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Abstract
Estimation of the exogenous input is an important topic in various applications. Unknown inputs can dramatically degrade the
estimation performance in systems with unknown but bounded (UBB) disturbances. In this study, based on UBB assumption
of the input and observation disturbances, amethod is proposed for simultaneous estimation of the unknown input, state vector,
and disturbance for a class of nonlinear dynamical systems. Based on the affine transformation of convex sets, disturbance
and unknown input are considered as new state variables and therefore the nonlinear system of state equations is rearranged.
Based on interval mathematics, the linearization error of the process and observation equations are bounded with convex
closed sets and then combined with the ellipsoidal sets that representing system disturbance. The augmented state vector is
estimated based on extended set value observer. To satisfy the stability of the proposed method, the input to state stability
and boundedness of the estimation error is analyzed. The proposed method performance is verified by various numerical
simulations and compared with other input estimation methods. Numerical simulations show the acceptable performance of
the proposed algorithm in the simultaneously estimation of the unknown input, disturbance, and state vector rather than other
unknown input estimation method.

Keywords Input estimation · Nonlinear filtering · UBB uncertainty

1 Introduction

The state vector estimation of uncertain nonlinear dynamic
systems has attracted considerable attention in the control
and signal processing applications [1]. Systematic modeling
errors, noise in the observations or measurements, and input
disturbances are the main sources of uncertainty in uncertain
dynamical systems.Differentmethods of state estimation can
be obtained using various approaches of uncertainty model-
ing. Among the different proposed estimators, the Kalman
filters are developed and had used in various applications
[2]. In Kalman filtering theory, the system uncertainty is
modeled based on stochastic approach [3]. H∞ filtering is
another approach for state estimation [4]. In H∞ filtering, the
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uncertainties are assumedunknown signalswith bounded [4].
These filters are usually robust in the presence of dynamic
system uncertainties.

Another approach to uncertainty modeling and filtering is
unknown but bounded (UBB) approach [5]. In this approach,
the uncertainties are considered unknown except that they
belong to given convex closed sets [5–7]. TheUBBapproach-
based estimation leads to a feasible set of state vector where
it is persistent respect to the dynamic system model and the
disturbance bounds. In UBB based filters, usually, the center
of the estimated set is used as estimated vector based on the
“minimum of maximum estimation error” criteria [7]. The
UBB filters are identified by various names such as UBB-
based filter, set value observer (SVO), set membership filter
(SMF), and set value Kalman filter. Schweppe in [5] used
an ellipsoidal approximation algorithm with computational
advantages. In this algorithm, the initial state, input distur-
bances and observation error are modeled by ellipsoidal sets,
and the observations are then used for bounding the ellip-
soidal set on the predicted set.Due to the propermathematical
form and the lower computational burden, UBB based algo-
rithms that use ellipsoidal set outer-bounding concept, have
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been attracted and developed rather than other UBB based
filters. In contrast to ellipsoidal bounding algorithms, using
other convex sets for uncertainty modeling requires consid-
erable computational resources. Owing to advances in the
computational ability of modern digital processors, it has
become possible to use other sets in UBB-approach-based
state estimation. Zonotopes [8], parallelotopes [9], and tri-
angulations [10] are some sets that are used for uncertainty
modeling. Several studies have been conducted to address the
limitations of the basic ellipsoidal outer bounding filter, such
as computation burden, numerical instability, non-optimal
ellipsoidal bounding, and using SVOs for nonlinear systems.
For example, Maksarov and Norton [11] had established the
optimal ellipsoidal state-bounding algorithm, Gollamudi et
al. [12] has proposed a set value observer that use opti-
mal bounding ellipsoidal sets with a selective observation
update strategy, an extended set-membership filter (ESMF)
where using interval analysis have developed by Schulte and
Campbell [13], Wei et al. [14] proposed a SVO based on
semi-definite programming with constrained error. In [15] a
method for reducing the computation load for linear systems
was proposed.

Generally, in the state estimation problems, the con-
trol input vector is usually considered to be well-known.
Nonetheless, in various real systems, the input vector is
unknown and needs to be estimated simultaneously with
the state vector. Also, in dynamic models with UBB uncer-
tainties, the unknown center of the ellipsoidal set increases
the state estimation complexity. “Unknownmanoeuvre com-
mand estimation of a manoeuvring target tracking (MTT)”,
“input disturbance estimation in motion control systems”,
and the variable load on mechanical systems” are some of
applications of unknown input and disturbance estimation
problem. Unknown input and disturbance estimation is stud-
ied by researchers [16–18], in [19] the input estimation is
used for estimation of the target maneuver input. In [20],
designing and analysis of unknown input observer are pre-
sented in pursuance of estimation both unknown input and
state vector in a complex dynamic system. In [21] and [22],
the simultaneous unknown input and state vector estimation
for discrete-time linear dynamic systems is proposed. Esti-
mation of the unknownmaneuver for the linear manoeuvring
target tracking problem in the presence of UBB disturbances
is studied in [23].

In spite of its various applications, the problem of
“unknown input” and “disturbance” estimation in UBB
uncertain systems is not studied considerably. Therefore, in
this study, the problem of simultaneous estimation of the
unknown input, disturbance, and state vector is studied for
a special class of the nonlinear uncertain dynamical systems
in the presence of the UBB uncertainties. In the design of
the proposed estimator the concepts such as interval analysis,
theory of closed convex sets, ellipsoidal over-approximation,

and Holders inequality are used to achieve a proper mathe-
matical form of proposed estimator. The designed estimator
can be implemented on-line and its stability and bound-
edness is analysed. To achieve the above-mentioned goals,
the remaining parts of this paper are structured as follows.
In Sect. 2, the problem of unknown input and disturbance
estimation is formulated. In Sect. 3, the main results are
presented and the developed dynamic model and associated
set value observer are presented and in Sect. 4, the stability
of the proposed method is analyzed. Numerical simulations
are done in Sect. 5 to verify the efficiency of the developed
method and Sect. 6 presents the conclusions of this paper.

