

k=1
θl+1,kek +

n∑
j=2

Ψl+1, j

...

ėn =
n∑

k=1
θnkek +

n∑
j=2

Ψnj

(38)

The following theorem presents the results for the synchro-
nization of nonlinear systems described in (31) and (32) using
a single control input ul applied to the lth state of the slave
system dynamics.

Theorem 2 For the systems described in (31) and (32), for
any i = l, the PI sliding surface selected as (35) along with
a single sliding mode controller selected as

ul = −
n∑

k=1

θlkek −
n∑

j=2

Ψl j − β1el −
n∑

i=1,i 
=l

θil ei

− 1

el

⎛

⎝
n∑

i=1,i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ − σ sign (sl) ; σ > 0

(39)

associated with lth state of the slave system dynamics (32) is
sufficient to ensure that the system trajectories converge to the
sliding surface sl = 0 and further, error trajectories converge
to zero i.e. limt→∞ ‖ei (t) ‖ → 0, for i = 1, 2, 3, . . . , n; thus
ensuring synchronization between the states ofmaster system
(31) and slave system (32).

Proof Consider a positive Lyapunov function candidate as
follows:

V7 (e) = 0.5
n∑

i=1

e2i (40)

The time derivative of (40), while using equivalent sliding
mode error dynamics (38) can be written as follows:

V̇7 =
n∑

i=1

ei ėi = el ėl +
n∑

i=1, i 
=l

ei ėi
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= el ėl +
n∑

i=1, i 
=l

ei

⎛

⎝
n∑

k=1

θikek +
n∑

j=2

Ψi j

⎞

⎠

= el ėl + el

n∑

i=1, i 
=l

θil ei

+
n∑

i=1, i 
=l

ei

n∑

k=1, k 
=l

θikek +
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

= el

⎛

⎝ėl +
n∑

i=1, i 
=l

θil ei + 1

el

⎧
⎨

⎩

n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎫
⎬

⎭

⎞

⎠

+
n∑

i=1, i 
=l

ei

n∑

k=1, k 
=l

θikek

Using ėl from (37),V̇7 reduces to

V̇7 = −β1e
2
l +

n∑

i=1, i 
=l

ei

n∑

k=1, k 
=l

θikek = −ζ T Pζ

(41)

where ζ = [
e1 e2 · · · en

]T
represents the state error vec-

tor and matrix P is a real symmetric as described in (18).
With θi i < 0, it can be stated that the zero equilib-

rium point (e1 = e2 · · · = en = 0) of the system is globally
asymptotically stable (GAS) if the real symmetricmatrix P is
positive definite and Lyapunov function is radially bounded
as V̇7 ≤ 0 [62–64]. The above result holds as P turns out
to be positive definite while using assumption 1 and making
suitable selection of design parameter β1 > 0.

To establish the existence of sliding mode and conver-
gence of system trajectories to it, consider a new Lyapunov
function candidate as follows:

V8 = 0.5s2l (42)

The time derivative of (42), while using Eqs. (34) and (36)
can be written as

V̇8 = sl ṡl

= sl

⎛

⎝ėl + β1el +
n∑

i=1, i 
=l

θil ei + 1

el

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠

⎞

⎠

= sl

⎛

⎝
n∑

k=1

θlkek +
n∑

j=2

Ψl j + β1el +
n∑

i=1,i 
=l

θil ei

+ 1

el

⎛

⎝
n∑

i=1,i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ + ul

⎞

⎠

Using the control function ul as given in (39), one can get

V̇8 ≤ −slσ sign (sl) ≤ −σ |sl | (43)

As V̇8 ≤ 0, thus, according to Lyapunov stability analysis,
all the system trajectories converge to the sliding surface
and the state dynamics in the sliding mode is asymptotically
stable, which implies that limt→∞ ‖ei (t) ‖ → 0, for i =
1, 2, 3, . . . , n.

Thus, objective of synchronization of two systems of the
proposed class in master–slave configuration is achieved.

4 SMC based synchronizing controller
design with uncertain system parameters

In real-life situations, system parameters may be perturbed
due to external disturbances and may not be known in
advance. Hence, synchronization of chaotic systems with
unknown system parameters is more important and realis-
tic. For such a case, adaptation laws for uncertain parameters
and corresponding control input is analytically derived here
using SMC based synchronization scheme.

To address this problem, some parameters of the slave
system which are in the range space of the controller are
considered to be known and rest of the parameters are con-
sidered to be unknown. Let system (31) be considered as
master system.

