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Abstract
In this work, a novel hyperchaotic system is introduced. The system consists of four coupled continuous-time ordinary
differential equations with three quadratic nonlinearities. Based on the center manifold and local bifurcation theorems, the
existence of pitchfork bifurcation is proved at the origin equilibrium point of the proposed system. Also, the existence of
Hopf bifurcation near all the equilibrium points of the system is shown. Moreover, stability analysis of the resulting periodic
solutions is analyzed using Kuznetsov’s theory which determines the analytical conditions for the occurrence of supercritical
(subcritical) Hopf bifurcation’s type. Numerical verifications such as Lyapunov exponents’ spectrum, Lyapunov dimension,
bifurcation diagrams and the continuation software MATCONT are used to show the rich dynamics of the proposed system
and to confirm the analytical results. Finally, the hyperchaotic behaviors in this system are suppressed to its three equilibrium
points using a novel control method based on Lyapunov stability approach.

Keywords Novel hyperchaotic system · Pitchfork bifurcation · Supercritical Hopf bifurcation · Subcritical Hopf bifurcation ·
Hyperchaos control

1 Introduction

Recently, studying dynamical behaviors and applications in
hyperchaotic systems has attracted increasing attention of
scientists and engineers [1–29], since the birth of Rössler’s
hyperchaotic attractors [1,2]. A regular chaotic dynamical
system has no more than one Lyapunov exponent (LE),
however a hyperchaotic system possesses at least two pos-
itive Lyapunov exponents (LEs), which reflect the complex
dynamics and abundant behaviors that make its implemen-
tation is useful to various potential applications including
encryption algorithms [30–33], backtracking search opti-
mization algorithms [34], secure communications [35–37]
and circuit design [3,4,25,33,38,39].Moreover, hyperchaotic
systems have useful applications in lasers and secure optical
communications [40,41] due to their high capacity, high secu-
rity and high efficiency. In dissipative hyperchaotic systems,
all LEs have sum less than zero. In [42], it is found that every
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trajectory which does not approach at a fixed point must have
at least one zero LE. Hence, the hyperchaotic casemost prob-
ably exists in four-dimensional dynamical systems because
they have four LEs. So, an explicit criterion for investigating
hyperchaotic attractors in a dissipative autonomous system
is described as

(i) The system may have at least four-dimensional phase
space.

(ii) The system may have at least two nonlinear equations
to increase its instability.

(iii) The system possesses at least two positive LEs (�1 >

0,�2 > 0), or equivalently; the Lyapunov dimension
DL is a fraction greater than three, where DL = j +
∑i= j

i=1 �i

|� j+1| , j is the largest integer that makes
i= j∑

i=1
�i > 0.

Indeed, the pioneering Rössler’s hyperchaotic system has
a single quadratic nonlinearity. Afterwards, some hyper-
chaotic systems with two quadratic nonlinearities had been
introduced such as Lü hyperchaotic system [43] and Lorenz-
Stenflo hyperchaotic system [44]. Recently, a Lü hyper-
chaotic system with parameter uncertainty is investigated
in [45].Moreover, hyperchaotic systemswith three quadratic
nonlinearities had recently been appeared such as the Chen’s
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hyperchaotic system [35], the hyperchaotic Lü system gen-
erated via state feedback control [9] and the hyperchaotic
system given by El-Sayed et al. [25]. In Khan and Bhat [7],
introduced a new hyperchaotic system with four quadratic
nonlinearities. In Tripathi et al. [46] investigated the dynam-
ical behaviors in a new hyperchaotic system with four cubic
nonlinearities. In Singh and Roy [47] developed a new sim-
ple 4-D system with a single quadratic nonlinearity that has
no equilibrium point and has hidden attractors. On the other
hand, hyperchaotic behaviors were shown to be existed in a
three-dimensional nonautonomous system with cubic non-
linearity [13].

Due to the fact that the three quadratic nonlinearities
increase the instability of the system inmore than two dimen-
sions, a new hyperchaotic system with three differential
nonlinear equations with each equation involves a quadratic
nonlinearity, is proposed. The fourth differential equation is
linear state equation to make its variable w act as feedback
state variable, since the linear equation is designed tomakew
decay or increase as the time increases. So by decaying w, we
may faster the occurrence of hyperchaotic attractor since in
dissipative hyperchaotic system, contraction must outweigh
expansion. Also, another state variable x in the system is
commonly existed in all the nonlinear terms and acts as a
nonlinear feedback. The resulting system has three equilib-
rium points which enrich the variety of dynamical behaviors
in the system. Motivated by this discussion, the proposed
system is candidate to be implemented in real world applica-
tions used to generate hyperchaotic behaviors. Therefore, the
new hyperchaotic system can easily be used to show some
novel behaviors in addition that it has a simple form of non-
linearities which match the criteria for publication a new
chaotic/hyperchaotic system [48,49].

On the other hand, the occurrence of Hopf bifurcation in a
continuous-time dynamical system is considered to be one of
the most fascinating dynamical behaviors. It is characterized
by the existence of a closed invariant curve, namely a limit
cycle, in the phase plane which means that the limit set of
solution trajectory of the system is an isolated closed periodic
orbit. At the critical parameter value of Hopf bifurcation, two
purely imaginary eigenvalues of the equilibrium point exist.
Thus, as the Hopf bifurcation occurs, the system switches
its stability and a periodic solution arises. A supercritical
Hopf bifurcation takes place when a stable equilibrium is
replaced by a stable periodic orbit as the dynamical parameter
passes through the critical Hopf bifurcation’s value. Other-
wise, when the bifurcation orbit is unstable, Hopf bifurcation
is said to be subcritical which is always more dramatic, and
potentially dangerous in engineering applications. There-
fore, these two types of Hopf bifurcations are important
in experimental work, because they explain the important
phenomenon of the created periodic orbits. Recently, the ana-
lytical study ofHopf bifurcation in three-dimensional chaotic

systems has received increasing attention [50–55], however
more detailed investigations of Hopf bifurcation is required
in the case of four-dimensional hyperchaotic systems.