2 Unknown input and disturbance
estimation problem

Consider a special class of uncertain nonlinear dynamical
system with state space representation as follows:

xk+1 = f (xk) + Bkuk + Gkwk (1)

zk+1 = h(xk+1) + vk+1 (2)

where xkεRn is the dynamic system state vector, ukεRm is
the input vector, zk+1εR

l is the observation vector, wkεR
m

is the exogenous process uncertainty or disturbance, and
vk+1εR

l is the exogenous observation disturbance. In this
dynamic system, f and h are C2 functions, Bk and Gk are
n×m matrices. This system has three unknown but bounded
uncertainties; initial state vector, process, and observation
exogenous uncertainties. These uncertainties are modelled
based on the UBB approach for uncertainty modelling. In
this approach, each uncertainty is modelled with a convex
closed set. In this study, ellipsoidal sets are used for uncer-
tainty modelling as follows:

x0ε�x0 = {x : (x − x̂0
)T

�−1
0|0(x − x̂0) ≤ 1 (3)

wkε�wk =
{
w : (w − wck )

TQ−1
k (w − wck ) ≤ 1

}
(4)

vkε�vk =
{
v : (v − vck

)T R−1
k

(
v − vck

) ≤ 1
}

(5)

where �0|0, Qk , and Rk are symmetric positive definite
shaping matrices and x̂0,wck , and vck are the centres of
the ellipsoidal sets �x0 , �wk , and �vk respectively. Any
assumption is not considered about the structure of these
uncertainties except that the values of the disturbances are
bounded with the predefined ellipsoidal sets. The input and
disturbance estimation problem consist of obtaining on-line
estimation of x̂k|k based on observations from first sample
time up to k sample time, subject to that disturbanceswck and
input uk are unknown. Therefore, in this problem the state
vector, unknown input, and disturbance must be estimated
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simultaneously. It is considered that the shaping matrixes
of process and observation disturbances are known and the
centre of exogenous process disturbance is unknown. The
solution of this problemwhenwck and uk are known is given
by the extended set value observer (ESVO).

3 Main results

In this section, at first some materials that used in the evo-
lution of the proposed method is presented and then the
proposed method is illustrated.

3.1 Preliminaries

In the evolution of UBB-based observers such as ESVO, the
below Lemmas are useful.

Lemma 1 The affine or linear transformation of an ellip-
soidal set with center q and shaping matrix Q is calculated
as follows:

Aε(q.Q) + b ≡ ε
(
Aq + b, AQAT

)
(6)

where A and the b have appropriate dimensions.

Proof See [24]. ��

Lemma 2 Consider ellipsoidal sets �q and �r as follows:

Ωq = ε (q, Q) = {x : (x − q)T Q−1(x − q) ≤ 1}
�r = ε (r, R) = {x : (x − r)T R−1(x − r) ≤ 1}

The Minkowski sum of these sets are defined as follows:

Ωq+r = Ωq ⊕ Ωr = {x : xεΩq or xεΩr }

where Ωq+r is not ellipsoidal sets in general, but the deter-
mined set can be over approximated by ellipsoidal set as
follows:

Ωq+r = Ωq ⊕ Ωr ⊆ Ωb =
{
x : (x − b)T B−1 (x − b) ≤ 1

}

b = q + r, B = Q
β

+ R
1 − β

, 0 ≤ β ≤ 1 (7)

In (7), ⊕ is the Minkowski sum of two ellipsoids, and
Ωb is the over-approximated ellipsoidal set that bonding the
Ωq+r

Proof Based on support function concept, Holder’s inequal-
ity, and the convex combination of sets the relations (7) is
proofed [5,25].

Lemma 3 Consider�q and�r as ellipsoidal sets. The inter-
section of these sets is defined as follows:

Ωq∩r = Ωq ∩ Ωr = {x : xεΩq and xεΩr }

where Ωq∩r is not ellipsoidal set in general, but the Ωq∩r
can be over approximated by ellipsoidal set as follows:

Ωq ∩ Ωr ⊆
{
x ∈ R

n : [x−b]T B−1 [x−b]≤
(
1−δ

2
)}

(8a)

B =
[
(1 − ρ) Q−1 + ρR−1

]−1
(8b)

b =
(

R
1 − ρ

(
Q
ρ

+ R
1 − ρ

)−1

q

+ Q
ρ

(
Q
ρ

+ R
1 − ρ

)−1

r

)

=
(
I + 1 − ρ

ρ
QR−1

)−1

q

+
(
I + ρ

1 − ρ
RQ−1

)−1

r (8c)

δ
2 = ‖q − r‖2

(
Q
ρ

+ R
1 − ρ

)−1

, 0 ≤ ρ ≤ 1 (8d)

Proof See [5,25].

3.2 Nonlinear dynamic model development

The uncertainties of the Eqs. (1) and (2) are defined by (3),
(4), and (5). In this model, the center of the ellipsoidal sets is
not zero. If these parameters (centre of ellipsoidal sets) are
unknown, they can be considered as new state variables. By
using Lemma 1, the system uncertainties can be rewritten as
follows:

�wk = ε
(
wck ,Qk

) = wck + ε (0,Qk)

¯̄wkε
¯̄�wk = ε (0,Qk) =

{ ¯̄w : ¯̄wT
k Q−1

k
¯̄wk ≤ 1

}
(9)

�vk+1 = ε
(
vck+1 ,Rk+1

) = vck+1 + ε (0,Rk+1)

¯̄vk+1ε
¯̄�vk+1 = ε (0,Rk+1)

=
{ ¯̄v : ¯̄vTk+1R

−1
k+1

¯̄vk+1 ≤ 1
}

(10)

Therefore the state equation is rearranged as follows:

xk+1 = f (xk) + Bkuk + Gkwk

= f (xk) + Bkuk + Gk
(
wck + ¯̄wk

)

= f (xk) + Bkuk + Gkwck

+ Gk ¯̄wk (11)

zk+1 = h (xk+1) + vk = h (xk) + vck + ¯̄vk (12)
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If wck and uk are treated as augmented state variables,
(11) can be converted to an augmented form as follows:

x̃k+1 =
⎡

⎣
xk+1

uk+1

wck+1

⎤

⎦+
[
Gk

0

]
¯̄wk = f̃ (x̃k) + G̃k ¯̄wk (13)

where

x̃k =
⎡

⎣
xk
uk
wck

⎤

⎦ , G̃k =
[
Gk

0

]
,

f̃ (x̃k) =
⎡

⎣
f (xk) + Bkuk + Gkwck

uk
wck

⎤

⎦

The Eq. (12) is rewritten as follows:

zk+1 = h̃ (x̃k+1) + ¯̄vk+1, h̃ (x̃k+1) = h (xk+1) + vck+1 (14)

Therefore, the augmented state space equations are described
by (13) and (14).