As earlier, assuming that the controller is applied to the
lth state of the slave system, with parametric uncertainties,
the slave system dynamics can be defined as follows:

ẏi =
n∑

k=1

θ̂ik yk +
n∑

j=2

F ′
i j ; i = 1, 2, 3, . . . , n. (44)

where θ̂ik represents the uncertain coefficients associated
with linear part of system dynamics which need to be
estimated. The parametric errors between the parameter esti-
mates and their true values can be defined as follows:

θ̃ik = θ̂ik − θik; i, k = 1, 2, 3, . . . , n; i 
= l; (45)

whereas θ̂lk = θlkfor i = l, being known parameters.

Therefore, the dynamics of the slave system with con-
troller applied to lth state of the system dynamics can be
expressed as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 =
n∑

k=1
θ̂1k yk +

n∑
j=2

F ′
1 j

ẏ2 =
n∑

k=1
θ̂2k yk +

n∑
j=2

F ′
2 j

...

ẏl =
n∑

k=1
θlk yk +

n∑
j=2

F ′
l j + ul

ẏl+1 =
n∑

k=1
θ̂l+1,k yk +

n∑
j=2

F ′
l+1, j

...

ẏn =
n∑

k=1
θ̂nk yk +

n∑
j=2

F ′
nj

(46)

To achieve synchronization between master and slave sys-
tem, the error between corresponding states is defined as
follows:

ei = yi − xi ; i = 1, 2, 3, . . . , n (47)

The resulting error dynamics using Eqs. (31), (45) and (46)
can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 =
n∑

k=1
θ̂1kek +

n∑
k=1

θ̃1k xk +
n∑
j=2

Ψ1 j

ė2 =
n∑

k=1
θ̂2kek +

n∑
k=1

θ̃2k xk +
n∑
j=2

Ψ2 j

...

ėl =
n∑

k=1
θlkek +

n∑
j=2

Ψl j + ul

ėl+1 =
n∑

k=1
θ̂l+1,kek+

n∑
k=1

θ̃l+1,k xk+
n∑
j=2

Ψl+1, j

...

ėn =
n∑

k=1
θ̂nkek +

n∑
k=1

θ̃nk xk +
n∑
j=2

Ψnj

(48)

Here, nonlinear function Ψi j = y1
(
−∑n

j=2, j>i e j

+∑n
j=2, j<i e j

)
+ e1

(
−∑n

j=2, j>i y j + ∑n
j=2, j<i y j

)
+

e1
(∑n

j=2, j>i e j − ∑n
j=2, j<i e j

)
; for i = 1, 2, 3, . . . , n.

In order to establish synchronization between master and
the slave system, design of suitable SMCbased controller and
selection of proper adaptation laws for the unknown system
parameters is necessary.

To ensure the asymptotic stability and synchronization
operation, the proportional-integral switching surface sl in
this case can be selected as follows:

sl = el +
∫ t

0

⎧
⎨

⎩β1el + 1

el

⎛

⎝
n∑

i=1,i 
=l

ei
∑n

j=2
Ψi j

⎞

⎠

⎫
⎬

⎭ dτ

(49)

here β1 is a suitably selected positive constant.When the sys-
tem operates in sliding mode, the following equation holds:

ṡl = ėl + β1el + 1

el

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ = 0 (50)

which implies that

ėl = −β1el − 1

el

⎛

⎝
∑n

i=1, i 
=l
ei

n∑

j=2

Ψi j

⎞

⎠ (51)

Therefore, from (48) and (51), the equivalent sliding mode
dynamics can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 =
n∑

k=1
θ̂1kek +

n∑
k=1

θ̃1k xk +
n∑
j=2

Ψ1 j

ė2 =
n∑

k=1
θ̂2kek +

n∑
k=1

θ̃2k xk +
n∑
j=2

Ψ2 j

...

ėl = −β1el − 1
el

(
n∑

i=1, i 
=l
ei

n∑
j=2

Ψi j

)

ėl+1 =
n∑

k=1
θ̂l+1,kek +

n∑
k=1

θ̃l+1,k xk +
n∑
j=2

Ψl+1, j

...

ėn =
n∑

k=1
θ̂nkek +

n∑
k=1

θ̃nk xk +
n∑
j=2

Ψnj

(52)

Theorem 3 For the master system in (31) and the slave sys-
tem with uncertain parameters θ̂ik for i 
= l in (46), with PI
sliding surface selected as (49), the following controller ul
applied to the slave system (46), will ensure the occurrence
of the sliding motion:

ul = −β1el −
n∑

k=1

θlkek −
n∑

j=2

Ψl j

− 1

el

⎧
⎨

⎩

n∑

i=1,i 
=l

ei

n∑

j=2

Ψi j

⎫
⎬

⎭ − σ sign (sl) ; σ > 0

(53)

Here, again β1 > 0, is again suitably selected.
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If the adaptation laws for uncertain system parameters
are selected as follows:

˙̃
θ ik = −ηi θ̃ik − αi xkei − α′

i ekei ; for i, k = 1, 2, 3, . . . , n; i 
= l.

