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Abstract
This paper aims to investigate the statistical characteristics of strongly nonlinear vibratory energy harvesters under Gaussian
white noise excitation. The high-dimensional Fokker–Planck–Kolmogorov (FPK) equation of the coupled electromechanical
system is reduced to a low-dimensional equation by using the state-space-split method. The conditional moment given by the
equivalent linearizationmethod is employed to decouple the FPK equations of coupled system, and then obtained an equivalent
nonlinear uncoupled subsystem. The exact stationary solution of the reduced FPK equation of the subsystem is established.
The mean output power is derived by the second order conditional moment from the associated approximate probability
density function of mechanical subsystem. The procedure is applied to mono- and bi-stable energy harvesters. Effectiveness
of the probability density function of the proposed approach is examined via comparison with equivalent linearization method
and Monte Carlo simulation. The effects of the system parameters on the mean-square displacement and the mean output
power are discussed. The approximate analytical outcomes are qualitatively and quantitatively supported by the numerical
simulations.

Keywords Nonlinear · State-space-split method · Conditional moment · Energy harvesting · Fokker–Planck–Kolmogorov
equation

1 Introduction

Scavenging otherwise wasted mechanical energy to support
low power consumption electronics has recently appeared
as an important technology which continues to grow at
rapidly [1,2]. Therefore, vibration-based energy harvesting
has been extensively investigated in recent years. There are
several prominent and comprehensive review papers, espe-
cially Sodano [3], Anton and Sodano [4], Tang et al. [5],
Pellegrini et al. [6], Harne and Wang [7] and Daqaq et
al. [8], introducing the state of the art in different time
phases of investigations related to vibratory energy har-
vesters. Vibratory energy harvesters are extensible power
generators which can be divided into four kinds based on
electromechanical transduction mechanism, namely electro-
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magnetic, piezoelectric, electrostatic, or magnetostrictive.
The study of vibratory energy harvesters has become a hot
topic, won widely development in theories and experiments,
and included a series of results [9–12].

Noises are a very common feature in most real-world
circumstances. Many practical problems in engineering sci-
ence are described as randomness. The investigation on the
stochastic response of vibratory energy harvester under ran-
dom excitation has been an interesting topic. Cottone et
al. [13] observed numerically and experimentally that the
bistable oscillators can outperform the linear ones under
Gaussian white noise excitation. Adhikari et al. [14] derived
the mean power of a linear energy harvester subjected to ran-
dom base excitation with and without an inductor. Litak et
al. [15] reported that the bistable piezomagnetoelastic energy
harvester exhibits a stochastic resonance phenomenon. Gam-
maitoni et al. [16] considered numerically that noise activated
bistable and monstable energy harvesters can enhanced
the performances in terms of averaged root-mean-square
voltage. Daqaq [17] demonstrated that the nonlinearity of
monostable harvester does not enhance power over the lin-
ear system under Gaussian white noise and colored noise
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excitations, respectively. He also [18] derived an approx-
imate expression for the mean power under exponentially
correlated noise and demonstrated the existence of an opti-
mal potential shape maximizing the output power. Green
et al. [19] reported Duffing-type nonlinearities can reduce
the output power than the linear system via equivalent lin-
earization method. Ali et al. [20] established a closed-form
approximate power expression of the bistable piezomag-
netoelastic energy harvester under random excitation and
validated against the Monte Carlo numerical simulation
results. Masana and Daqaq [21] investigated the influence
of stiffness nonlinearities on the transduction of buckling
piezoelectric beam under band-limited noise by experiment.
Daqaq [22] applied the method of moment differential equa-
tions of FPK equation to calculate response statistics and
demonstrated that the energy harvesters time constant ratio
plays a critical role in characterizing the performance of
nonlinear harvesters in a random environment. Martens et
al. [23] studied the stationary response of magnetopiezoelec-
tric energy harvester under stochastic excitation by using the
Galerkin method. He and Daqaq [24,25] employed the sta-
tistical linearization techniques and finite element method
of the FPK equation to investigate how the shape of the
potential energy function influences the mean steady-state
approximate output power. Jiang and Chen [26] employed
the method of moment differential equations of Itô equation
to investigate the response moments of piezoelectric energy
harvester. Xu et al. [27] introduced the stochastic averaging
of energy envelope for Duffing-type vibration energy har-
vesters, and discussed the effects of the system parameters on
the mean square output voltage and power. Kumar et al. [28]
used the finite element method to solve the FPK equation
of the associated bistable energy harvester, and analyzed the
effects of the system parameters on the mean square output
voltage and power. Jin et al. [29] introduced the generalized
harmonic transformation to decouple the electromechani-
cal equations, and applied the equivalent nonlinearization
technique to derive a semi-analytical solution of the corre-
sponding nonlinear vibration energy harvesters subjected to
Gaussian white noise excitation. De Paula et al. [30] shown
bistable energy harvester have a better performance than lin-
ear andmonostable systemswhen the beam oscillates around
two stable equilibrium configuration. Yue et al. [31] applied
the generalized cellmappingmethod to compute the transient
and stationary probability density functions of piezomagne-
toelastic energy harvester system subjected to harmonic and
Poisson white noise excitations. Jiang and Chen employed
standard stochastic averaging method [32] and the gener-
alized stochastic averaging method [33] to decopled the
electromechanical system, and computed the exact stationary
solution of the reduced FPK equation. Liu et al. [34] investi-
gated the chaotic behavior of the vibration energy harvester
with fractional-order potential energy. Xiao and Jin [35] con-