3.3 The proposed set value observer

The structure of the proposed method for simultaneous esti-
mation of unknown input, disturbance, and state vector is
presented in this section. The proposed observer has predic-
tion and time update steps. The estimated set for the system
of Eqs. (13) and (14), is described as follows:

� ˆ̃xk+1|k+1
= ε

( ˆ̃xk+1|k+1,�k+1|k+1

)

=
{
x̃ : [x̃ − ˆ̃xk+1|k+1]T�−1

k+1|k+1[x̃
− ˆ̃xk+1|k+1] ≤ 1

}
(15)

In (15), ˆ̃xk+1|k+1 is the centre of the estimated set and
�k+1|k+1 is the shaping matrix of this set. In the prediction
step, the predicted set defined as follows:

� ˆ̃xk+1|k = ε
( ˆ̃xk+1|k,�k+1|k

)

=
{
x̃ : [x̃ − ˆ̃xk+1|k]T�−1

k+1|k[x̃ − ˆ̃xk+1|k] ≤ 1
}
(16)

3.3.1 Prediction step

• The interval of the augmented state vector is calculated
based on the ellipsoidal extrema as follows:

X̄ i
k =

[ ˆ̃xik|k −
√

�i .i
k|k ˆ̃xik|k +

√
�i .i

k|k
]
, i = 1 . . . n (17)

the index i denotes the i th component of the state vector.

• The maximum interval for the linearization remainder
of the process equation is calculated. The process equation
expanding, yields; e.g. for one state situation:

f̃ (x̃k) = f̃
( ˆ̃xk|k

)
+
(
∇x̃k f̃

( ˆ̃xk|k
))T (

x̃k − ˆ̃xk|k
)

+1

2

(
x̃k − ˆ̃xk|k

)T ∂2 f̃ (ξ)

∂ x̃2k

(
x̃k − ˆ̃xk|k

)
(18)

where∇x̃k f̃ (x̃k) is gradient of the f̃ , ∂2 f̃
∂ x̃2k

is secondderivative

of f , and ξ can take any value on the interval X̄k . Therefore,
the interval of the remainder is calculated as follows:

R2

(
x̃k − ˆ̃xk|k · X̄k

)

= 1

2

(
x̃k − ˆ̃xk|k

)T ∂2 f̃
(
X̄k
)

∂ x̃2k

(
x̃k − ˆ̃xk|k

)
(19)

This relation for the n-states dynamic system is as follows:

XRk = 1

2
diag

((
X̄k − ˆ̃xk

)T)
⎛

⎜
⎝

Hes f̃ 1
...

Hes f̃ n

⎞

⎟
⎠
(
X̄k − ˆ̃xk

)

= 1

2
diag

(
	X̄k

T
)
⎛

⎜
⎝

Hes f̃ 1
...

Hes f̃ n

⎞

⎟
⎠	X̄k

T
(20)

where Hes f̃ i , i = 1, 2 . . . n is the Hessian of the nonlinear
f̃ (.) and X̄k is defined as X̄k = (

X̄1
k · X̄2

k . . . X̄n
k

)
, and 	X̄k

is defined as 	X̄k =
(√

�1.1
k|k,

√
�2.2

k|k, . . .
√

�n.n
k|k )

)

• Calculate the ellipsoid set that outer bounding the lin-
earization error of process equation:

ε
(
0n×1, Q̄k

)
, [ Q̄k]i .iRk

= 2
(
Xi
Rk

)2
, [ Q̄k]i . jRk

= 0n×1 (21)

• Summation of the ¯̄�w and ε
(
0n×1. Q̄k

)
is outer bounded

by an ellipsoidal set based on Lemma. 2 as follows:

ŵkεΩŵ = ε
(
0n×1, Q̂k

)
=
{
ŵ : ŵ

T Q̂
−1
k ŵ ≤ 1

}

Q̂k = Gk
Qk

βQk

GT
k + Q̄k

1 − βQk

, 0 ≤ βQk ≤ 1 (22)

where

�ŵ = ε
(
0n×1, Q̂k

)
⊇ ε

(
0n×1, Gk QkG

T
k

)

⊕ε
(
0n×1, Q̄k

)
(23)
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Therefore, the linearized forme of the process equation is
described as follows:

x̃k+1 = f̃ (x̃k) + G̃k ¯̄wk ∼= Ak x̃k + ŵk (24)

• The prediction ellipsoidal set calculated as follows:

ε
( ˆ̃xk+1|k,�k+1|k

)
⊇ ε

(
f̃
( ˆ̃xk|k

)
,�k|k

)

⊕ε
(
0n×1, Q̂k

)
(25)

ˆ̃xk+1|k = f̃ ( ˆ̃xk|k) (26)

�k+1|k = Ak
�k|k
1 − βk

AT
k + Q̂k

βk
, 0 ≤ βk ≤ 1 (27)

Ak = (∇x̂k f̃ (x̃k))
T |x̃k=ˆ̃xk|k (28)

3.3.2 Time update step

• Calculate the interval for the linearization remainder of the
observation equation. Similar to the process remainder, the
observation reminder is described as follows:

ZRk = 1

2
diag

(
(X̄k − ˆ̃xk)T

)
⎛

⎜
⎝

Hesh̃1
...