(54)

where αi = −sign (xkei ) , α′
i = −sign (ekei ) and ηi >

0 are the constants governing the adaptation process of
unknown system parameters, then the zero equilibrium point
of the error dynamical system (52) is globally asymptotically
stable (GAS) and the master and the slave systems in (31)
and (46) are globally synchronized, for all initial conditions.

Proof To establish synchronization in uncertain environment
for master system (31) and slave system (46), let the Lya-
punov function be selected as

V9
(
ei , θ̃ik

)
= 0.5

(
n∑

i=1

e2i

)
+ 0.5

⎛

⎝
n∑

i=1,i 
=l

(
n∑

k=1

θ̃2ik

)⎞

⎠

(55)

The time derivative of above Lyapunov function can be writ-
ten as follows:

V̇9 =
n∑

i=1

ei ėi +
n∑

i=1, i 
=l

(
n∑

k=1

θ̃ik
˙̃
θ ik

)

= el ėl +
n∑

i=1, i 
=l

ei ėi +
n∑

i=1, i 
=l

(
n∑

k=1

θ̃ik
˙̃
θ ik

)

Using the error dynamics (52), one can get

V̇9 =
⎧
⎨

⎩−β1e
2
l −

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠

⎫
⎬

⎭

+
n∑

i=1, i 
=l

ei

{
n∑

k=1

θ̂ikek +
n∑

k=1

θ̃ik xk

+
n∑

j=2

Ψi j

⎫
⎬

⎭ +
n∑

i=1,i 
=l

(
n∑

k=1

θ̃ik
˙̃
θ ik

)

=
⎧
⎨

⎩−β1e
2
l +

n∑

i=1

ei

n∑

k=1, k 
=l

θikek

⎫
⎬

⎭

+
n∑

i=1, i 
=l

ei

(
n∑

k=1

θ̃ikek

)

+
n∑

i=1, i 
=l

ei

(
n∑

k=1

θ̃ik xk

)

+
n∑

i=1, i 
=l

(
n∑

k=1

θ̃ik
˙̃
θ ik

)

= −ζ T P ′ζ +
n∑

i=1, i 
=l

ei

(
n∑

k=1

θ̃ikek

)

+
n∑

i=1, i 
=l

ei

(
n∑

k=1

θ̃ik xk

)

+
n∑

i=1

(
n∑

k=1

θ̃ik
˙̃
θ ik

)

For i = 1, 2, 3, . . . , n; i 
= l, V̇9 can be expanded as
follows:

V̇9 = −ζ T P ′ζ +
n∑

k=1

(
θ̃1k xke1 + θ̃1keke1 + θ̃1k

˙̃
θ1k

)

+
n∑

k=1

(
θ̃2k xke2 + θ̃2keke2 + θ̃2k

˙̃
θ2k

)
+ . . .

+
n∑

k=1

(
θ̃nk xken + θ̃nkeken + θ̃nk

˙̃
θnk

)

with the proper selection of adaptation laws as per (54), V̇9
becomes

V̇9 = −ζ T P ′ζ −
n∑

k=1

η1θ̃
2
1k

−
n∑

k=1

η2θ̃
2
2k − . . . −

n∑

k=1

ηn θ̃
2
nk (56)

Here, ζ = [
e1 e2 · · · en

]T
is the state error vector similar

to earlier case and P ′ is a real symmetric matrix and can be
expressed as

P ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−θ11
(θ12+θ21)

2 · · · (θ1l+θl1)
2 · · · (θ1n+θn1)

2

(θ21+θ12)
2 −θ22 · · · (θ2l+θl2)

2 · · · (θ2n+θn2)
2

...
...

...
...

...
...

(θl1+θ1l )
2

(θl2+θ2l )
2 · · · β1 · · · (θln+θnl )

2

...
...

...
...

...
...

(θn1+θ1n)
2

(θn2+θ2n)
2 · · · (θnl+θln)

2 · · · −θnn

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(57)

Using adaptation laws given in (54) and with all negative
diagonal entries of the system matrix A, it can be shown
that the zero equilibrium point (e1 = e2 = . . . = en = 0) of
the error dynamical system is globally asymptotically stable
(GAS) as V̇9 ≤ 0 if the real symmetric matrix P ′ is positive
definite [62–64]. Therefore by using Sylvester’s theorem all
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principal minors of P ′ must be positive, which implies that
the following conditions should be satisfied:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i . P ′
11 = −θ11 > 0

i i . P ′
22 =

{
θ11θ22 − (θ21+θ12)

2

4

}
> 0

.