sidered the harvesting performance of piezoelectric energy
harvester under correlated multiplicative and additive white
noise.

The FPK equation provides a powerful tool for treating the
statistical characteristics of nonlinear stochastic system. To
solve the FPK equation is themost effectivemethod to obtain
the evolutive properties of the system response. The FPK
equation of the coupled electromechanical system is a three-
dimensional nonlinear partial differential equation. Its exact
solution is difficult to calculate, even for exact stationary
probability densities. Therefore some approximate methods
for solving the FPK equation of the coupled electromechan-
ical system have been reported which include the statistical
linearization techniques [14,17–19], the moment differen-
tial equations method [22,26], the Galerkin method [23], the
finite element method [24,25,28], the stochastic averaging of
energy envelope [27,32,33], the equivalent nonlinearization
technique [29] and the cell mapping method [31]. Recently,
Er [36] first proposed the SSS method as a scheme to reduce
the high-dimensional FPK equation and demonstrated it is
an effective method for Gaussian white noise [37] and Pois-
son impulses excitations [38,39]. From the above analysis,
the PDF solution of coupled electromechanical nonlinear
systems under stochastic excitation is less investigated. To
address the lack of research in the aspect, the present work
applies the SSS method to compute and study the statistical
characteristics of vibratory energy harvesters.

The paper is organized as follows. Section 2 proposes
the FPK equation of vibratory energy harvester. In Sect. 3,
the procedure for solving the FPK equation of the coupled
electromechanical equations by SSS method is presented,
and derived the PDF of decoupled mechanical subsystem.
Simultaneously, computed the output power via second order
conditional moment scheme. Section 4 applies the SSS
method to monostable vibration energy harvesters, discusses
the effects of the system parameters on the mean-square dis-
placement and the mean power. Section 5 employ the SSS
method to bistable vibration energy harvesters, proposes the
effects of the system parameters on the mean-square dis-
placement and the mean power. Finally, some concluding
remarks are made in Sect. 6.

2 Problem formulation

The coupled electromechanical equations of piezoelectric
energy harvesters under Gaussian white noise excitation can
be given as [22]

mẍ + cẋ + dU (x)

dx
+ θv = −mẍb (1)

Cpv̇ + v/R = θ ẋ (2)
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Fig. 1 The physical model of piezoelectric energy harvesters [21]

where x represents the displacement of massm, v is the volt-
age collected via the resistive R, c is the viscous damping
coefficient, θ is the electromechanical coupling coefficient,
Cp is the capacitance of the circuit, ẍb is the base accelera-
tion. The physical model of piezoelectric energy harvesters
as shown in Fig. 1. The potential of the mechanical system
can be written as

U (x) = 1

2
k1(1 − r)x2 +

n∑

i=2

1

i + 1
ki x

i+1 (3)

where k1 and ki are the linear and nonlinear stiffness coeffi-
cients, respectively, and n being a positive integer.