Hesh̃n

⎞

⎟
⎠ (X̄ k − ˆ̃xk) (29)

•Calculate the ellipsoid set that outer bounding the lineariza-
tion error of the observation equation:

ε
(
0m×1, R̄k

)
,
[
R̄k
]i .i
Rk

= 2
(
Zi
Rk

)2
, [R̄k]i . jRk

= 0m×1 (30)

• Bound summation of the observation noise ellipsoid set
and ε

(
0m×1, R̄k

)
:

v̂kε�v̂ = ε
(
0m×1, R̂k

)
=
{
v̂ : v̂

T R̂−1
k v̂ ≤ 1

}

R̂k = Rk

βRk

+ R̄k

1 − βRk

,0 ≤ βRk ≤ 1 (31)

where

�v̂ = ε
(
0m×1, R̂k

)
⊇ ε (0m×1,Rk) ⊕ ε

(
0m×1, R̄k

)
(32)

Therefore the linearized form of the observation equation is
described as follows:

zk+1 = h̃ (x̃k+1) + vck + ¯̄vk+1 (33a)

If vck = 0, then:

zk+1 = h̃ (x̃k+1) + ¯̄vk+1 = Hk+1 x̃k+1 + v̂k+1

= Hk+1
(
Ak x̃k + ŵk

)+ v̂k+1

= Hk+1Ak x̃k + Hk+1ŵk

+ v̂k+1 + vck = H̃k+1 x̃k + ˆ̃vk+1 (33b)

where

H̃k+1 = Hk+1Ak (34)

ˆ̃vk+1 = Hk+1ŵk + v̂k+1 = ε
(
0m×1,

ˆ̃Rk

)

ˆ̃Rk = Hk+1Ak Q̂k A
T
k H

T
k+1

βR̃k

+ R̂k

1 − βR̃k

, 0 ≤ βR̃k
≤ 1

(35)

•Calculate the observation update ellipsoidal set. It is derived
by the intersection of the ε

( ˆ̃xk+1|k,�k+1|k
)
and the obser-

vation ellipsoidal set as follows:

�z|x̃ k+1
= ε

(
h̃
( ˆ̃xk+1|k

)
, R̂k

)

=
{
z : (zk+1 − h̃( ˆ̃xk+1|k))

T
R̂−1
k (zk+1

− h̃( ˆ̃xk+1|k))T ≤ 1
}

(36)

Therefore, the estimated set described as follows:

ε
( ˆ̃xk+1|k+1,�k+1|k+1

)
⊇ ε

(
x̂k+1|k,�k+1|k

)

∩ε
(
h̃
( ˆ̃xk+1|k

)
, R̂k

)
(37)

Moreover, with some calculus manipulations, the equations
of the observation update step described as follows:

ˆ̃xk+1|k+1 = f̃
( ˆ̃xk|k

)
+ K k+1

[
zk+1 − h̃( ˆ̃xk+1|k)

]
(38)

Σk+1|k+1 =
[
1 − δ2k+1

]
Σbk+1|k+1 (39)

K k+1 = Σbk+1|k+1 H̃
T
k+1 R̃

−1
k+1 (40)

Σbk+1|k+1 = Σ̃k+1|k − Σ̃k+1|k H̃
T
k+1

{
R̃k+1

+ H̃k+1Σ̃k+1|k H̃
T
k+1

}−1
H̃k+1Σ̃k+1|k (41)

Σ̃k+1|k =
[

1

1 − ρk+1

]
Σk+1|k, 0 ≤ ρk+1 ≤ 1 (42)

R̃k = 1

ρk

ˆ̃Rk, Q̃k = 1

βk
Q̂k (43)

δ2k+1 =
[
zk+1 − h̃

( ˆ̃xk+1|k
)]T

{
H̃k+1Σ̃k+1|k H̃

T
k+1 + R̃k+1

}−1

[
zk+1 − h̃

( ˆ̃xk+1|k
)]

(44)

ˆ̃x0|0 = 0 (45)

Hk+1 =
(
∇xk+1 h̃ (x̃k+1)

)T |x̃k+1 = ˆ̃xk+1|k (46)
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These equations give a recursive form for the estimation of
the unknown input, disturbance, and state vector.

Remark 1 This observer hasfive free parameters; i.e.βQk , βk,

βRk , βR̃k
and ρk+1. The improper selection of these free

parameters can dramatically degrade the estimation perfor-
mance. Therefor the proper selection of these free parameters
must be considered in the observer implementation.

Remark 2 By using interval analysis, the linearization
reminder is considered in the development of the linearized
forme of dynamic system equations. The linearized model is
described as illustrated in (47) and (48):

x̃k+1 = Ak x̃k + ŵk (47)

zk+1 = H̃k+1 x̃k + ˆ̃vk+1 (48)

The uncertainties ŵk and ˆ̃vk+1, models the combination of
exogenous process and observation disturbances and lin-
earization reminder. For achieving proper linearized form
of observation equation, it is rearranged and the above form
is obtained and the x̃k is appeared in (48) instead of x̃k+1.

Remark 3 In (39) and (44), the shaping matrix (�k+1|k+1)

of the estimated set (� ˆ̃xk+1|k+1
) is dependent on the observa-

tions. Therefore, in the analysis of this observer, this shaping
matrix cannot be used. Due to this problem, usuallyΣbk+1|k+1

is used for analysis of the proposed observer estimation per-
formance.

3.4 Calculation of the estimator free parameters

In the development of the proposed method, five free param-
eters (βQk , βk, βRk , βR̃k

and ρk+1) are appeared. All of these
free parameters must be lie in the interval (0, 1). In this sec-
tion, amethod for suboptimal selection of these parameters is
presented [26]. These parameters appear when an ellipsoidal
set is over approximated to the intersection or Minkowski
sum of two ellipsoidal sets. Assume that two ellipsoids are
defined as ε(a1, P1) and ε(a2, P2), while the covered ellip-
soid of their direct sum is ε(a, P). By using Lemma 2, a and
P can be selected as

a = θa1 + (1 − θ) a2, P = P1

1 − θ
+ P2

θ
, 0 ≤ θ ≤ 1 (49)

To select the optimal value for θ the goal of the optimization
is defined as follows:

θ = arg
θ∈(0,1)

min Tr(P) (50)

The optimal value of θ can be selected as [27]:

θ =
√
Tr(P2)√

Tr(P1) + √
Tr(P2)

(51)

Therefore the βQk , βk, βRk , βR̃k
calculated based on (51).

