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Abstract
This paper presents an analytic hierarchy process based approach for approximation of stable high-order systems using
teacher–learner-based-optimization (TLBO) algorithm. In this method, the stable approximant is derived by minimizing
the errors of time moments and of Markov parameters of system and its approximant. Being free from algorithm-specific
parameters, the TLBO algorithm is used for minimizing the objective function. The Hurwitz criterion is used to ensure the
stability of approximant. The first time moment of the system is retained in approximant to guarantee the matching of steady
states of system and approximant. The distinctive feature of this work is that the multi-objective problem of minimization
of errors of time moments and of Markov parameters is converted into single objective problem by assigning some weights
to different objectives using analytic hierarchy process. Also, the proposed method always produces stable approximant for
stable high-order system. The results of proposed approach are compared with other existing techniques. To conclude the
superiority of proposed approach, a comparative study is performed using the step responses and time domain analysis. The
efficacy and systematic nature of proposed approach is shown with the help of two test systems.

Keywords Analytic hierarchy process · Model reduction · Padé approximation · Routh approximation · Teacher–learner-
based-optimization

1 Introduction

The model approximation replaces the mathematical model
of a high-order system by an approximant having order lower
than that of the system while preserving most of the charac-
teristics of the original system. The lower order approximant
simplifies the system analysis, controller design and saves
simulation time. Many methods [1–8] are proposed in the
literature for approximating the high-order discrete as well
as continuous systems. Recently, some approximation tech-
niques [9–12] are also appeared for interval systems.
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The Padé approximation method attracted the attention
of many researchers [13–17] due to its simplicity. In Padé
approximation, first 2r time moments of the system are
fully retained in its lower order approximant. However, Padé
method, sometimes, produces unstable approximant despite
high-order systembeing stable. To eliminate this limitation of
Padé method, various improvements like stability equation
method [17], Mihailov criterion [18], Hurwitz polynomial
based approximation [19], Routh approximation [20,21],
etc., are suggested in the literature.

Shamash [22] proved that some Markov parameters are
required, additionally, along with the time moments of high-
order system to achieve better time response approximation.
In [14], Singh proposed a Luus–Jaakola algorithm based
reduction technique inwhich both timemoments andMarkov
parameters are considered for deriving the approximant.
Soloklo and Farsangi [16] proposed Routh-Padé approxima-
tion using harmony search optimization algorithm in which
multi-objective optimization approach is presented for deriv-
ing the approximant by minimising the errors of the time
moments and of the Markov parameters of the system and
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approximant. But, this method [16] does not guarantee the
matching of steady states of the approximant and system.

In this paper, an analytic hierarchy process (AHP) based
technique is proposed to derive the approximant which
ensures the matching of steady states of the system and
approximant. This approach retains the first time moment
of system in approximant to guarantee the steady state
matching. Additionally, the errors between some subsequent
time moments and some Markov parameters are minimized.
This multi-objective problem of minimization of errors
of time moments and of Markov parameters is converted
into single objective function by assigning some weights
using AHP method [23–25]. Then, this single objective
is minimized using recently proposed optimization tech-
nique namely, teacher–learner-based-optimization (TLBO)
[26,27]. The choice of TLBO for minimizing the objec-
tive function is based on its simplicity and being free from
algorithm-specific parameters. To ensure the stability of pro-
posed approximant, the constraints obtained due to Hurwitz
criterion [28,29] are considered in this work. The efficiency
of proposed technique is investigated and demonstrated by
considering two test systems.

The organization of paper is as follows: Sect. 2 describes
the problem formulation, the TLBO algorithm is discussed in
Sect. 3, simulation results for two test systems are provided
in Sect. 4, and finally the work is concluded in Sect. 5.

2 Problem formulation

Consider an nth-order continuous system, Gn(s), given by

Gn(s) = N (s)

D(s)
= B0 + B1s + · · · + Bn−1sn−1

A0 + A1s + · · · + Ansn
(1)

where Bi , for i = 0, 1, . . . , n − 1, represent coefficients of
numerator, N (s), and Ai , for i = 0, 1, . . . , n, denote coeffi-
cients of denominator, D(s).