.

.

i i i . P ′
nn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− θ11
(θ12+θ21)

2 · · · (θ1l+θl1)
2 · · · (θ1n+θn1)

2

(θ21+θ12)
2 −θ22 · · · (θ2l+θl2)

2 · · · (θ2n+θn2)
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(θl1+θ1l )
2

(θl2+θ2l )
2 · · · β1 · · · (θln+θnl )

2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(θn1+θ1n )
2

(θn2+θ2n)
2 · · · (θnl+θln)

2 · · · −θnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0

(58)

To ensure convergence of system trajectories to the slid-
ing surface and to establish synchronization between master
and the slave system given in (31) and (46), if the controller
ul in (53) is applied in the lth state of the slave system
(46), then the master and the slave system trajectories con-
verge to each other, ensuring that limt→∞ ‖ei‖ → 0, for
i = 1, 2, 3, . . . , n.

In order to prove this, new Lyapunov function is selected
as

V10 = 0.5s2l (59)

The time derivative of V10, while using (48) and (50), gives

V̇10 = sl ṡl

= sl

⎡

⎣ėl + β1el + 1

el

⎛

⎝
n∑

i=1, i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠

⎤

⎦

= sl

⎡

⎣
n∑

k=1

θlkek +
n∑

j=2

Ψl j

+β1el + 1

el

⎛

⎝
n∑

i=1,i 
=l

ei

n∑

j=2

Ψi j

⎞

⎠ + ul

⎤

⎦

Using the control function ul from (53), V̇10 becomes

�⇒ V̇10 = −σ sl sign (sl) ≤ −σ |sl | (60)

Therefore it can be concluded that the zero equilibrium
point (e1 = e2 · · · = en = 0) is globally asymptotically sta-
ble (GAS) as Lyapunov function is radially bounded and the
master and slave systems are globally synchronizedwith each
other. �

Remark 4 To establish synchronization between master sys-
tem (31) and slave system (46), the parameters of the systems
belonging to proposed class should be such that suitable
selection of feedback gain β1 is possible to ensure that con-
ditions in (58) are satisfied, thus, leading the error dynamical
system (52) to be globally asymptotically stable.

Remark 5 In case if the description of the nonlinearity dif-
fers from as described in Eq. (9), then, associating additional
control function with the equation having such nonlinearity
and following the proposed procedure, the stabilization and
synchronization results can be paralley derived.

5 Numerical example

To analyze the proposed strategy, example of hyperchaotic
Lorenz–Stenflo systembelonging to the class described in (8)
is considered. Lennart Stenflo, studied the equations govern-
ing the atmospheric waves in 1996. Based on low-frequency
and short-wavelength approximations, he was able to derive
a set of simplified equations. Then, using same strategy,
he constructed the Lorenz–Stenflo (LS) system [59]. With
parameter values of a = 1, b = 0.7, c = 26, d = 1.5,
Lorenz–Stenflo (LS) system can be described by a set of
nonlinear differential equations as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a (x2 − x1) + dx4
ẋ2 = x1 (c − x3) − x2
ẋ3 = x1x2 − bx3
ẋ4 = −x1 − ax4

(61)

The famous Lorenz system and LS system share the same
basic foundation. The LS system is similar to the Lorenz
system, but with addition of new control parameter d and
the new state variable x4. For the initial conditions taken as
x (0) = [

2 4 6 8
]T

and simulations run for 100s, three-
dimensional phase portraits are depicted in Fig. 2a–d.

5.1 Switching surface and stabilizing controller
design

To analyze the problem of stabilization discussed in Sect. 2,
controlled dynamics of the Lorenz–Stenflo system can be
considered as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a (x2 − x1) + dx4 + u1
ẋ2 = x1 (c − x3) − x2
ẋ3 = x1x2 − bx3
ẋ4 = −x1 − ax4

(62)

where u1 is the control input to be designed for stabilizing
the above system.
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Fig. 2 The phase portraits of
hyperchaotic Lorenz–Stenflo
system: a–d three dimensional
phase portrait for different states
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In sliding mode control based stabilization approach,
selection of appropriate switching surface is done which
guarantees the stability of equivalent dynamics in sliding
mode so that the state dynamics converges to zero. Thereafter,
a sliding mode control law is established which guarantees
the existence of sliding mode s1 = 0.

From the controlled dynamics of L–S system in (62)
and sliding surface in (10), n = 4, l = 1,

∑4
j=2 F1 j =

∑4
j=2 F4 j = 0,

∑4
j=2 F2 j = −x1x3 and

∑4
j=2 F3 j = x1x2.