To determine the optimal value of the ρk+1, the matrix
Σ̃k+1|k+1 = [

1 − δ2k+1

]
Σbk+1|k+1 is considered. Where δ2k+1

described in (44). By maximizing the δ2k+1, the trace of

Σ̃k+1|k+1 is minimized. Based on this criteria, in [27] the
optimal value of ρk+1 is derived:

ρk+1 =
√
rm√

pm + √
rm

(52)

where pm , and rm aremaximum singular values of thematrix

H̃k+1Σ̃k+1|k H̃
T
k+1 and R̃k+1 .

4 Stability analysis

As been mentioned, feasible sets are the output of the
designed estimator. The centre of the estimated sets is consid-
ered as estimation vectors. Therefore, in the stability analysis
of the proposed method, two problems must be considered;
“converges of the estimation error” and the “boundedness of
the estimated set”.

4.1 Estimation error ISS stability

Consider the linearized form of the dynamic system as shown
in (47) and (48). Where ŵk and ˆ̃vk+1 are defined in (22) and
(35). The estimation error is defined in (53):

ζ k+1 = x̃k+1 − ˆ̃xk+1|k+1, (53a)

ζ k+1|k = x̃k+1 − ˆ̃xk+1|k (53b)

Then

ζ k+1 = x̃k+1 − ˆ̃xk+1|k+1

= Ak x̃k + ŵk −
[
Ak ˆ̃xk|k

−
(
zk+1 − H̃k+1Ak ˆ̃xk|k

)]

=
(
Ak − K k+1 H̃k+1

)
ζ k + ŵk

−K k+1 ˆ̃vk+1 = Ãkζ k + rk+1 (54)

where

rk+1 = ŵk − K k+1 ˆ̃vk+1 (55)

Ãk =
(
Ak − K k+1 H̃k+1

)
(56)

And the predicted estimation error is determined as follows

ζ k+1|k = x̃k+1 − ˆ̃xk+1|k = Ak x̃k + ŵk

−Ak ˆ̃xk|k = Akζ k + ŵk (57)
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Equations (54) and (57) show the estimation error propa-
gation respect to time. These dynamic systems are linear
perturbed systems. The stability of the perturbed systems is
established by ISS-Lyapunov stability. In (54), rk+1 is as
UUB uncertainty that calculated as follows

rk+1 ∈ ε (0, Pk+1)

= ε

(

0,
Q̂k

1 − λk+1
+ K k+1R̂k+1K T

k+1

λk+1

)

(58)

where 0 ≤ λk+1 ≤ 1.

Definition 1 The xk+1 = f (xk .uk) is ISS if ν (x) : Rn →
R+ is a Lyapunov function such that for all xεRn and uεRm

[28]:

ν (x) continuously differentiable

α1 (‖x‖) ≤ ν (x) ≤ α2 (‖x‖) , α1 and α2

are k∞ functions (59)

ν ( f (xk, uk)) − ν (xk) ≤ −α3 (‖xk‖) + αu (‖uk‖) , α3

is k∞ and αu is k functions (60)

Lemma 4 If the pair (Ak, H̃k+1) be uniformly observable,
the real numbers s , ś, s, and ś are exist such that

s × I ≤ �k|k−1 ≤ s × I, ś × I ≤ �k|k ≤ ś × I (61)

Proof See [29]

Theorem 1 Suppose that the following assumptions hold:

1. The pair (Ak, H̃k+1) is uniformly observable.
2. The Ak , and H̃k+1 are invertible for all k ≥ 0.

3. ‖Ak‖ ≤ ā , and
∥∥∥H̃k+1

∥∥∥ ≤ h̄

Then the estimator error dynamics (50) and (53) are ISS.

Proof For ISS stability, conditions (55) and (56) must be
satisfied. The Lyapunov functions are defined as follows:

νk
(
ζk+1|k

) = ζ T
k+1|k�

−1
k+1|kζ k+1|k (62)

νk (ζk+1) = ζ T
k+1�

−1
k+1|k+1ζ k+1 (63)

From (57), it is obvious that:

s × I ≤ �k+1|k ≤ s × I =>

∥∥ζ k+1|k
∥∥2

s

≥ ζ T
k+1|k�

−1
k+1|kζ k+1|k ≥

∥∥ζ k+1|k
∥∥2

s
(64)

Therefore, by defining

α1 (‖x‖) =
∥∥ζ k+1|k

∥∥2

s
, α2 (‖x‖) =

∥∥ζ k+1|k
∥∥2

s
(65)

the condition (55) is satisfied as follows:

α1 (‖x‖) ≤ νk
(
ζ k+1|k

) ≤ α2 (‖x‖)

The proof of the

α1 (‖x‖) ≤ νk
(
ζ k+1

) ≤ α2 (‖x‖)

is achieved in a similar way. To verify the second condition
for ISS-stability, the Lyapunov function is calculated.