Suppose, an r th-order approximant, Hr (s), given by

Hr (s) = N̄ (s)

D̄(s)
= b0 + b1s + · · · + br−1sr−1

a0 + a1s + · · · + ar sr
(2)

is desired for system described by (1) such that n > r .
The system expansions of (1) around s = 0 and s = ∞

are given as

Gn(s) = T0 + T1s + · · · + Tks
k + · · ·

(expansion around s = 0) (3)

Gn(s) = M1s
−1 + M2s

−2 + · · · + Mks
−k + · · ·

(expansion around s = ∞) (4)

where Ti , for i = 0, 1, . . ., and Mi , for i = 1, 2, . . ., are
known as time moments and Markov parameters [13] of sys-
tem, (1), respectively.

The expansions of approximant, (2), in terms of time
moments and Markov parameters can be written as

Hr (s) = t0 + t1s + · · · + tks
k + · · · (5)

Hr (s) = m1s
−1 + m2s

−2 + · · · + mks
−k + · · · (6)

where ti for i = 0, 1, . . ., and mi for i = 1, 2, . . . are,
respectively, the time moments and the Markov parameters
of approximant, (2).

The parameters of approximant are determined by

(i) matching the first time moments of system and approxi-
mant, such that

T0 = t0, (7)

and
(ii) minimizing the errors between subsequent (r − 1) time

moments and first r Markov parameters of the system
and its approximant, such that

J =
r−1∑

i=1

wT
i

(
1 − ti

Ti

)2

+
r∑

j=1

wM
j

(
1 − m j

M j

)2

(8)

where wT
i for i = 1, 2, . . . , (r − 1) and wM

i for j =
1, 2, . . . , r are weights.

The multi-objective problem, (8), is in normalized form hav-
ing a total of (2r − 1) objectives. The first (r − 1) objectives,
normalized with corresponding time moments of the system,
are used to minimize the errors of (r − 1) time moments of
system and its approximant. Remaining r objectives, normal-
ized with respective Markov parameters of the system, are
used to minimize the errors of r Markov parameters of the
system and its approximant. A total of (2r − 1) weights, wT

i
for i = 1, 2, . . . , (r − 1) and wM

j for j = 1, 2, . . . , r , are
considered in objective function to assign proper importance
to different objectives.

2.1 Determination of weights

The relative weights appearing in objective function, (8), are
determined using analytic hierarchy process (AHP). AHP
technique is simple and one of the most widely used analytic
methods [23,30,31].

In AHP, each attribute is assigned a performancemeasure.
The relative weights are obtained with the help of perfor-
mance measures. The performance measures have the values
1, 3, 5, 7 and 9. The value 1 is assigned when the attribute is
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compared with itself. The values 3, 5, 7 and 9 are analogous
to verbal decisions ‘moderate important’, ‘strong important’,
‘very strong important’ and ‘absolute important’, respec-
tively. The values 2, 4, 6 and 8 may also be considered for
compromise between these values. With the help of perfor-
mance measures, a pair-wise square comparison matrix is
formed as

C =

J1 J2 · · · J2r−1⎡

⎢⎢⎣

⎤

⎥⎥⎦

J1 c1,1 c1,2 · · · c1,2r−1

J2 c2,1 c2,2 · · · c2,2r−1
...

...
...

. . .
...

J2r−1 c2r−1,1 c2r−1,2 · · · c2r−1,2r−1

(9)

where ci, j = 1 when i = j and c j,i = c−1
i, j when i �=

j . The relative weights wi , i = 1, 2, . . . , (2r − 1) for all
(2r − 1) objectives Ji , i = 1, 2, . . . , (2r − 1), are obtained
by computing the normalized geometric means of the i th
rows as

wi = GMi

/2r−1∑

i=1

GMi (10)

where GMi is the geometric mean of i th row of (9) which is
computed as

GMi =
⎡

⎣
(2r−1)∏

j=1

ci, j

⎤

⎦
1/(2r−1)

(11)

The resultant objective function, J , can be written in the
following form

J
(
J1, J2, . . . , J(2r−1)

) = w1 J1 + w2 J2 + · · ·
+w(2r−1) J(2r−1) (12)

where wi , i = 1, 2, . . . , (2r − 1), are the scalar weights
obtained using (10) for the objectives Ji , i = 1, 2, . . . ,
(2r − 1), respectively.