Further, from (9) and (61), the system matrix can be written
as follows:

A =

⎡

⎢⎢⎣

θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−a a 0 d
c −1 0 0
0 0 −b 0

−1 0 0 −a

⎤

⎥⎥⎦ (63)

Therefore, the switching function as per Eq. (10) can be writ-
ten as follows:

s1 = x1 + ∫t0 (β1x1 + cx2 − x4) dτ (64)

where β1 is the positive constant specified by the designer.
As per Utkin [61], in sliding mode, the following equation
holds:

ṡ1 = 0 (65)

Therefore, from (64) and (65), the sliding mode dynamics
can be written as

ṡ1 = ẋ1 + β1x1 + cx2 − x4 = 0 (66)

From (66), one can write

ẋ1 = −β1x1 − cx2 + x4 (67)

Therefore, from (62) and (67), the equivalent sliding mode
dynamics for the system (62) can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = −β1x1 − cx2 + x4
ẋ2 = x1 (c − x3) − x2
ẋ3 = x1x2 − bx3
ẋ4 = −x1 − ax4

(68)

To analyze the stability of slidingmode dynamics in (68), the
Lyapunov function candidate in (16) becomes as follows:

V3 = 0.5
(
x21 + x22 + x23 + x24

)
(69)

Time derivative of above Lyapunov function can be written
as

V̇3 = x1 ẋ1 + x2 ẋ2 + x3 ẋ3 + x4 ẋ4 (70)

Using the equivalent sliding mode dynamics (68) in (70), V̇3
becomes

V̇3 = −β1x
2
1 − x22 − bx23 − ax24

= − [
x1 x2 x3 x4

]

⎡

⎢⎢⎣

β1 0 0 0
0 1 0 0
0 0 b 0
0 0 0 a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ = −xT Px

⇒ V̇3 ≤ 0.

here β1 > 0 and P =

⎡

⎢⎢⎣

β1 0 0 0
0 1 0 0
0 0 b 0
0 0 0 a

⎤

⎥⎥⎦ which is clearly positive

definite.
Therefore, according to Lyapunov stability theory, the

sliding motion on the sliding manifold is stable and limt→∞
‖xi‖ → 0, for i = 1, 2, 3, 4.
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Fig. 3 Variation of system states with time showing stabilization
behaviour
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Fig. 4 Variation of control input u1 in Eq. (71) with time

Now, next step is to design SMC based controller so that
system trajectories are directed on to the sliding surface s1 =
0.

Based on Theorem 1 and Eq. (15), the sliding mode con-
troller can be written as follows:

u1 = − (β1 − a) x1

− (a + c) x2 − (d − 1) x4 − σ sign (s1) ; σ > 0 (71)

The controller u1 in (71) makes the time derivative of Lya-
punov function (19) as negative definite i.e. V̇4 ≤ −σ |s1| ≤
0.

As V̇4 ≤ 0, implies that all the system trajectories con-
verge to the sliding surface and the state dynamics in the
slidingmode is asymptotically stable i.e. limt→∞ ‖xi‖ (t) →
0, for i = 1, 2, 3, 4.

Detailed simulation results depicting the convergence
behaviour of the system states and variation of control input
u1 with respect to time are presented in Figs. 3 and 4 in
Sect. 6.

5.2 Switching surface and synchronizing controller
design

To analyze synchronization operation in master–slave con-
figuration, system (61) is considered as master system.
Similarly, the controlled dynamics of the slave system can
be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a (y2 − y1) + dy4 + u1
ẏ2 = y1 (c − y3) − y2
ẏ3 = y1y2 − by3
ẏ4 = −y1 − ay4

(72)

where u1 is the control input to be designed for synchronizing
the system (61) and (72).

In order to achieve synchronization between master and
the slave system described in (61) and (72), respectively, the
error between the corresponding states of the master and the
slave systems can be defined as follows:

ei = yi − xi ; for i = 1, 2, 3, 4.
Therefore, the resulting error dynamics from (61) and (72)

can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = − ae1 + ae2 + de4 + u1
ė2 = ce1 − e2 − y1e3 − y3e1 + e1e3
ė3 = − ae3 + y1e2 + y2e1 − e1e2
ė4 = − e1 − ae4

(73)

In this case, n = 4, l = 1,
∑4

j=2 Ψ1 j = ∑4
j=2 Ψ4 j =

0,
∑4

j=2 Ψ2 j = −y1e3 − y3e1 − e1e3,
∑4

j=2 Ψ3 j = y1e2 +
y2e1 − e1e2and the system matrix A is the same as described
in (63).