ν
(
ζ k+1|k

) = (
Akζ k + ŵk

)T
�−1

k+1|k
(
Akζ k + ŵk

)

=
(
ζ T
k A

T
k + ŵ

T
k

)[

Ak
�k|k
1 − βk

AT
k + Q̂k

βk

]−1

(
Akζ k + ŵk

)

≤
(
ζ T
k A

T
k + ŵ

T
k

) [(
1 − βk

)
A−T
k �−1

k|k A
−1
k

+βkQ̂
−1
k

] (
Akζ k+1 + ŵk

)

≤ (
1 − βk

) (
Akζ k+1

)T A−T
k �−1

k|k A
−1
k

(
Akζ k+1

)

+βkŵ
T
k Q̂

−1
k ŵk ≤ (1 − βk) ζ T

k �−1
k|kζ k

+βkŵ
T
k Q̂

−1
k ŵk

≤ (1 − βk) ν
(
ζ k|k

)+ βkŵ
T
k Q̂

−1
k ŵk (66)

It is obvious that [15]:

ν
(
ζ k+1|k+1

)− ν
(
ζ k|k

) ≤ ν
(
ζ k+1|k

)− ν
(
ζ k|k

)
(67)

By adding ν, the below relation is derived:

ν
(
ζ k+1|k+1

)− ν
(
ζ k|k

) ≤ ν
(
ζ k+1|k

)− ν
(
ζ k|k

)

≤ (1 − βk) ν
(
ζ k|k

)+ βkŵ
T
k Q̂

−1
k ŵk

− ν
(
ζ k|k

)

= − βkν
(
ζ k|k

)+ βkŵ
T
k Q̂

−1
k ŵk

≤ −βk
∥
∥ζ k|k

∥
∥2

eigmin
(
�k|k

) + βk
∥
∥ŵk

∥
∥2

eigmin
(
ŵk
) (68)

Therefore, the below relation is satisfied

ν
(
ζ k+1|k+1

)− ν
(
ζ k|k

) ≤ −βk
∥
∥ζ k|k

∥
∥2

eigmin
(
�k|k

) + βk
∥∥ŵk

∥∥2

eigmin
(
ŵk
) (69)

by defining

α3 (‖xk‖) = βk
∥∥ζ k|k

∥∥2

eigmin
(
�k|k

) , αu (‖uk‖) = βk
∥∥ŵk

∥∥2

eigmin
(
ŵk
)
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The (69) is satisfied the second condition of the Lyapunov
ISS-stability.

4.2 Boundedness A of the estimation error

It is guaranteed that the actual state vector is a member of
the estimated set that defined in (15). Therefore, it is needed
that the boundedness of the sets is analyzed.

Lemma 5 Suppose that

1. M,C,D, and E are general matrices.
2. CCT ≤ I and X is a PSD matrix.
3. α is a positive constant
4. α−1 I − EXET > 0.

Therefore the below relation holds:

(M + CDE) X (M + CDE)T

≤ M
(
X−1 − αEET

)−1
MT

+α−1CCT (70)

Proof of Lemma 4 see [30]

By replacing M with Ak , C with I , D with 0, E with I ,
and X with ζ kζ

T
k , (70) is rearranged as follows:

Akζ kζ
T
k A

T
k ≤ Ak

((
ζ kζ

T
k

)−1 − α1 I
)−1

AT
k + α−1

1 I (71)

By using the inverse lemma

Akζ kζ
T
k A

T
k ≤ Ak[ζ kζ

T
k + ζ kζ

T
k (α−1

1 I

− ζ kζ
T
k )−1ζ kζ

T
k ]AT

k + α−1
1 I (72)

The relation (70) can be rewritten as follows:

Akζ kζ
T
k AT

k

1 − βk
+ Q̂k

βk
≤ (1 − βk)

−1
[
Ak

[
ζ kζ

T
k

+ ζ kζ
T
k

(
α−1
1 I

− ζ kζ
T
k

)−1
ζ kζ

T
k

]
AT
k − α−1

1 I
]

+β−1
k Q̂k (73)

By definition

Pk+1|k = Akζ kζ
T
k A

T
k

1 − βk
+ Q̂k

βk
(74)

Now the upper bound for Pk+1|k described as follows:

Pk+1|k ≤ (1 − βk)
−1
[
Ak

[
ζ kζ

T
k

+ ζ kζ
T
k

(
α−1
1 I − ζ kζ

T
k

)−1
ζ kζ

T
k

]
AT
k

−α−1
1 I

]
+ β−1

k Q̂k (75)

The relation between brackets can be reformulated:

[ζ kζ
T
k + ζ kζ

T
k (α−1

1 − ζ kζ
T
k )

−1
ζ kζ

T
k

≤ ζ k (1 − α1) ζ T
k = (1 − α1) ζ kζ

T
k (76)

Therefore, the upper bound of the Pk+1|k is as follows:
In a similar way, the upper bound for Pk+1|k+1 is calcu-

lated:

Pk+1|k ≤ Akζ kζ
T
k A

T
k + α−1

1 I

(1 − α1)
−1 (1 − βk)

+ Q̂k

βk

= AkPk|k AT
k + α−1

1 I

(1 − α1)
−1 (1 − βk)

+ Q̂k

βk
(77)

Pk+1|k+1 = ζ k+1ζ
T
k+1 (78)

Pk+1|k+1 ≤
(
I − Kk+1 H̃k+1

)
Pk+1|k

(
I − Kk+1 H̃k+1

)T

(1 − α1)
−1 (1 − βk)

+ Kk+1

⎛

⎝
ˆ̃Rk+1

ρk

⎞

⎠ KT
k+1 (79)

It is obvious that

Pk+1|k ≤ �k+1|k = Ak
�k|k
1 − βk

AT
k + Q̂k

βk
(80)

Pk+1|k+1 ≤ Σbk+1|k+1

= Σ̃k+1|k
− Σ̃k+1|k H̃

T
k+1{R̃k+1

+ H̃k+1Σ̃k+1|k H̃
T
k+1}−1 H̃k+1Σ̃k+1|k (81)

5 Numerical simulations

In this section, to demonstrate the efficiency of the developed
method, the performance of the unknown input and distur-
bance estimation are examined for two different nonlinear
dynamical systems.