The non-dimensional electromechanical coupling equa-
tions can be derived via the non-dimensional transforma-
tions [22] as the following general form

Ẍ + 2ζ Ẋ + g(X) + κY = ξ(t) (4)

Ẏ + αY = Ẋ (5)

where g(X) = (1 − r)X + δi X i (i = 2, 3, . . . , n), ζ

represents the damping ratio, κ denotes the electromechan-
ical coupling coefficient, α is the time constant ratio, and
ξ(t) = − ẍb is the base acceleration. ξ(t) is Gaussian white
noise with zero mean and autocorrelation function

E [ξ(t)ξ(t + τ)] = 2Dδ(τ ) (6)

in which E[·] denotes the expected value, D is the intensity
of the excitation, and δ (·) is the Dirac function.

The FPK equation corresponding to Eqs. (4) and (5) is

∂ p(x, t)
∂t

+ ∂[ f1 p(x, t)]
∂x1

+ ∂[ f2 p(x, t)]
∂x2

+ ∂[ f3 p(x, t)]
∂x3

− D
∂2 p(x, t)

∂x22
= 0 (7)

where x = [x1, x2, x3] = [X , Ẋ ,Y ], f1 = x2, f2 =
− (2ζ x2 + g(x1) + κx3) , f3 = −αx3 + x2. For the station-
ary case, the FPK equation (7) is reduced to the following
form

∂[ f1 p(x)]
∂x1

+ ∂[ f2 p(x)]
∂x2

+ ∂[ f3 p(x)]
∂x3

− D
∂2 p(x)

∂x22
= 0

(8)

It is assumed that the solution p(x, t) in Eq. (7) or the
solution p(x) in (8) satisfies the following boundary condi-
tions

lim
xi→∞ f j (x)p(x, t) = 0 and

lim
xi→∞

∂ p(x, t)
∂xi

= 0 (i, j = 1, 2, 3). (9)

3 State space split method

Er [36] first pioneered the SSS method as a scheme to
reduce the high-dimensional FPK equation. The SSSmethod
has been applied to the solution of the high-dimensional
FPK equation of the nonlinear system under Gaussian white
noise [37] and Poisson impulses excitations [38,39].

According to the SSS method, separate the state vector x
of energy harvesting system (4) and (5) into two parts x1 =
{x1, x2} ∈ R2 and x2 = {x3} ∈ R, and x = {x1, x2} ∈ R3 =
R2 × R. x1 is the state space of the mechanical subsystem,
and x2 represents the electric circuit system. x1 contains the
response whose PDF is to be obtained, whereas x2 contains
the response which is to be approximately replaced by some
functions of x1 via the SSS method.

Denote the stationary PDF of x as p1(x1). In order to
obtain the p1(x1), integrating Eq. (8) over the circuit interval
R3 gives

∫

R3

∂[ f1 p(x)]
∂x1

dx3 +
∫

R3

∂[ f2 p(x)]
∂x2

dx3

+
∫

R3

∂[ f3 p(x)]
∂x3

dx3 − D
∫

R3

∂2 p(x)

∂x22
dx3 = 0 (10)

In addition, the PDF of x1 can be derived by integrating p(x)
over R3 as follows:
∫

R3

p(x1, x2, x3)dx3 = p(x1, x2) (11)

The electromechanical coupling equations in the second term
of Eq. (10) is reformulated as

f2 = f I2 (x1, x2) + f I I2 (x1, x2, x3) (12)

where f I2 (x1, x2) = − [2ζ x2 + g(x1)] , f I I2 (x1, x2, x3) =
− κx3.

Substituting Eq. (12) into (10), by using the boundary
condition (9) and the relationship (11), integrating Eq. (10)
gives
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x2
∂ p(x1, x2)

∂x1
− ∂

∂x2
[(2ζ x2 + g(x1))p(x1, x2)

+
∫

R3

κx3 p(x1, x2, x3)dx3

]
− D

∂2 p(x1, x2)

∂x22
= 0

(13)

Correspondingly, p(x1, x2, x3) can be further expressed by
the conditional PDF as

p(x1, x2, x3) = p(x1, x2)q(x3 |x1, x2) (14)

where q(x3 |x1, x2) is the conditional PDF of voltage x3 for
given the mechanical subsystem x1 and x2.