To achieve synchronization, from (35), the proportional-
integral (PI) switching surface s1 can be written as

s1 = e1 + ∫t0 (β1e1 + ce2 − y3e2 + y2e3 − e4) dτ (74)

where β1 > 0 is a constant specified by the designer.
When system operates in sliding mode the following equa-
tion holds:

ṡ1 = 0 (75)

Therefore from (74) and (75), the slidingmode dynamics can
be obtained as

ṡ1 = ė1 + β1e1 + ce2 − y3e2 + y2e3 − e4 = 0 (76)

From (75) and (76), ė1 can be written as follows:

ė1 = −β1e1 − ce2 + y3e2 − y2e3 + e4 (77)
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Fig. 5 Response of
Lorenz–Stenflo system: a–d
synchronization behaviour of
master and slave system states
with controller (81)
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Hence, from (73) and (77), the equivalent sliding mode
dynamics for the error dynamics can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = −β1e1 − ce2 + y3e2 − y2e3 + e4
ė2 = ce1 − e2 − y1e3 − y3e1 + e1e3
ė3 = − ae3 + y1e2 + y2e1 − e1e2
ė4 = − e1 − ae4

(78)

In order to analyze the stability of the above equivalent sliding
mode dynamics, the Lyapunov function in (40) becomes

V7 = 0.5
(
e21 + e22 + e23 + e24

)
(79)

Time derivative of the above Lyapunov function can be writ-
ten as follows:

V̇7 = e1ė1 + e2ė2 + e3ė3 + e4ė4 (80)

Using the equivalent sliding mode dynamics (78) in (80), V̇7
becomes

V̇7 = −β1e
2
1 − e22 − be23 − ae24

= − [
e1 e2 e3 e4

]

⎡

⎢⎢⎣

β1 0 0 0
0 1 0 0
0 0 b 0
0 0 0 a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

e1
e2
e3
e4

⎤

⎥⎥⎦ = −eT Pe

⇒ V̇7 ≤ 0
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Fig. 6 Convergence of synchronization errors between the states of the
master and the slave systems

here β1 > 0 and P =

⎡

⎢⎢⎣

β1 0 0 0
0 1 0 0
0 0 b 0
0 0 0 a

⎤

⎥⎥⎦ which is clearly pos-

itive definite.
Therefore, according to Lyapunov stability analysis,

the sliding motion on the sliding surface is stable and
limt→∞ ‖ei‖ (t) → 0, for i = 1, 2, 3, 4.

Based on Theorem 2 and Eq. (39), the controller u1 can be
accordingly written so that system trajectories are directed
towards the sliding surface as follows:

u1 = − (k − a) e1 − (a + c) e2 − (d − 1) e4 + y3e2 − y2e3

−σ sign (s1) ; σ > 0 (81)
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The controller u1 in (81) makes the time derivative of Lya-
punov function (42) as negative definite i.e. V̇8 ≤ −σ |s1| ≤
0.

As V̇8 ≤ 0, implies that all system trajectories con-
verge to sliding surface and the state dynamics in the sliding
mode is asymptotically stable i.e. limt→∞ ‖ei (t) ‖ → 0,
for i = 1, 2, 3, 4. Detailed simulations results are shown in
Figs. 5, 6 and 7 in Sect. 6, where synchronization behaviour
of corresponding states of the master and the slave systems,
the convergence behaviour of the synchronization errors and
variation of control input with respect to time are presented.

5.3 Switching surface and synchronizing controller
design with uncertain system parameters

To analyze the synchronization operation with uncertain
system parameters, it is assumed that the master system
parameters are completely known. Further, it is assumed that
the parameters of the slave system which are in the range
space of the sliding mode controller are known and rest of
the parameters are unknown. Again, system described in (61)
is considered as the master system.

The dynamics of the slave system with parametric uncer-
tainties can be redefined as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a (y2 − y1) + dy4 + u1
ẏ2 = y1

(
ĉ − y3

) − y2
ẏ3 = y1y2 − b̂y3
ẏ4 = −y1 − ay4

(82)

where b̂ and ĉ are the uncertain slave system parameters and
need to be estimated. The parameters a and d are assumed
to be completely known. Here, objective is to design a slid-
ingmode controller and to determine suitable adaptation laws
for the uncertain system parameters in order to establish syn-
chronization between system (61) and (82). To meet out this
objective, the error dynamical systembetweenmaster system
(61) and slave system (82) can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = −ae1 + ae2 + de4 + u1
ė2 = ĉe1 − e2 − y1e3 − y3e1 + e1e3 + c̃x1
ė3 = −b̂e3 + y1e2 + y2e1 − e1e2 − b̃x3
ė4 = −e1 − ae4

(83)

where, b̃ = b̂− b and c̃ = ĉ− c are defined to be parametric
errors between parameter estimates and their true values.