Example 1 In this example a nonlinear dynamic system with
below state space equations is studied:

xk+1 = f (xk) + Bkuk + Gkwk (82)
yk+1 = Hk+1xk+1 + vk+1 (83)

xk+1 = [xk ẋk ]
T = [

x1k x2k
]T (84)

f (xk+1) =
[

x1k + T x2k
x2k + T

(
− k0

m x1k

(
1 + kd x21k

)
− c

m x2k

)
]

(85)
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Table 1 Numerical simulation constants and parameters

Parameter Value Parameter Value

T 0.01 (s) Q 0.01

m 1 (kg) R 0.01

k0 1.5 kd 3

c 1.2 �0|0 0.01I2×2

Hk+1 = [
0.1 0

]
, Bk =

[
0
1
m

]
, Gk =

[
1
1

]
(86)

where T is the sample time, xk or x1k is the position in m,
ẋk or x2k is the velocity in m/s, k0, kd , and c are constant
parameters. The observation is yk+1, and uk is the unknown
input. In this system, wk and vk+1are the input and obser-
vation disturbances respectively. In this model the input and
disturbance are considered as unknown variables.

wkε�w =
{
w : (w − wck

)T Q−1
k

(
w − wck

) ≤ 1
}

(87)

vkε�v = {v : (v − vck )
TR−1

k (v − vck ) ≤ 1} (88)

The system parameters are as those that illustrated in
Table 1. In this example the free parameters are as follows:

βQk = 0.5, βk = 0.5, βRk = 0.001, βR̃k
= 0.01,

ρk+1 = 0.01

First, the input is considered unknown and the disturbance
is neglected. Therefore the uk is changed as a step-like input
from zero to 0.1. The [0(m), 0(m/s)]T is the initial state vec-
tor, and wck = vck = 0. For comparing proposed methods
with other input estimation methods, the simulation results
are compared with unknown input observer (UIO) method
that was proposed in [31,32].

For the parameters that illustrated in the Table 1, the sim-
ulations are down and results are presented in Figs. 1, 2
and 3. In Figs. 1 and 2, the real and estimated values for
dynamic system state vector are illustrated. In Fig. 1a, the
actual values of x1k and its estimated values are presented.
In Fig. 1b, the estimation error of the x1k are presented. In
Fig. 2a, the actual and the estimated values of x2k are pre-
sented. In Fig. 2b, the estimation error of x2k is depicted. In
Fig. 3a, the actual and estimated values of unknown input
and in Fig. 3b, the estimation errors of the unknown input for
proposed method are illustrated. These figures are showing
acceptable performance of the proposed method in estima-
tion of the state vector and unknown input. In comparison to
the UIO method, the proposed method shows better perfor-
mance in estimation of the state vector and unknown input.

In the second scenario of this example, the unknown input
and disturbance are estimated simultaneously with state vec-
tor. The simulation parameters are similar those that are

illustrated in Table 1. In this simulation, the unknown input
and disturbance are changed sinusoidal and ramp like respec-
tively as illustrated in Figs. 4 and 5. In Fig. 4a, the actual
unknown input and its estimated values for proposed and
UIO methods are shown. In Fig. 4b, unknown input estima-
tion error is presented for the above-mentioned methods. In
Fig. 5a, the disturbance and its estimated values are shown.
In Fig. 5b, the disturbance estimation error is illustrated.
These figures are showing the acceptable performance of the
proposed method in the unknown input and disturbance esti-
mation. The proposed method estimation error of unknown
input and disturbance are negligible. As it is obvious, the pro-
posed method estimation precisely tracks the actual value of
the unknown input and disturbance. Moreover, the proposed
method performance in the state vector estimation is signifi-
cantly better than UIO method.

Finally, in the third part of Example 1, another simulation
is done to find out the effect of the filter free parameters on the
state estimation of the proposed method. In this simulation,
only the parameters βQk and ρk+1 are changed as illustrated
in Fig. 6. The simulation results are depicted on Fig. 6. As it
is obvious, the change in the filter parameters directly affect
on the estimation accuracy. In Fig. 6b, the estimation error
for various parameters are shown.

Example 2 In this example, the input estimation for the non-
linear MTT problem is studied. The dynamic model of the
manoeuvring target tracking problem is as follows:

{
xk+1 = Fkxk+Bkuk+Gkwk

zk+1=h (xk+1)+vk+1
(89)

where, xk+1 is the target state vector, uk is the unknown
target manoeuvre, wk and vk+1 are the process and observa-
tion noises respectively. The x and vx are target position and
velocity in the x-axis and so others. The state vector defined
as follows:

xk = [
xk vxk yk v yk zk vzk

]T (90)

uk = [uxk uyk uzk ]T (91)

Fk =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

, Bk =

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

T2

2 0 0
T 0 0

0 T2

2 0
0 T 0

0 0 T2

2
0 0 T

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

,

Gk =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

1
1
1
1
1
1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(92)
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Fig. 1 Simulation results of
Example 1 in the estimation of
state vector; a estimated and
actual values of x1k ; bx1k
estimation error

Fig. 2 Simulation results of
Example 1 in the estimation of
state vector; a estimated and
actual values of x2k ; b x2k
estimation error

Tracking sensor measurers the target bearing angle (ϕk),
elevation angle (θk), and range (rk). The nonlinear function
h (xk) is defined as follows:

zk+1 =
⎡

⎣
ϕk+1
θ k+1
rk+1

⎤

⎦ = h (xk+1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

atan
(

yk+1
xk+1

)

atan
(
zk+1
rk+1

)

√
x2k+1 + y2k+1 + z2k+1

(93)

In this simulation, the estimation of the target maneu-
ver is considered. It is supposed that, the target is an
Aircraft with [2000(m); 50(m/s); 2000(m);−50(m/s)] as
initial state vector, T = 0.001 s, R, Q, and ψ are diagonal
with Ri i = 10, Qi i = 0.1, and ψ i i = 1 as diagonal ele-
ments. The target maneuver for time lower than 10s is zero

and for other times it is [−60;−60](m/s2). In this example
the filter free parameters are as follows:

βQk = 0.05, βk = 0.07, βRk = 0.995,

βR̃k
= 0.001, ρk+1 = 0.01

In Fig. 7, the target maneuver estimation and its estima-
tion error are presented for various noises. The actual and
estimated values of target in x and y directions are shown
in Fig. 7a, c respectively. The target maneuver estimation
error is presented in Fig. 7b, d for x and y axis respectively.
It is obvious that the proposed method estimates the target
maneuver properly in x and y directions for various noises.
The steady state error of estimated target maneuver is negli-
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Fig. 3 Simulation results of
Example 1 in the estimation of
unknown input; a estimated and
actual values of uk ; b uk
estimation error

Fig. 4 Simulation results of
Example 1 in the estimation of
unknown input; a estimated and
actual values of uk ; b uk
estimation error

gible for target tracking applications. The proposed method
is robust in the presence of various noises.