Substituting Eq. (14) into (13), Eq. (13) is reformulated
as

∂[x2 p(x1, x2)]
∂x1

− ∂

∂x2

{ [
2ζ x2 + g(x1)

+
∫

R3

κx3q(x3 |x1, x2) dx3
]
p(x1, x2)

}

− D
∂2 p(x1, x2)

∂x22
= 0. (15)

The conditional PDF q(x3 |x1, x2) is unknown and it can
be approximated by the result given by the equivalent lin-
earization method for Gaussian white noise. Equation (15) is
further formulated as

∂[x2 p(x1, x2)]
∂x1

− ∂

∂x2

{ [
2ζ x2 + g(x1)

+
∫

R3

κx3q̄(x3 |x1, x2) dx3
]
p(x1, x2)

}

− D
∂2 p(x1, x2)

∂x22
= 0 (16)

where q(x3 |x1, x2) is the conditional PDF given by the
equivalent linearization method. Correspondingly, the exact
stationary PDF p(x1, x2) is replaced by its approximation
p(x1, x2).

Denote

f 2 = − 2ζ x2 − g(x1) −
∫

R3

κx3q̄(x3 |x1, x2) dx3
= − 2ζ x2 − g(x1) − κE[x3 |x1, x2 ]
= − 2ζ x2 − g(x1) − κ

[
E[x3] + ρx3,x1

σx3

σx1
(x1 − E[x1])

+ ρx3,x2
σx3

σx2
(x2 − E[x2])

]
(17)

whereρ(·) is the correlation coefficient of (·)of the equivalent
linearization system, and σ(·) is the standard deviation of (·)
of the equivalent linearization system.

Finally, the high-dimensional FPKequation of the coupled
electromechanical harvesting systemcanbe approximated by
a low-dimensional FPK equation of the mechanical subsys-
tem as follows:

∂[x2 p(x1, x2)]
∂x1

+ ∂[ f 2 p(x1, x2)]
∂x2

− D
∂2 p(x1, x2)

∂x22
= 0

(18)

The exact stationary solution of the low-dimensional FPK
equation (18) of the mechanical subsystem can be given by

p(x1, x2) = C exp

[
−ζ

2D

(
x22 + kx21 + 2

i + 1
δi x

i+1
1

)]

(19)

in which C is a normalized constant, ζ = 2ζ + κσx2x3/σ
2
x2 ,

k = 1 − r + κσx1x3/σ
2
x1 , and σxi x j (i �= j) is the covariance

of xi and x j .
The non-dimensional output power can be expressed as

P = ακE[x23 ] = ακ

∫

R3
x23 p(x1, x2, x3)dx1dx2dx3

≈ ακ

∫

R3
x23 p(x1, x2)q(x3 |x1, x2) dx1dx2dx3

≈ ακ

∫

R2
p(x1, x2)E[x23 |x1, x2 ]dx1dx2. (20)

In addition, the second order conditional moment can be
given by [37]

E[x23 |x1, x2 ] = (E[x3 |x1, x2 ])2 + σ 2(x3 |x1, x2 ) (21)

in which the conditional mean can be written as

E[x3 |x1, x2 ] = E[x3] + σx1x3

σ 2
x1

(x1 − E[x1])

+ σx2x3

σ 2
x2

(x2 − E[x2]) (22)

and the conditional variance is expressed as

σ 2(x3 |x1, x2 ) =
(
1 − σ 2

x1x3

σ 2
x1σ

2
x3

− σ 2
x1x3

σ 2
x1σ

2
x3

)
σ 2
x3 (23)

.