2.2 Steady state matching

The constraint given by (7) guarantees the steady statematch-
ing of system and approximant since

T0 = t0 ⇒ B0

A0
= b0

a0
(13)

2.3 Stability of approximant

The stability of proposed approximant, (2), is ensured with
the help of Hurwitz criterion [28,29] such that

D̄(s), i.e. the denominaror of approximant, is Hurwitz.(14)

The Hurwitz criterion is used in this work to achieve stable
approximant because of being simple in application.

Hence, the problem to obtain the approximant, (2), mod-
ifies to minimization of objective function, (12), subject to
the constraints given by (13) and (14).

3 Teacher–learner-based-optimization
(TLBO) algorithm

The TLBO algorithm is proposed by Rao et al. [26,27] in
2011 and is inspired from the teaching–learning process of
a class. The learners in a class constitute the population and
the subjects offered to the learners are analogous to the deci-
sion variables. The whole functioning of TLBO algorithm
is divided into two parts, namely teacher phase and learner
phase.

Teacher phase Suppose, the performance of i th learner in
j th subject is Xi, j ,with i = 1, 2, . . . , P and j = 1, 2, . . . , Q
where P and Q denote, respectively, the population size and
number of decision variables.

In this phase, class teacher tries to improve the knowledge
of learners to his level as given by

Xnew
i, j = Xold

i, j + ri
(
X teacher, j − TfMj

)
(15)

where Xnew
i, j and Xold

i, j are new and old performances of learn-
ers, ri is a random number in the range (0, 1), X teacher, j is
the class teacher (i.e. the best learner of class), Tf is the
teacher factor, and Mj is the mean performance of class.
The value of Tf is either 1 or 2 which is selected randomly.
Xnew
i, j is accepted if it has better fitness value otherwise Xold

i, j
is retained. This new solution becomes input to the learner
phase.

Learner phase Each learner of the class interacts with
other randomly selected learner to improve his knowledge.
The performance of pth learner is modified as

Xnew
p, j = Xold

p, j + r j
(
X p, j − Xq, j

)

f
(
X p, j

) ≤ f
(
Xq, j

)

Xnew
p, j = Xold

p, j + r j
(
Xq, j − X p, j

)

f
(
Xq, j

)
< f

(
X p, j

)
(16)

where p �= q, Xnew
p, j and Xold

p, j are the new and old perfor-

mances of pth learner. f
(
X p, j

)
and f

(
X p, j

)
represent the
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Table 1 Pseudo-code of TLBO

1. //INITIALIZATION

2. iteration=0;

3. population size;

4. termination criterion;

5. WHILE (the termination criterion is not met)

6. Obtain best learner (i.e. the teacher of the class);

7. //Teacher phase

8. FOR (all learners)

9. Generate new solution using (15);

10. Accept new solution if it provides better fitness value

11. END FOR

12. //Learner phase

13. FOR (all learners)

;

14. Generate new solution using (16);

15. Accept new solution if it has better fitness value;

16. END FOR

17. iteration=iteration+1;

18. END WHILE

fitness values of pth and qth learners. Xnew
p, j is accepted if it

provides better fitness value.
The output of the learner phase again becomes input to

the teacher phase and this iterative procedure continues until
termination criterion is met. Table 1 shows the pseudo-code
of TLBO algorithm.

3.1 Steps of implementation of TLBO algorithm

The detailed steps of implementation of TLBO algorithm for
obtaining approximant of high-order system are as follow:

Suppose, an nth-order system is given and an r th-order
approximant is to be obtained such that n < r .