In Fig. 8, the estimation of the target maneuver in the x-
axis, for different target maneuvers is compared with input
estimation (IE) and modified input estimation (MIE) meth-
ods [22,33]. In this figure four maneuver types (Step, Ramp,
Sinusoidal, and hyperbolic) are presented. In this simula-
tion, parameters are T = 0.04s, Ri i = 2, Qi i = 0.1, and
ψ i i = 1. In Fig. 8a, for a step-like maneuver, the actual val-
ues and estimated values for proposed method, IE method
and MIE method are illustrated. In Fig. 8b–e drawings are
presented for ramp, hyperbola, and sinusoidal maneuvers
respectively. In all the target maneuver types, the proposed

method has better accuracy and response time rather than
other methods. In highly maneuvers, the MIE and IE meth-
ods failed on target maneuver tracking. Also, the maneuver
estimation delay time of the proposed method is lower than
IE and MIE methods especially in high maneuver scenar-
ios. This simulation shows the effectiveness of the proposed
method in another nonlinear dynamical system unknown
input estimation.

Example 3 Toquantitative verificationof theproposedmethod,
a Monte-Carlo simulation is performed for second part of
Example 1. The simulations are performed for 200 runs, and
in each run, the root-mean-square error is calculated. Subse-
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Fig. 5 Simulation results of
Example 1 in the estimation of
disturbance; a estimated and
actual values of wc; b wc
estimation error

Fig. 6 Effect of free parameters on estimation of the x1k ; a estimation and actual values of x1k ; b x1k estimation error

quently, the average estimation error for states and unknown
input is calculated and presented in Table 2. The quantitative
simulation results show that the proposed method exhibits
better performance rather than UIO methods for the esti-
mation of dynamic system position, velocity, and unknown
input. To study the computation burden of the proposed
method rather than other methods, in this simulation, the
mean elapsed time for each iteration is calculated by using
tic-toc command in Matlab software. As it is obvious, the
computation burden of the proposed method is about 2 times
greater than UIO method.

6 Conclusion

In this study, under the assumption of the UBB-based uncer-
tainties and disturbances, an ellipsoidal-based extended set
value observer is proposed for simultaneous estimation of
the state vector, unknown input, and disturbance for a spe-
cial class of nonlinear dynamical systems. If in a nonlinear
system, the input or disturbances are unknown, the perfor-
mance of the state vector estimation is degraded dramatically.
In the proposed method, the unknown input and disturbance
are considered augmented states and therefore a new state
spacemodel for the dynamical system is developed. By using
the interval analysis, the linearization reminder of the pro-
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Fig. 7 Target manoeuvre estimation in x-axis and y-axis for Example 2

Fig. 8 Target manoeuvre estimation in x direction for Example 2 in various target manoeuvres
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Table 2 Monte-Carlo simulation results for 200 runs

State RMS error

UIO Proposed method

x1 : position (m) 2.45 4.55

x2 : position (m) 758.83 175.19

u : force (N) 0.85 0.45

Mean computation time (ms) 0.1 0.22

cess andobservation equations are considered in linearization
process. These reminders are bounded by convex closed
ellipsoidal sets, these ellipsoidal sets are combined with the
system and observation uncertainties to achieving a proper
form of the state space equations. To add augmented states
in the observation equation, this equation is rearranged and a
modified form of observation equation is developed. Based
on the developed model and by using set value observer con-
cept, the state, unknown input, and disturbance vectors are
estimated simultaneously.

Furthermore, the stability of the proposed method is
established. In the stability analysis, the convergence and
boundedness of the estimation error are studied. The esti-
mation error dynamics model is determined. The achieved
error dynamic equation is a perturbed dynamic system,where
the estimation error is its state vector and a linear combina-
tion of process and observation uncertainties is its perturbed
input. Therefore, its ISS-Lyapunov stability must be satis-
fied. To analysis the ISS stability of the error dynamic, a
proper Lyapunov function is selected and its stability is ana-
lyzed. Moreover, the boundedness of the estimation error is
analyzed and an upper bound for estimation error is calcu-
lated. Therefore, the stability of the proposed estimator is
completely satisfied.

To demonstrate the efficiency of the proposed algorithm,
various numerical simulations are down. The simulations
shown that the developed method can accurately estimate
the state vector, unknown input, and disturbance simultane-
ously. In the simulations, the performance of the developed
method is verified for various types of unknown input and
disturbance. Furthermore, the performance of this method
is compared with other unknown input estimation methods.
The simulation results show better and acceptable perfor-
mance of the demonstrated method rather than other input
estimation methods. In spite of the benefits of the proposed
method, its various free parameters and larger computation
burden are the limitations of this method

Future recommendations
Here are some suggestions for improving the performance of
the algorithm presented in this paper. Due to improved pro-
cessor capabilities, it is now possible to use other geometric
shapes like zonotopes instead of ellipsoidal sets. Therefore,
it is suggested to use other convex sets for uncertainty mod-

eling to improve the accuracy of the proposed exogenous
input estimator performance. Another issue is the choice of
the global optimal value of filter free parameters. Selecting
the appropriate values for these parameterswill have a signifi-
cant impact on the performance of theUBBbased estimators.
It should be noted that themethod presented in this paper cal-
culates the sub-optimal values for the filter free parameters.
Another suggestion is the design of robust UBB-based esti-
mator for estimating the unknown input for the systems with
the uncertain parameters of the dynamic system model.
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