In real world applications there are many practical situ-
ations where chaos must be controlled, such as suppressing
chaotic behavior of power electronics, improving the per-
formance of a dynamical system, eliminating drag in flow
systems and suppressing complicated circuit oscillations.
Moreover, the appearance of chaos is not favorable situa-
tion in economy. So, if chaos is controlled then companies
can plan for the future.

Motivated by the previous discussion, the objective of
this work is to investigate bifurcations, chaos, hyperchaos
and control in a novel hyperchaotic system consists of four
coupled continuous-time ordinary differential equationswith
three quadratic nonlinearities. The existence of pitchfork
bifurcation in this system is proved using the center man-
ifold and local bifurcation theorems [56]. Also, the existence
of Hopf bifurcations near all the equilibrium points of the
system is shown. Conditions for supercritical and subcritical
Hopf bifurcations are also derived using the criterion given
by Kuznetsov [57]. The LEs of the system are calculated
to investigate the existence of chaos and hyperchaos, using
the efficient algorithm given by Wolf et al. [58]. Moreover,
the corresponding fractal dimension DL is calculated using
Kaplan and Yorke method [59]. Finally, hyperchaos control
is achieved in this system using a novel simple linear feed-
back control criterion based on the Lyapunov stability theory.

2 The proposed system

The system under study is introduced by the following set
of ordinary differential equations (known here as Matouk’s
hyperchaotic system):

ẋ = a(w − y) + hx − xw,

ẏ = bx − xz + w,

ż = − cz + x2,

ẇ = dw. (1)

The system has three equilibrium points defined as

E0 = (0, 0, 0, 0), E1 = (
√
bc, h

√
bc/a, b, 0),

E2 = (−√
bc,−h

√
bc/a, b, 0),

where a, b, c, d, h are real valued parameters and the con-
dition a �= 0, bc > 0 must be satisfied to ensure the
existence of the equilibrium points E1 and E2. Also, the
system (1) is dissipative if it satisfies the condition ∇.V =
∂ ẋ
∂x + ∂ ẏ

∂ y + ∂ ż
∂z + ∂ẇ

∂w
< 0, which implies that the flow with

initial volume V0 is contracted into V0e−(w+c−h−d)t at time t .
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3 Some stability conditions in the proposed
system

In this Section, some stability conditions for system (1) are
derived. The system has the following the Jacobian matrix:

J =

⎛

⎜
⎜
⎝

−w + h −a 0 a − x
b − z 0 −x 1
2x 0 −c 0
0 0 0 d

⎞

⎟
⎟
⎠ . (2)

In the case of the origin equilibrium point, the character-
istic equation of the Jacobian matrix (2) has the eigenvalues:

λ1 = d, λ2 = − c,

λ3 = h − √
h2 − 4ab

2
,

λ4 = h + √
h2 − 4ab

2
.

So, E0 is locally asymptotically stable if and only if
Re(λi ) < 0, i = 1, 2, 3, 4, where λi is an eigenvalue of
the Jacobian matrix (2) evaluated at E0. So, E0 is locally
asymptotically stable iff

d < 0, c > 0, h < 0, ab > 0. (3)

The other equilibrium points E1, E2 have the same char-
acteristic equation

λ4 + (c − d − h)λ3 + (hd − hc − cd)λ2

+(hcd − 2abc)λ + 2abcd = 0.

It is also clear that λ = d is a root of this eigenvalue
equation. So for λ �= d, the characterstic equation of E1, E2

is reduced to

λ3 + (c − h)λ2 − hcλ − 2abc = 0.

Hence based on the Routh–Hurwitz stability criterion,
the equilibrium points E1 = (

√
bc, h

√
bc/a, b, 0), E2 =

(−√
bc,−h

√
bc/a, b, 0) are locally asymptotically stable iff

at least one of the following statements holds true:

(i) c > max{0, h}, b > 0, h < h1, a < 0, d < 0,
(ii) c > max{0, h}, b > 0, h > h2, a < 0, d < 0,
(iii) h < c < 0, b < 0, h1 < h < h2, a < 0, d < 0,

where

h1 = 0.5c −
√
0.25c2 − 2ab,

h2 = 0.5c +
√
0.25c2 − 2ab.

Remark 1 According to the classical Routh–Hurwitz stabil-
ity criterion, it is easy to verify that the necessary conditions
for the equilibrium points E0 and E1,2 to be locally asymp-
totically stable, are abcd < 0 and 2abcd > 0, respectively.

4 Pitchfork bifurcation analysis in the system

In this Section, the parameter b is selected as a dynamical
parameter of the novel hyperchaotic system. So, the critical
parameter’s value at which pitchfork bifurcation takes place
is denoted by bc. At this critical value of the parameter b, the
Jacobian matrix evaluated at the origin equilibrium point E0

is given as

J (E0) =

⎛

⎜
⎜
⎝

h −a 0 a
bc 0 0 1
0 0 −c 0
0 0 0 d

⎞

⎟
⎟
⎠ . (4)

When bc = 0, the equilibrium point E0 is not hyperbolic
and has the following eigenvalues:

λ1 = 0, λ2 = −c, λ3 = d, λ4 = h.