Step 1 Formulate an r th-order approximant as given by
(2).
Step 2 Obtain the time moments and Markov parameters
of the system and approximant as discussed in (3)–(6).
Step 3 Formulate the multi-objective function as given in
(8).
Step 4 Form the comparison matrix, given in (9), and
obtain the relative weights using (10).
Step 5 Obtain single-objective problem as discussed in
(12).
Step 6 Obtain the constraints given in (13) and (14).
Step 7 Obtain the approximant by minimizing the prob-
lem obtained in step 5 using TLBO algorithm subject to
the constraints obtained in step 6. The steps for mini-
mization using TLBO algorithm are provided in Table 1.

4 Simulation results

To demonstrate the efficacy and systematic nature of the pro-
posed method, two worked test systems are considered.

Test system 1 Consider the transfer function of a sixth
order system [16]

G6(s) = 1 + 8s + 20s2 + 16s3 + 3s4 + 2s5

1 + 18.3s + 102.42s2 + 209.46s3 + 155.94s4 + 33.6s5 + 2s6

(17)

Suppose, a second-order approximant, (r = 2), given by

H2(s) = b0 + b1s

a0 + a1s + a2s2
(18)

is desired.
For the system (17), (3) and (4) turn out to be

G6(s) = 1 − 10.3s + 106.07s2 + · · · (19)

G6(s) = s−1 − 15.3s−2 + 187.07s−3 + · · · (20)

Similarly, for approximant (18), (5) and (6) become

H2(s) =
(
b0
a0

)
+

(
b1a0 − b0a1

a20

)
s

+
(
b0a21 − b1a0a1 − b0a0a2

a30

)
s2 + · · · (21)

H2(s) =
(
b1
a2

)
s−1 +

(
b0a2 − b1a1

a22

)
s−2

+
(
b1a21 − b0a1a2 − b1a0a2

a32

)
s−3 + · · · (22)

For this problem (r = 2), the objective function, (8), takes
the following form

J =
1∑

i=1

wT
i

(
1 − ti

Ti

)2

+
2∑

j=1

wM
j

(
1 − m j

M j

)2

(23)

J = wT
1

(
1 − t1

T1

)2

+ wM
1

(
1 − m1

M1

)2

+wM
2

(
1 − m2

M2

)2

(24)

Putting the values of time moments and Markov parameters
from (19)–(22), (24) becomes
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J = wT
1

(
1 + 1

10.3

(
b1a0 − b0a1

a20

))2

+wM
1

(
1 − b1

a2

)2

+ wM
2

(
1 +

(
b0a2 − b1a1

15.3a22

))2

(25)

The Markov parameters and time moments are, respectively,
responsible for transient response matching and steady state
responsematching [22]. Thematching of first timemoment is
necessary for retaining the steady state of the system. This is
taken into consideration using the constraint provided in (13).
For improved transient response approximation, the match-
ing of first and second Markov parameters is considered
as ‘absolute important’ and ‘strong important’, respectively,
with respect to second time moment. The matching of first
Markov parameter is treated as ‘moderate important’ with
respect to second Markov parameter. Hence, the comparison
matrix, (9), turn out to be

C =
wT
1 wM

1 wM
2[ ]

wT
1 1 1/9 1/5

wM
1 9 1 3

wM
2 5 1/3 1

(26)

The weights calculated using (10) are

wT
1 = 0.06, wM

1 = 0.67, wM
2 = 0.27 (27)

Putting the values of weights given in (27), the objective
function, (25), becomes

J = 0.06

(
1 + 1

10.3

(
b1a0 − b0a1

a20

))2

+ 0.67

(
1 − b1

a2

)2

+ 0.27

(
1 +

(
b0a2 − b1a1

15.3a22

))2

(28)

The constraints given by (13) and (14) modify to (29) and
(30), respectively.

b0 = a0 (29)

a1 > 0, a0a1 > 0 (30)

By minimizing (28) using TLBO algorithm, subject to (29)
and (30), the second-order approximant, (18), obtained is

H2(s) = 43.77 + 10.66s

43.77 + 377.9s + 10.72s2
(31)
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Fig. 1 The output responses of system and approximants

The second-order approximants proposed in [16] are

HS
2 (s) = 0.81849 + 7.80016s

0.81657 + 12.43314s + 87.58712s2
(32)

HP
2 (s) = 1.09228 + 6.87815s

0.99732 + 12.96860s + 89.54625s2
(33)

The step responses of approximants, given in (31)–(33),
along with system, (17), are illustrated in Fig. 1. The time
domain specifications and integral of squared errors (ISEs)
for system and approximants are provided in Table 2.