Analysis of the switching surface and design of sliding
mode controller can be done by applying the results derived
in Sect. 4. As earlier, here, n = 4, l = 1,

∑4
j=2 Ψ1 j =

∑4
j=2 Ψ4 j =0,

∑4
j=2 Ψ2 j = −y1e3−y3e1−e1e3,

∑4
j=2 Ψ3 j

= y1e2 + y2e1 − e1e2.
For ensuring the asymptotic stability, the proportional-

integral switching surface from (49) can be written as
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Fig. 7 Variation of control input u1 in Eq. (81) with time

follows:

s1 = e1 + ∫t0 {β1e1 − y3e2 + y2e3} dτ (84)

where β1 > 0 is a positive constant suitably selected by the
designer.

As earlier, when system operates in sliding mode, the fol-
lowing Utkin condition [61] holds:

ṡ1 = ė1 + β1e1 − y3e2 + y2e3 = 0 (85)

Therefore, the above dynamics can be written as follows:

ė1 = −β1e1 + y3e2 − y2e3 (86)

Hence, from (83) and (86), the equivalent sliding mode
dynamics can be written as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = −β1e1 + y3e2 − y2e3
ė2 = ĉe1 − e2 − y1e3 − y3e1 + e1e3 + c̃x1
ė3 = −b̂e3 + y1e2 + y2e1 − e1e2 − b̃x3
ė4 = −e1 − ae4

(87)

In order to analyze the stability of above equivalent sliding
mode dynamics, the Lyapunov function (55) becomes

V9 = 0.5
[
e21 + e22 + e23 + e24 + b̃2 + c̃2

]

Time derivative of above Lyapunov function becomes

V̇9 = e1ė1 + e2ė2 + e3ė3 + e4ė4 + b̃ ˙̃b + c̃ ˙̃c

Using equivalent error dynamics given in (87), the above
expression becomes

V̇9 = −β1e
2
1 − e22 − be23 − ae24 + ce1e2 − e1e4

+ b̃
( ˙̃b − e23 − e3x3

)
+ c̃

( ˙̃c + e1e2 + e2x1
)

Based on Theorem 3 and Eq. (54), following selection of
adaptation laws for uncertain system parameters can be
made:
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Fig. 8 Response of
Lorenz–Stenflo system: a–d
synchronization behaviour of
master and slave system states
with uncertain system
parameters
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⎧
⎪⎨

⎪⎩

˙̃b = ˙̂b = −η1b̃ + x3e3 + e23; η1 > 0

˙̃c = ˙̂c = −η2c̃ − e2x1 − e1e2; η2 > 0

(88)

Using above adaptive laws, V̇9 becomes

V̇9 = −β1e
2
1 − e22 − be23 − ae24 + ce1e2

− e1e4 − η1b̃
2 − η2c̃

2

= −ζ T P ′ζ − η1b̃
2 − η2c̃

2 (89)

where ζ = [ |e1| |e2| |e3| |en|
]T

is the absolute error vector.
From (57) and (89), the real symmetric matrix P ′ can be
expressed as

P ′ =

⎡

⎢⎢⎣

β1 − c
2 0 1

2− c
2 1 0 0

0 0 b 0
1
2 0 0 a

⎤

⎥⎥⎦ (90)

The zero equilibrium point of the error dynamical system is
globally asymptotically stable (GAS) if the real symmetric
matrix P ′ is positive definite. Therefore, based on Sylvester’s
theorem, the following conditions must be satisfied:

⎧
⎪⎨

⎪⎩

i . β1 > 0

i i . β1 > c2
4

i i i . β1 > c2
4 + 1

4a

(91)

Hence, it can be clearly seen that with the proper choice
of feedback gain β1, the real symmetric matrix P ′ will be

positive definite and V̇9 becomes negative definite i.e. V̇9 ≤ 0
and the zero equilibriumpoint of error dynamical system (87)
is globally asymptotically stable.

From Theorem 3 and Eq. (53), the controller u1 can be
accordingly written as follows:

u1 = − (β1−a) e1−(a − y3) e2−de4−y2e3−σ sign (s1)

(92)

The choice of above controller makes the time derivative of
Lyapunov function V10 in (59) as negative definite i.e.

V̇10 ≤ −σ |s1| ≤ 0. (93)

As V̇10 ≤ 0, means that all trajectories of the systems in
(61) and (82) converge to sliding surface s1 in (84) and the
error dynamics in sliding mode is asymptotically stable i.e.
limt→∞ ‖ei (t) ‖ → 0, for i = 1, 2, 3, 4.