Hence, the center manifold Theorem [56] can be used to
investigate the dynamics near the origin equilibrium point
E0. By utilizing the following transformation:

⎛

⎜
⎜
⎝

x
y
z
w

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 1 1
h/a 0 −σ 0
0 1 0 0
0 0 −dσ 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠ ,

σ = (h − d)/(a[d − 1]),

system (1) is transformed as follows

⎛

⎜
⎜
⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 0 0
0 −c 0 0
0 0 d 0
0 0 0 h

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

�1

�2

�3

�4

⎞

⎟
⎟
⎠ , (5)

where

�1 = a(μx1 + μx3 + μx4 − x1x2 − x2x3 − x2x4)/h,

�2 = (x1 + x3 + x4)
2,

�3 = 0,

�4 = a((1 − d)σ x3 − hx1/a)

+ dσ x3(x1 + x3 + x4)

+ h(x1 + x3) − d2(h − 1)x3/(hd − h)

− a((μ − x2)(x1 + x3 + x4) − dσ x3)/h,
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and μ = b − bc is considered to be the bifurcation param-
eter of the transformed system. Then, the dimensions of the
system are reduced using the center manifold Theorem [56]
which ensures the existence of a center manifold for system
(5):

Wc(0) =
{
(x1, x2, x3, x4, μ) ∈ R5

∣
∣
∣ x2 = h1(x1, μ),

x3 = h2(x1, μ), x4 = h3(x1, μ), |x1| < ε,

|μ| < ε̄, hi (0, 0) = 0, Dhi (0, 0) = 0, i = 1, 2, 3} , (6)

for sufficiently small constants ε and ε̄. The center manifold
Wc(0) must satisfy

�(H(x̂, ρ)) ∼= Dx̂H(x̂, ρ)

[�x̂ + f (x̂,H(x̂, ρ), ρ)]
−BH(x̂, ρ) − �(x̂,H(x̂, ρ), ρ) = 0, (7)

where

x̂ ≡ x1, ρ ≡ μ,� = 0, f = �1,

B =
⎛

⎝
−c 0 0
0 d 0
0 0 h

⎞

⎠ ,� =
⎛

⎝
�2

�3

�4

⎞

⎠ ,H =
⎛

⎝
H1

H2

H3

⎞

⎠ ,

H1(x1, μ) = a1x
2
1 + a2x1μ + a3μ

2 + · · · ,

H2(x1, μ) = b1x
2
1 + b2x1μ + b3μ

2 + · · · ,

H3(x1, μ) = c1x
2
1 + c2x1μ + c3μ

2 + · · · .

Equating terms of like powers in Eq. (7) to zero yields

a1 = 1

c
, a2 = a3 = 0,

b1 = b2 = b3 = 0,

c1 = c3 = 0, c2 = a

h2
,

provided that a �= 0, c �= 0, h �= 0, d /∈ {0, 1}. Therefore

x2 = H1(x1, μ) = 1

c
x21 + 0.x1μ + 0.μ2 + · · · ,

x3 = H2(x1, μ) = 0.x21 + 0.x1μ + 0.μ2 + · · · ,

x4 = H3(x1, μ) = 0.x21 + a

h2
x1μ + 0.μ2 + · · · . (8)

Thus, the reduced vector field is obtained as follows

ẋ1 = a

h

(

μx1 + a

h2
μ2x1 − 1

c
x31 − a

ch2
μx31

)

+ · · · ,

μ̇ = 0. (9)

Now, it is clear thatG(x1, μ) = a
h (μx1+ a

h2
μ2x1− 1

c x
3
1 −

a
ch2

μx31) satisfy the following conditions:

G(0, 0) = 0,
∂G

∂x1

∣
∣
∣
∣
(0,0)

= 0,
∂G

∂μ

∣
∣
∣
∣
(0,0)

= 0,
∂2G

∂x21

∣
∣
∣
∣
∣
(0,0)

= 0,

∂2G

∂x1∂μ

∣
∣
∣
∣
(0,0)

= a

h
�= 0,

∂3G

∂x31

∣
∣
∣
∣
∣
(0,0)

= −6a

ch
�= 0.

Consequently, pitchfork bifurcation occurs at the origin
equilibrium point of system (9).

Thus, the following theorem has been proved:

Theorem 1 For a �= 0, c �= 0, h �= 0, d /∈ {0, 1}, system
(1) exhibits a pitchfork bifurcation at the origin equilibrium
point when the parameter b passes through the critical value
bc = 0. Furthermore, for some parameters a < 0, c ∈
R+, d < 0, h < 0 and b < bc, the unique origin equilib-
rium point is locally asymptotically stable. However, when
b > bc, the origin equilibrium point becomes unstable and
two other equilibrium points E1 = (

√
bc, h

√
bc/a, b, 0)

and E2 = (−√
bc,−h

√
bc/a, b, 0) appear, and they are

locally asymptotically stable for some parameters a < 0, c ∈
R+, d < 0, h < 0.