From Fig. 1, it is clearly observed that the output response
of the proposed approximant, (31), is closer to the output
response of the system, (17), when compared to other two
approximants, (32) and (33). Table 2 shows that the value of
steady state of the proposed approximant is same as that of
the system while the steady state values of other two approx-
imants have deviations of 0.23% and 9.52%. The integral of
square error (ISE) is also obtained for 100 minutes which is
minimum in case of proposed approximant. Thevalue of peak
overshoot of proposed approximant, (31), is same as that of
the systemwhile it deviates considerably in case of other two
approximants, (32) and (33). Also, the values of peak time,
rise time and settling time of proposed approximant, (31),
are closer to those of the system when compared to respec-
tive values of the other two approximants. This confirms the
superiority of proposed approximant in terms of steady state
and transient response matching.

Test system 2 Suppose, a ninth-order boiler system [16,32]
is described as

ẋ(t) = Ax(t) + Bu

y(t) = Cx(t) (34)

where
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Table 2 Comparison of approximants

System/approximant Over-shoot Peak time (s) Rise time (s) Settling time (s) Steady state value Deviation in steady
state value (%)

ISE

System (17) 0 75.42 22.71 40.05 1 – –

Proposed approximant (31) 0 102.64 18.91 33.44 1 0.00 0.1004

Approximant (32) 7.61 31.14 14.30 52.99 1.0024 0.23 0.5697

Approximant (33) 7.46 31.16 15.06 50.38 1.0952 9.52 55.4712

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0.910 0 0 0 0 0 0 0 0
0 − 4.449 0 0 0 0 0 0 0
0 0 − 10.262 571.479 0 0 0 0 0
0 0 − 571.479 − 10.262 0 0 0 0 0
0 0 0 0 − 10.987 0 0 0 0
0 0 0 0 0 − 15.214 11.622 0 0
0 0 0 0 0 − 11.622 − 15.214 0 0
0 0 0 0 0 0 0 −89.874 0
0 0 0 0 0 0 0 0 − 502.665

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = [− 4.336 − 3.691 10.141 − 1.612 16.629 − 242.476 − 14.261 13.672 82.187
]T

C = [− 0.422 − 0.736 − 0.00416 0.232 − 0.816 − 0.715 0.546 − 0.235 − 0.080
]

A third-order approximant, (r = 3), given as

H3(s) = b0 + b1s + b2s2

a0 + a1s + a2s2 + a3s3
(35)

is desired for the system, (34).
For the system, (34), and approximant, (35), (3)–(6)

become (36)–(39), respectively.

G9(s) = 12.7275 − 2.7282s + 2.4587s2 + · · · (36)

G9(s) = 146.3569s−1 + 1530.6433s−2

−1559917.2779s−3 + · · · (37)

H3(s) =
(
b0
a0

)
+

(
b1a0 − b0a1

a20

)
s

+
(
a20b2 − a0a2b0 − a0a1b1 + a21b0

a30

)
s2 + · · ·

(38)

H3(s) =
(
b2
a3

)
s−1 +

(
a3b1 − a2b2

a23

)
s−2

+
(
a23b0 − a1a3b2 − a2a3b1 + a22b2

a33

)
s−3 + · · ·

(39)

For this problem, the objective function, (8), takes the form

J =
2∑

i=1

wT
i

(
1 − ti

Ti

)2

+
3∑

j=1

wM
j

(
1 − m j

M j

)2

(40)

J = wT
1

(
1 − t1

T1

)2

+ wT
2

(
1 − t2

T2

)2

+wM
1

(
1 − m1

M1

)2

+ wM
2

(
1 − m2

M2

)2

+wM
3

(
1 − m3

M3

)2

(41)