4 Application tomonostable energy
harvester

The monostable energy harvester is an important model of
nonlinear vibration energy harvester and has been the focal
field of many research studies in recent years [1–4,8]. The
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Fig. 2 Comparison of PDFs and logarithmic PDFs for monostable energy harvester

physical model can be realized by a clampedCclamped axi-
ally loaded piezoelectric beam which can operate in the
pre-buckling configurations as shown in Fig. 1. However, the
analysis on the probabilistic solutions of high-dimensional
FPK equation has been a challenge. Therefore, the cou-
pled FPK equation of energy harvesters has received less
attention. Some methods were extended for obtaining the
approximate probabilistic solutions of monostable energy
harvesting systems under the small excitation intensity. Here,
we consider the probabilistic solutions for coupled FPK
equation of monostable energy harvesters subjected to lager
excitation intensity.
The non-dimensional electromechanical coupling equations
can be expressed as

Ẍ + 2ζ Ẋ + X + δX3 + κY = ξ(t) (24)

Ẏ + αY = Ẋ (25)

The system parameters are selected by the previous stud-
ies [22,29] with the nonlinear stiffness coefficient δ = 0.5,
the time constant ratio α = 0.05, the electromechanical
coupling coefficient κ = 0.5625, the damping ratio ζ =
0.01 and the excitation intensity 2D = 0.4. The stationary

PDFs obtained from theSSSmethod, equivalent linearization
(EQL) method, and Monte Carlo simulation (MCS) meth-
ods are compared in order to check the effectiveness of the
SSS method in analyzing the strongly nonlinear monostable
energy harvesting systems under Gaussian white noise exci-
tations.

Figure 2 shows a comparison on the obtained PDF and
logarithmic PDFs solutions of the mechanical subsystem x1
and x2 from the SSS method, EQL method, and MCS meth-
ods. It is seen that the PDFs and the tails of the PDFs of
displacement x1 calculated from SSS method are close to
MCS while the PDFs from EQL method deviate from simu-
lation result, especially in the tail regions. For the PDFs and
the logarithmic PDFs of velocity x2, the results from SSS
method and EQL method are close to MCS.

As already mentioned the importance of the mean out-
put power E[P] for energy harvesting and the mean-square
displacement E[x21 ] for the miniaturization of the harvest-
ing devices [22,29,32,33], the mean-square displacement
and the mean output power are calculated in the following
discussion.

The influences of the excitation intensity D, the nonlinear
coefficient δ, the electromechanical coupling coefficient κ
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Fig. 3 Variations of the mean-square displacement and the mean output power with the excitation intensity for monostable energy harvester
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Fig. 4 Variations of the mean-square displacement and the mean output power with the nonlinearity coefficient for monostable energy harvester
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Fig. 5 Variations of the mean-square displacement and the mean output power with the coupling coefficient for monostable energy harvester

and the time constant ratio α are shown in Figs. 3, 4, 5 and 6,
in which the solid lines represent the analytical results from
SSSmethod and red dotted circles areMCSnumerical results
based on Eqs. (24) and (25). The mean-square displacement
and mean output power increase with the excitation intensity
D, decrease as the nonlinear coefficient δ increases. Fig-

ure 5 shows that the mean output power increases while the
mean-square displacement decreases as the electromechan-
ical coupling coefficient κ increases. Figure 6 demonstrates
that there exists an optimal time constant ratio α to observe
the maximal output power, and the mean-square displace-
ment corresponding to the optimal time constant ratio closes
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Fig. 7 Comparison of PDFs and logarithmic PDFs for bistable energy harvester

to the minimum. According to previous studies [22,29,33],
the time constant ratio α represents the load resistance. Thus,
the occurrence of the optimal time constant ratio means that
there exists an optimal load resistance which can generate
maximal power. The consistency of the analytical solu-
tions and the MCS results verifies the accuracy of the SSS
method.

5 Application to bistable energy harvester

The bistable energy harvester has been investigated as a
possible device to improve the performance of energy har-
vesters in harmonic and random excitations [5–9,13,20,26].
The bistable mechanism has two stable static equilibria sta-
tion separated by an unstable saddle which can generate
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Fig. 8 Variations of the mean-square displacement and the mean output power with the excitation intensity for bistable energy harvester
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Fig. 9 Variations of the mean-square displacement and the mean output power with the nonlinearity coefficient for bistable energy harvester

large amplitude voltages over a wide range of frequencies
under sufficient external excitation. Since the bistable is a
strongly nonlinear oscillator and the corresponding FPK is
multidimensional partial differential equation with varying
coefficients. Thus, obtaining its exact solution is not a simple
problem. As a result, some researchers proposed the statis-
tical linearization method [20], Galerkin method [23] and
finite element method [25,28] to approximate the response
statistics of the bistable system. In addition, some studies
presented the Monte Carlo numerical simulation [13–15,26]
to calculate the response of the system. As of today, there are
less analytical methods to address the statistics characteris-
tics of bistable harvesters. Therefore, the SSS method was
applied to investigate the probabilistic solutions for the cou-
pled FPK equation of bistable energy harvesters subjected to
Gaussian white noise.