5 Existence of Hopf bifurcation in the system

In this Section, the existence of Hopf bifurcation in system
(1) will be shown using the first Lyapunov coefficient tech-
nique by Kuznetsov [57]. This method can be summarized
as follows:

Consider the following n-dimensional system

Ẋ = F(X , μ), X ∈ Rn, μ ∈ R. (10)

Assume that system (10) is written as

Ẋ = A(μ)X + N(X , μ), (11)

where A is the Jacobian matrix of system (10) and N(X) is
a smooth function of order ‖X‖3 . Then, N(X) is written as

N(X) = U (X , X)

2! + V (X , X , X)

3! + O(‖X‖4), (12)

where

Ui (X ,Y ) =
n∑

j,k=1

∂2Ni (ξ)

∂ξ j∂ξk

∣
∣
∣
∣
∣
∣
ξ=0

x j yk, Vi (X ,Y , Z)

=
n∑

j,k,m=1

∂3Ni (ξ)

∂ξ j∂ξk∂ξm

∣
∣
∣
∣
∣
∣
ξ=0

x j yk zm, i = 1, . . . , n.
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If the equilibrium point X = 0 of system (10) exhibits a
nondegenerate Hopf bifurcation, the Jacobian matrix A(μc)

has a simple pair of eigenvalues λ1,2 = ±iω0, i =√−1, ω0 = ω(μc) > 0,with no other eigenvalue with zero
real part and the first Lyapunov coefficient l1 is not vanished,
where

l1(0) = 1

2ω0
Re [〈p, V (q, q, q̄)〉

−2
〈
p,U (q, A−1U (q, q̄))

〉

+
〈
p,U (q̄, (2iω0 In − A)−1U (q, q))

〉]
, (13)

and In is the identity matrix of order n. The complex vectors
p and q in Eq. (13) satisfy the following properties:

A(μc)q = iω0q, A(μc)q̄ = −iω0q̄,

AT (μc)p = −iω0 p,

AT (μc) p̄ = iω0 p̄,

〈p, q〉 = p̄T q = 1, (14)

where q, p ∈ Cn .
The Hopf bifurcation is supercritical (subcritical) when

l1(0) is negative (positive) respectively.

5.1 Hopf bifurcation of the origin equilibrium point
E0

The Jacobian matrix J (E0) of system (1) has the following
eigenvalues:

λ1 = d, λ2 = − c, λ3,4 = (h ±
√
h2 − 4ab)/2. (15)

So, the origin equilibrium point of system (1) possesses two
purely complex conjugate eigenvalues if h = hc = 0, ab =
ω2
0 > 0. Thus, based on conditions (3), the following lemma

is proved.

Lemma 1 The origin equilibrium point E0 of system (1) is
locally asymptotically stable iff

h < hc, c > 0, d < 0, ab > 0. (16)

Now, the vectors p and q given by the relations (14) can be
chosen as

q =

⎛

⎜
⎜
⎝

i
√
ab/b

1
0
0

⎞

⎟
⎟
⎠ ,

p =

⎛

⎜
⎜
⎝

i
√
ab(1 + ab)/(2a(1 + a))

1/2
0
(−ab − d + i

√
ab(1 − d))/(2(ab + d2))

⎞

⎟
⎟
⎠ . (17)

The vector functions U (ξ, η), V (ξ, η, ζ ) defined in (12) are
given by

U (ξ, η) = (−ξ1η4 − ξ4η1,−ξ1η3 − ξ3η1, 2ξ1η1, 0)
T ,

V (ξ, η, ζ ) = (0, 0, 0, 0)T . (18)

Consequently, the following quantities can be obtained using
straightforward calculations:

U (q, q) =

⎛

⎜
⎜
⎝

0
0
−2a/b
0

⎞

⎟
⎟
⎠ ,U (q, q̄) =

⎛

⎜
⎜
⎝

0
0
2a/b
0

⎞

⎟
⎟
⎠ . (19)

Thus, using (19), we get

J−1U (q, q̄) = −2a
bc

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ ,

U (q, J−1U (q, q̄)) = 2a
√
ab

b2c

⎛

⎜
⎜
⎝

0
i
0
0

⎞

⎟
⎟
⎠ ,

(2iω0 I4 − J )−1U (q, q)

= −2a
b

⎛

⎜
⎜
⎜
⎝

0
0

2i
√
ab−d

−4ab−cd+2i
√
ab(c−d)

0

⎞

⎟
⎟
⎟
⎠

,

U (q̄, (2iω0 I4 − J )−1U (q, q))

= −2a
√
ab

b2

⎛

⎜
⎜
⎜
⎝

0
2
√
ab+ic

c2+4ab
0
0

⎞

⎟
⎟
⎟
⎠

, V (q, q, q̄) = 0.

Substituting the previous quantities into Eq. (13) yields

l1(0) = − a
√
ab

b2(c2 + 4ab)
. (20)

It is assumed that ab > 0, so the direction of Hopf bifurca-
tion is determined by the sign of the parameter a. Thus, the
following theorem has been proved:

Theorem 2 System (1) undergoes a Hopf bifurcation at the
origin equilibrium point E0 for given parameters a, b, c, d,

h, ab > 0, in the neighborhood of h = hc. Moreover, the
Hopf bifurcation is nondegenerate and supercritical when
a > 0; However when a < 0, the Hopf bifurcation is non-
degenerate and subcritical.
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5.2 Hopf bifurcation of the equilibrium points E1
and E2

Firstly, the conditions of Hopf bifurcation will be shown near
the equilibrium point E1. Since E1 is not the origin, it is
required to translate this point to the origin of coordinates

X(t) = x(t) − √
bc,Y (t)

= y(t) − h
√
bc/a, Z(t)

= z(t) − b,W (t) = w(t), (21)

where b and c must have the same sign. So, the system (1) is
reduced to

Ẋ = hX − aY + (a − √
bc)W − XW ,

Ẏ = (b − 1)X − √
bcZ + W − X Z ,

Ż = −cZ + 2
√
bcX + X2,

Ẇ = dW . (22)

The characterestic equation of system (22) is given by

λ4 + (c − d − h)λ3 + (hd − hc − cd)λ2

+(hcd − 2abc)λ + 2abcd = 0. (23)

Remark 2 The two equilibrium points E1 and E2 have the
same characterestic equation, so the conditions ofHopf bifur-
cation in each of the two points are the same.