The comparison matrix, (9), for this test system is formed
as

C =

wT
1 wT

2 wM
1 wM

2 wM
3⎡

⎢⎢⎢⎣

⎤

⎥⎥⎥⎦

wT
1 1 2 1/7 1/5 1/3

wT
2 1/2 1 1/9 1/7 1/5

wM
1 7 9 1 2 4

wM
2 5 7 1/2 1 2

wM
3 3 5 1/4 1/2 1

(42)

The weights obtained using (10) are

wT
1 = 0.06, wT

2 = 0.04, wM
1 = 0.47,

wM
2 = 0.28, wM

3 = 0.15 (43)
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Fig. 2 The output responses of system and approximants

Putting the values of time moments and Markov parame-
ters from (36)–(39) and the values of weights from (43), the
objective function, (24), turn out to be

J = 0.06

(
1 + 1

2.7282

(
b1a0 − b0a1

a20

))2

+ 0.04

(
1 − 1

2.4587

(
a20b2 − a0a2b0 − a0a1b1 + a21b0

a30

))2

+ 0.47

(
1 − 1

146.3569

(
b2
a3

))2

+ 0.28

(
1 − 1

1530.6433

(
a3b1 − a2b2

a23

))2

+ 0.15

(
1 + 1

1559917.2779

(
a23b0 − a1a3b2 − a2a3b1 + a22b2

a33

))2

(44)

The constraints given by (13) and (14) take the form as given
in (45) and (46), respectively.

b0 = 12.7275a0 (45)

a2 > 0, a1a2 − a0a3 > 0, a0 (a1a2 − a0a3) > 0 (46)

The third-order approximant, (35), obtained by minimizing
(44) using TLBO algorithm, subject to (45) and (46), is

H3(s) = 2363.5 + 2201.5s + 73.8s2

185.7 + 213.5s + 15.76s2 + 0.49885s3
(47)

The third-order approximants derived in [16] are

HS
3 (s) = 4725.72521 + 4398.96963s + 148.12856s2

371.99085 + 429.17178s + 29.90996s2 + s3

(48)

HP
3 (s) = 4701.85734 + 4312.31031s + 145.36242s2

371.29177 + 420.38264s + 23.239s2 + s3

(49)

The step responses of approximants, (47)–(49), and system,
(34), are shown in Fig. 2.

Table 3 provides the values of time domain specifications
like peak overshoot, rise time, peak time and steady state;
and ISEs for system and different approximants.

Figure 2 shows that the output response of proposed
approximant, (47), is better matched to the step response
of the system when compared to the responses of other two
approximants, (48) and (49).Anobservation ofTable 3 shows
that the steady state value of (47) is same as that of the sys-
tem, (34), while steady state values of (48) and (49) deviate
by 0.16% and 0.47%, respectively. The ISE value obtained
for 100 minutes is minimum in case of (47) when compared
to those of (48) and (49). Table 3 also clarify that the values
of rise time, peak time and settling time of (47) are closer to
those of (34) than the respective values of (48) and (49). This
confirms the dominance of proposed approximant, (47), over
others.

5 Conclusion

An analytic hierarchy process (AHP) based technique is pro-
posed for obtaining stable approximant of stable high-order
system using teacher–learner-based-optimization (TLBO)
algorithm. The proposed method confirms the steady state
matching of approximant and high-order system. To obtain
the approximant, a multi-objective function, formulated in

Table 3 Comparison of approximants

System/approximant Over-shoot Peak time (s) Rise time (s) Settling time (s) Steady state value Deviation in steady state
value (%)

ISE

System (34) 0 6.47 0.54 2.27 12.72 – –

Proposed approximant (47) 0 6.18 0.57 2.30 12.72 0.00 0.0020

Approximant (48) 0 5.20 0.61 2.36 12.70 0.16 3.3717

Approximant (49) 0 4.45 0.09 2.39 12.66 0.47 24.8760
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terms of errors of Markov parameters and of time moments
of the system and its approximant, is considered. Further-
more, this multi-objective optimization problem is changed
into a single objective function by assigning some weights
using AHP method. To ensure the stability of approximant,
the Hurwitz criterion is used. The efficacy, simplicity and
systematic nature of proposed method are illustrated using
two different test systems.
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