Detailed simulation results are presented in Sect. 6, where
synchronization behaviour of corresponding states of the
master and the slave systems and the convergence of syn-
chronization errors along with the convergence of uncertain
system parameters to their true values is depicted.

Remark 6 Some of the entries of the system matrix A in (63)
may be exactly known as they are not linked to the actual sys-
tem parameters. For such entries θi j , the uncertainty is not
required to be considered. For example, in the systemdynam-
ics of Lorenz–Stenflo system θ22 = −1, hence, uncertainty
in θ22 for Lorenz–Stenflo system is not considered.
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Fig. 9 Convergence of synchronization errors between the states of the
master and the slave systems

6 Numerical simulations

In this section, numerical simulations are presented to illus-
trate the effectiveness of the proposed approach. To validate
the results derived in Sect. 2, example of fourth order Lorenz–
Stenflo hyperchaotic system is considered. The fourth-order
Runge–Kutta method is used to solve the nonlinear system
with step size of 0.01. For the purpose of simulations, the sys-
temparameters are taken as a = 1, b = 0.7, c = 26, d = 1.5
andσ > 0 has to be suitably selected. For the case of stabiliza-

tion, the initial conditions are taken as x (0) = [
2 4 6 8

]T

and the control gain is selected as β1 = 2. Figure 3 presents
the time response of various state variables depicting the sta-
bilization results with the proposed sliding mode controller
in (71). These simulations are run for 10 s with a step size
of 0.01. It can be clearly seen that the controller is able to
effectively stabilize the hyperchaotic Lorenz–Stenflo system
under consideration. The time variation of control input u1
is shown in Fig. 4.

In the next part of the simulation, synchronization beha-
viour of two Lorenz–Stenflo systems in master–slave config-
uration is presented. In this case, simulations are again run
for 10 s with a step size of 0.01. The initial conditions for the

master system are taken as x (0) = [
2 4 6 8

]T
and for the

slave system as y (0) = [
9 7 5 3

]T
, respectively. The syn-

chronization behaviour of corresponding states of the master
and the slave systems is depicted in Fig. 5a–d. Convergence
of the synchronization errors is shown in Fig. 6. In this case
also the feedback gain is taken as β1 = 2. The convergence
of the synchronization errors to zero indicates that the master
and the slave systems are globally asymptotically synchro-
nized for all initial conditions. The variation of control input
u1 with time depicting the switching behaviour of the con-
troller is shown in Fig. 7.
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Fig. 10 Variation of control input u1 in Eq. (92) with time in case of
uncertain system parameters

Fig. 11 Convergence of estimates of uncertain system parameters to
their true values

Further, synchronization operation is achieved taking into
consideration uncertainties in the slave system parameters.
In this case, the simulations are run for 8 s. Initial condi-
tions for the adaptation laws of uncertain system parameters
are taken as b̃ (0) = c̃ (0) = 5. The other positive constants
governing the adaptation process of uncertain system param-
eters are taken as η1 = η2 = 15. Figure 8a–d represents
the time response of corresponding states of the master and
the slave systems with uncertain system parameters. For the
same case, convergence of synchronization errors to zero is
depicted in Fig. 9, which implies that the objective of syn-
chronization has been achieved. Variation of control input
u1 with time is presented in Fig. 10. Convergence behaviour
of estimates of uncertain parameters to their true values is
presented in Fig. 11. It can be clearly observed from the sim-
ulation results that the proposed controller is able to establish
synchronization between the master and the slave systems in
uncertain environment, which justifies the effectiveness of
the proposed strategy.
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7 Conclusion

The problem of stabilization and synchronization of a class
of chaotic and hyperchaotic systems in master–slave config-
uration, using proportional-integral (PI) surface based SMC
scheme is addressed in the manuscript. A sliding mode con-
troller is presented to ensure the occurrence of slidingmotion
for both stabilization and synchronization cases. The pre-
sented analytical procedure helps in deciding the minimum
number of control inputs required to stabilize and synchro-
nize the system of the proposed class. It has been shown that
with the proper choice of number of control inputs and their
parameters, the master and the slave systems get completely
synchronized. By using SMC based control inputs, conver-
gence of errors to zero with time has been ensured. Taking
into consideration the practical aspects of uncertain environ-
ment in which the systems may have to operate, effects of
limited parametric uncertainties, is also taken into account.
Further, convergence of uncertain parameters to their true
values is also achieved. Numerical simulations in support of
theoretical results are given in order to show the effectiveness
of the proposed strategy.
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