According to the stability analysis of the equilibrium
points E1 and E2, the following lemma is obtained:

Lemma 2 The origin equilibrium point of system (22) is
locally asymptotically stable if and only if at least one of
the stability conditions (i)–(iii) holds true.

For a < 0, b > 0, h = h1, the characterestic Eq. (23) has
the eigenvalues

λ1 = d, λ2 = 4ab/(
√
c2 − 8ab − c),

λ3,4 = ±ω0i, ω0

=
√

−0.5c2 + 0.5c
√
c2 − 8ab > 0. (24)

Then, the vectors p and q given by the relations (14) are
selected as

q =

⎛

⎜
⎜
⎝

ω0(ω0 − ic)/2bc
1
−iγ1
0

⎞

⎟
⎟
⎠ , p = β0

⎛

⎜
⎜
⎝

1
β1

β2

β3

⎞

⎟
⎟
⎠ , γ1 = ω0√

bc
,

(25)

where β0, β1, β2, β3 ∈ C1 and defined as

β0 = −2bcβ1β2/(−2 |β1|2 β2(bc) − β1β2ω
2
0

+ω0β1i(2
√
bc |β2|2 + cβ2))̄,

β1 = iγ0γ2
8bc

, β2 = γ3 + iγ0

−4
√
bc

,

β3 = 8bc(a − √
bc) + iγ0γ2

−4bc(2d + iγ0)
,

γ0 = 2ω0, γ2 = c +
√
c2 − 8ab,

γ3 = c −
√
c2 − 8ab,

and (.)̄ stands for the conjugate of a complex number.
In this case the vector functions U (ξ, η), V (ξ, η, ζ ) are

also given by Eq. (18). Therefore, the quantitiesU (q, q) and
U (q, q̄) are given as

U (q, q) =

⎛

⎜
⎜
⎝

0
2γ1i Z1

2Z2
1

0

⎞

⎟
⎟
⎠ ,

U (q, q̄) =

⎛

⎜
⎜
⎝

0
0(

ω4
0 + ω2

0c
2
)
/2b2c2

0

⎞

⎟
⎟
⎠ ,

Z1 = ω2
0 − icω0

2bc
. (26)

Furthermore

J−1U (q, q̄) =
√
bc(ω4

0 + ω2
0c

2)

4b3c3

×

⎛

⎜
⎜
⎜
⎝

1(
c − √

c2 − 8ab
)

/2a

0
0

⎞

⎟
⎟
⎟
⎠

,

U (q, J−1U (q, q̄))

=
√
bc

(
ω4
0 + ω2

0c
2
)

4b3c3

⎛

⎜
⎜
⎝

0
iγ1
2Z1

0

⎞

⎟
⎟
⎠ ,

(2iω0 I4 − J )−1U (q, q)

= (d − 2iω0)Z1

Z2

×

⎛

⎜
⎜
⎝

aZ3

(h1 − 2iω0)Z3

2i(aγ1
√
bc + ω0Z1(h1 − 2iω0))

0

⎞

⎟
⎟
⎠ ,
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Fig. 1 The bifurcation plots of system (1) using MATCONT with the parameter values a = 1, b = 2, c = 0.4, d = − 2, h = 0, show that Hopf
bifurcation (H) exists at E0 = (0, 0, 0, 0)

U
(
q̄, (2iω0 I4 − J )−1U (q, q)

)

= (d − 2iω0)Z1
Z2

×

⎛

⎜
⎜
⎜
⎝

0

−2i Z̄1
(
aγ1

√
bc+ω0Z1(h1−2iω0)

)
−iaγ1Z3

2a Z̄1Z3
0

⎞

⎟
⎟
⎟
⎠

,

V (q, q, q̄) = 0,

where

Z2 = 8ω4
0 + 2cdω2

0 − 2dh1ω
2
0 + 2ch1ω

2
0 + abcd

+i(4dω3
0 − 4cω3

0 + 4h1ω
3
0 + cdh1ω0 − 2abcω0),

Z3 = (−2ω0 + ic)γ1 − √
bcZ1.

Substituting the previous quantities into Eq. (13) yields

l1(0) = −ω0

2
Re(ϑ),

ϑ =
[
iω4

0 |β1|2 β2γ
2
1 Z2

Fig. 2 A stable limit cycle of system (1) exists when a = 1, b = 2, c =
0.4, d = − 2, h = 0.001
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Fig. 3 The bifurcation plots of system (1) using MATCONT with the parameter values a = − 1, b = 2, c = 0.4, d = − 2, h = − 1.809975, show
that Hopf bifurcation (H) exists at E1 and E2. BP is a branching point

+ ic2ω2
0 |β1|2 β2γ

2
1 Z2

+ 2ω4
0 |β2|2 β1γ1Z1Z2

+ 2c2ω2
0 |β2|2 β1γ1Z1Z2

+ 8ab3c3ω0

∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ

2
1

− 16ib2c2
√
bcω3

0

∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ1Z1

+ 8b2c2
√
bch1ω

2
0

∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ1Z1

+ 4iadb3c3
∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ

2
1

+ 8b2c2d
√
bcω2

0

∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ1Z1

+ 4ib2c2d
√
bch1ω0

∣
∣
∣β2

1 Z
2
1

∣
∣
∣β2γ1Z1

+ 4ab2c2
√
bcω0

∣
∣
∣β2

1γ
2
1

∣
∣
∣β2Z1Z3

+ 2iab2c2d
√
bc

∣
∣
∣β2

1γ
2
1

∣
∣
∣β2Z1Z3

+ 8iab2c2
√
bcω0

∣
∣
∣β2

2 Z
2
1

∣
∣
∣β1γ1Z3

− 4ab2c2d
√
bc

∣
∣
∣β2

2 Z
2
1

∣
∣
∣β1γ1Z3

]
/
{
bcγ1Z2

×
(
2bc

√
bc |β1|2 β2 − 2ibcω0 |β2|2 β1

+√
bcω2

0β1β2 − ic
√
bcω0β1β2

)}
. (27)

Therefore, the following theorem has been proved:

Theorem 3 System (1) undergoes a Hopf bifurcation at the
equilibrium points E1(E2) for given parameters a < 0, b >

123



Dynamics and control in a novel hyperchaotic system 249

0, c > 0, d, h, in the neighborhood of h = h1.Moreover, the
Hopf bifurcation is nondegenerate and supercritical when
Re(ϑ) > 0. While if Re(ϑ) < 0, Hopf bifurcation is nonde-
generate and subcritical.

6 Numerical simulations

In the following, simulation results are carried out to ver-
ify the above theoretical results. Using the parameter values
a = 1, b = 2, c = 0.4, d = − 2 and hc = 0, the system (1)
exhibits Hopf bifurcation around the equilibrium point E0.
The bifurcation is supercritical since the first Lyapunov coef-
ficient l1(0) = − 0.0433 < 0 [as determined by Eq. (20)]. In
other words, as the parameter h changes its sign from nega-
tive to positive, the stable equilibrium point E0 changes its
stability according to Lemma 1 and a stable periodic solu-
tion emanating from E0 appears based on Theorem 2. The
software MATCONT confirms this result as shown in Fig. 1.
Also, the limit cycle resulting from this Hopf bifurcation
is shown using the previous parameter values and h above
hc = 0 (seeFig. 2).Moreover, system (1) exhibitsHopf bifur-
cation around the equilibrium points E1 and E2 at the critical
value h1 = − 1.809975 and when the other parameter values
are fixed at a = − 1, b = 2, c = 0.4, d = − 2. The bifur-
cation is supercritical since the first Lyapunov coefficient
l1(0) = − 0.005363099 < 0 [as determined by Eq. (27)] i.e.,
as the parameter h is increased above the critical value h1, the
stable equilibrium point E1(E2) changes its stability accord-
ing to Lemma 2 and a stable periodic solution emanating
from E1(E2) appears based on Theorem 3. The numeri-
cal verification of Hopf bifurcation via MATCONT and the
appearance of corresponding limit cycle are shown in Figs. 3
and 4, respectively. Furthermore, the softwareMATCONT is
used to produce Fig. 5 in order to show the existence of Hopf
bifurcation around the equilibrium points E1 and E2 when
using the parameter values a = − 1, b = 2, c = 40, d =
− 2, h1 = − 0.099751. Also, in this case the bifurcation is
supercritical (since l1(0) = − 0.0002415323 < 0), therefore
a stable limit cycle appears above h1 as shown in Fig. 6.

On the other hand, Lyapunov exponents (LEs) of system
(1) are calculated with the parameter values a = − 3, b =
15, c = 0.6, d = − 0.001, h = − 1.5 using the Wolf’s algo-
rithm [58]. They are given as follow

�1 = 0.57,�2 = 0.02,�3 = 0.00,�4 = − 2.69. (28)

Hence, they confirm the existence of hyperchaos in system
(1). Moreover, the corresponding hyperchaotic attractors of
system (1) are depicted in Fig. 7. Furthermore, the Lyapunov
exponents’ spectrumof system (1) is calculated by setting the
parameter values b = 15, c = 0.5, d = − 1, h = − 2 and
varying the parameter a. The results are depicted in Fig. 8

Fig. 4 A stable limit cycle of system (1) exists when a = − 1, b =
2, c = 0.4, d = − 2, h = − 1.808

which illustrates the chaotic dynamics of the system (1).
Also, Fig. 9 shows the corresponding chaotic attractors using
the specific choice of the parameters; a = − 15, b = 15, c =
0.5, d = − 1, h = − 2. The Lyapunov dimension related to
(28) is also calculated by means of Kaplan and Yorke [59]. It
is found that DL approximately equals 3.22. In addition, the
bifurcation diagram is also a vital numerical tool that shows
the rich variety of dynamical behaviors in a dynamical sys-
tem. Therefore, the bifurcation diagrams corresponding to
system (1) are calculated and depicted in Fig. 10.

7 Controlling hyperchaos in the system

Assume that E∗ = (x∗, y∗, z∗, w∗) refers to any equilibrium
point of system (1) and k1, k2, k3, k4 are the positive feedback
control gains (FCG’s). Then, a controlled form of system (1)
is given as

ẋ = a(w − y) + hx − xw − k1(x − x∗),
ẏ = bx − xz + w − k2(y − y∗),
ż = −cz + x2 − k3(z − z∗),
ẇ = dw − k4(w − w∗). (29)

In case of E∗ = E0, the following lemma is obtained:

Lemma 3 The hyperchaos in system (29) is suppressed to its
origin equilibrium point if the following inequalities hold:

k3 > −c, k4 > d,

k2 >
1

4(k4 − d)
,
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Fig. 5 The bifurcation plots of system (1) using MATCONT with the parameter values a = − 1, b = 2, c = 40, d = − 2, h = − 0.099751, show
that Hopf bifurcation (H) exists at E1 and E2. BP is a branching point

k1 >
1

k2(k4 − d) − 1
4{

a + b

4

[
(k4 − d)(a + b) + a

2

]
+ a

4

[
a + b

2
+ ak2

]

+ σ 2
y

4(k3 + c)

[

k2(k4 − d) − 1

4

]}

+ h + σz + σw, (30)

where σy > |y| , σz > |z| , σw > |w|.

Proof The Lyapunov function is selected for system (29) as
follows

V (x, y, z, w) = 0.5(x2 + y2 + z2 + w2). (31)

Then, the time derivative of V is given as

V̇ = x ẋ + y ẏ + zż + wẇ

= (z + h − w − k1)x
2 − k2y

2 − (c + k3)z
2

+ (d − k4)w
2 + (b − a)xy − xyz + axw + yw

< (σz + σw + h − k1) |x |2 − k2 |y|2 − (c + k3) |z|2
+ (d − k4) |w|2 + (b + a) |x | |y|
+ σy |x | |z| + a |x | |w| + |y| |w| = −XT PX, (32)
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Fig. 6 A stable limit cycle of system (1) appears when a = − 1, b =
2, c = 40, d = − 2, h = − 0.084

where

X = [ |x | |y| |z| |w| ]T ,

P =

⎛

⎜
⎜
⎝

−(h − k1 + σz + σw) −0.5(a + b) −0.5σy −0.5a
−0.5(a + b) k2 0 −0.5
−0.5σy 0 c + k3 0
−0.5a −0.5 0 k4 − d

⎞

⎟
⎟
⎠ .

The matrix P is positive definite if the inequalities (30) hold.
So, the origin equilibrium point of system (29) is globally
asymptotically stable. Therefore, the trajectories of the con-
trolled hyperchaotic system (29) are stabilized to its origin
equilibrium point. �


Fig. 8 Lyapunov exponents’ spectrum of system (1) versus the dynam-
ical parameter a, using the parameter values b = 15, c = 0.5, d =
− 1, h = − 2

The controlled hyperchaotic system (29) is numerically
integrated using the parameters a = − 3, b = 15, c =
0.6, d = − 0.001, h = − 1.5, at which the equilibrium
points E0, E1(E2) are unstable according to the conditions
(3) and (i)–(iii), respectively. So, our objective is to stabi-
lize the trajectories of the controlled system (29) to one of
its unstable equilibrium points E0, E1 and E2 via the pro-
posed linear feedback control technique. From Fig. 1, the
upper bounds σy, σz, σw can be selected as σy = 60, σz =
70, σw = 0.01. Now according to the inequalities (30), the
FCG’s can be selected as k1 = 700, k2 = 1, k3 = 1, k4 = 1.
The results are summarized in Fig. 11.

Similarly, the controlled hyperchaotic system (29) can be
controlled to the equilibrium points E1 = (

√
bc, h

√
bc/a,

b, 0) and E2 = (−√
bc,−h

√
bc/a, b, 0). The transforma-

Fig. 7 3-D views of hyperchaotic attractors of system (1) using the parameter values a = − 3, b = 15, c = 0.6, d = − 0.001, h = − 1.5
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Fig. 9 Chaotic attractors of system (1) using the parameter values a = − 15, b = 15, c = 0.5, d = − 1, h = − 2 : a xyz view, b xyw view

Fig. 10 Bifurcation diagrams of system (1) as: a varying a and set-
ting b = 15, c = 0.5, d = − 1, h = − 2, b varying b and setting
a = − 2, c = 1, d = − 0.2, h = − 2, c varying c and setting

a = − 2, b = 15, d = − 0.2, h = − 2, d varying h and setting
a = − 2, b = 15, c = 0.5, d = − 0.2,in which Xstands for y(t)
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Fig. 11 The states of controlled hyperchaotic system (29) tend to the
origin equilibrium point as using the parameters a = − 3, b = 15, c =
0.6, d = − 0.001, h = − 1.5 and FCG’s k1 = 700, k2 = 1, k3 =
1, k4 = 1

Fig. 12 The states of controlled hyperchaotic system (29) tend to the
point E1 = (

√
bc, h

√
bc/a, b, 0) as using the parameters a = − 3, b =

15, c = 0.6, d = − 0.001, h = − 1.5 and FCG’s k1 = 700, k2 =
1, k3 = 1, k4 = 1

tion X ′ = X − E∗can be used to translate the points E1 =
(
√
bc, h

√
bc/a, b, 0) and E2 = (−√

bc,−h
√
bc/a, b, 0)

to the origin of coordinates. Hence, Lemma 3 can also be
applied to control the states of system (29) to these equi-
librium points. The results are also depicted in Figs. 12
and 13.

Fig. 13 The states of controlled hyperchaotic system (29) tend to the
point E2 = (−√

bc,−h
√
bc/a, b, 0) as using the parameters a =

− 3, b = 15, c = 0.6, d = − 0.001, h = − 1.5 and FCG’s k1 =
700, k2 = 1, k3 = 1, k4 = 1

8 Conclusion

In this paper, a new hyperchaotic system consists of four
coupled continuous-time ordinary differential equationswith
three quadratic nonlinearities has been introduced. The exis-
tence of pitchfork bifurcation in the system has been proved
using the center manifold and local bifurcation theorems.
The conditions of Hopf bifurcation around all the three
equilibrium points of the system have also been obtained.
Furthermore, the Kuznetsov’s first Lyapunov coefficient
theory has been used to determine the supercritical and
subcritical types of Hopf bifurcation in this system. Vari-
ous numerical tools such as Lyapunov exponents’ spectrum,
Lyapunov dimension, bifurcation diagrams and the continu-
ation software MATCONT have been utilized to verify the
occurrence of variety of complex dynamics in this system
and also to confirm the correctness of the theoretical analy-
sis. Furthermore, the hyperchaotic behaviors in this system
have been suppressed to its three equilibrium points using
a novel control method based on Lyapunov stability theory.
Finally, the new hyperchaotic system has promising appli-
cations in encryption algorithms, circuit design and secure
communications because of its high resistance to dynamics
reconstruction.

Acknowledgements This work is supported by Deanship of Scientific
Research at Majmaah University. The author thanks the anonymous
reviewers for providing some helpful comments which improve the
style, readability and clarity of this work.

123



254 A. E. Matouk

References

1. Rössler OE (1979) Continuous chaos—four prototype equations.
Ann N Y Acad Sci 316:376–392

2. Rössler OE (1979) An equation for hyperchaos. Phys Lett A
71:155–157

3. Matsumoto T, Chua LO, Kobayashi K (1986) Hyperchaos: labora-
tory experiment and numerical confirmation. IEEE Trans Circuits
Syst 33:1143–1147

4. Kapitaniak T, Chua LO, Zhong G-Q (1994) Experimental hyper-
chaos in coupled Chua’s circuits. IEEE Trans Circuits Syst
I(41):499–503

5. Kapitaniak T, Chua LO (1994) Hyperchaotic attractors of
unidirectionally-coupled Chua’s circuit. Int J Bifurcat Chaos
4:477–482

6. KhanA, Tyagi A (2017) Analysis and hyper-chaos control of a new
4-D hyper-chaotic system by using optimal and adaptive control
design. Int J Dyn Control 5:1147–1155

7. Khan A, Bhat MA (2017) Hyper-chaotic analysis and adaptive
multi-switching synchronization of a novel asymmetric non-linear
dynamical system. Int J Dyn Control 5:1211–1221

8. Khan A, Kumar S (2017) T–S fuzzy observed based design and
synchronization of chaotic and hyper-chaotic dynamical systems.
Int J Dyn Control. https://doi.org/10.1007/s40435-017-0358-y

9. Chen A, Lu J-A, Lü J, Yu S (2006) Generating hyperchaotic Lü
attractor via state feedback control. Phys A 364:103–110

10. Ahmad WM (2006) A simple multi-scroll hyperchaotic system.
Chaos Solitons Fractals 27:1213–1219

11. Kengne J, TsotsopMF, NegouAN, Kenne G (2017) On the dynam-
ics of single amplifier biquad based inductor-free hyperchaotic
oscillators: a case study. Int J Dyn Control 5:421–435

12. Kengne J, Tsotsop MF, Mbe ESK, Fotsin HB, Kenne G (2017) On
coexisting bifurcations and hyperchaos in a class of diode-based
oscillators: a case study. Int J Dyn Control 5:530–541

13. Vincent UE, Nbendjo BRN, Ajayi AA, Njah AN, McClintock
PVE (2015) Hyperchaos and bifurcations in a driven Van der Pol–
Duffing oscillator circuit. Int J Dyn Control 3:363–370

14. Mahmoud GM, Al-Kashif MA, Farghaly AA (2008) Chaotic and
hyperchaotic attractors of a complex nonlinear system. J Phys A
Math Theor 41:055104

15. Mahmoud GM, Mahmoud EE, Ahmed ME (2009) On the hyper-
chaotic complex Lü system. Nonlinear Dyn 58:725–738

16. MatoukAE (2009) Stability conditions, hyperchaos and control in a
novel fractional order hyperchaotic system. Phys Lett A 373:2166–
2173

17. Lan Y, Li Q (2010) Chaos synchronization of a new hyperchaotic
system. Appl Math Comput 217:2125–2132

18. Mahmoud GM, Mahmoud EE (2010) Synchronization and control
of hyperchaotic complex Lorenz system. Nonlinear Dyn 80:2286–
2296

19. Chen Z, Yang Y, Qi G, Yuan Z (2007) A novel hyperchaos system
only with one equilibrium. Phys Lett A 360:696–701

20. Chen G (2011) Controlling chaotic and hyperchaotic systems via a
simple adaptive feedback controller. Comput Math Appl 61:2031–
2034

21. Hegazi AS, Matouk AE (2011) Dynamical behaviors and synchro-
nization in the fractional order hyperchaotic Chen system. Appl
Math Lett 24:1938–1944

22. Torkamani S, Butcher E (2013) Delay, state, and parameter estima-
tion in chaotic and hyperchaotic delayed systems with uncertainty
and time-varying delay. Int J Dyn Control 1:135–163

23. Abedini M, Gomroki M, Salarieh H, Meghdari A (2014) Identi-
fication of 4D Lü hyper-chaotic system using identical systems
synchronization and fractional adaptation law. Appl Math Model
38:4652–4661

24. Matouk AE, Elsadany AA (2014) Achieving synchronization
between the fractional-order hyperchaotic Novel andChen systems
via a new nonlinear control technique. Appl Math Lett 29:30–35

25. El-Sayed AMA, Nour HM, Elsaid A, Matouk AE, Elsonbaty A
(2014) Circuit realization, bifurcations, chaos and hyperchaos in a
new 4D system. Appl Math Comput 239:333–345

26. Thamilmaran K, Lakshmanan M, Venkatesan A (2004) Hyper-
chaos in a modified canonical Chua’s circuit. Int J Bifurcat Chaos
14:221–243

27. Gao TG, Chen ZQ, Chen G (2006) A hyper-chaos generated from
Chen’s system. Int J Mod Phys C 17:471–478

28. Matouk AE (2015) On the periodic orbits bifurcating from a fold
Hopf bifurcation in two hyperchaotic systems. Optik 126:4890–
4895

29. Zhang L (2017) A novel 4-D butterfly hyperchaotic system. Optik
131:215–220

30. Gao T, Chen Z (2008) A new image encryption algorithm based
on hyper-chaos. Phys Lett A 372:394–400

31. ZhuC (2012)A novel image encryption scheme based on improved
hyperchaotic sequences. Opt Commun 285:29–37
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