The non-dimensional electromechanical coupling equa-
tions can be written as

Ẍ + 2ζ Ẋ − X + δX3 + κY = ξ(t) (26)

Ẏ + αY = Ẋ . (27)

The system parameters are the same as Sect. 4. The phys-
ical model can be realized by a clampedCclamped axially
loaded piezoelectric beam which can operate in the post-
buckling configurations as shown in Fig. 1. The stationary
PDFs obtained from the SSSmethod, EQLmethod, andMCS
method are compared inFig. 7. It is found that the results from
SSSmethod of bistable energy harvester agree verywell with
the ones from MCS simulation. In addition, the stationary
PDFs of displacement obtained from the SSS method essen-
tially has two peaks which are symmetrical and bimodal, and
the response may switch from one stable static equilibria sta-
tion to another which is consistent with the corresponding
potential energy function. However, the stationary PDFs of
displacement from EQLmethod only has one peak. From the
comparison, it is seen that the qualitative behaviors of the SSS
method and the EQL method are different, and the effective-
ness of the SSS method is observed by the MCS method in
analyzing the nonlinear bistable energy harvesting systems
under Gaussian white noise excitations.
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Fig. 10 Variations of the mean-square displacement and the mean output power with the coupling coefficient for bistable energy harvester
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Fig. 11 Variations of the mean-square displacement and the mean output power with the coupling coefficient for bistable energy harvester

The effects of the system parameters of bistable energy
harvester on the mean-square displacement and the mean
output power are discussed in the following, in which the
solid lines represent the analytical results from SSS method
and red dotted circles are MCS numerical results based
on Eqs. (26) and (27). Figure 8 describes the variations of
the excitation intensity D on the mean-square displacement
and the mean output power. Both the response amplitude
increase with the excitation intensity. Figure 9 shows that
the mean-square displacement and the mean output power
decrease quickly as the nonlinear coefficient δ increases, the
change trend becomes flat along with the increase of δ. Fig-
ure 10 shows that the mean output power increases while the
mean-square displacement decreases as the electromechan-
ical coupling coefficient κ increases. Figure 11 implicates
that there exists an optimal time constant ratio α to observe
the maximal output power, while the mean-square displace-
ment increases as time constant ratio increases, which is a
little different from the monostable energy harvester. From
the Figs. 8, 9, 10 and 11, it concludes that the analytical solu-

tions given by the SSS method matched well with the MCS
results.

6 Conclusions

This paper investigates the statistical responses of strongly
nonlinear vibratory energy harvesters under Gaussian white
noise excitation. The FPKequation of the coupled electrome-
chanical system is reduced to a low-dimensional equation
via the SSS method. The conditional moment is adopted to
decouple the FPK equations of coupled system, and then
obtained an equivalent nonlinear uncoupled subsystem. The
exact stationary PDF of the reduced FPK equation is estab-
lished for themechanical subsystem. Themean output power
is computed by the second order conditional moment from
the associated approximate PDF of mechanical subsystem.
The procedure is employed to mono- and bi-stable energy
harvesters, thePDFsgivenby theSSSapproach are compared
with those given by EQL method and Monte Carlo simula-
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tion. The effects of the systemparameters on themean-square
displacement and the mean output power are calculated. The
approximate analytical outcomes are qualitatively and quan-
titatively supported by the numerical simulations.

It should be pointed out that the SSS method is not only
suitable for the strongly nonlinear monostable energy har-
vester, but also suitable for the bistable energy harvesting
systems. It is found that the stationary PDFs of displacement
for bistable energy harvester obtained from the SSS method
essentially has two peaks which is consistent with the cor-
responding potential energy function. From the comparison,
it is seen that the qualitative behaviors of the SSS method
and the EQL method are completely different. The station-
ary PDFs of displacement from the SSSmethod are bimodal,
while the results fromEQLmethod only aremonomodal, and
the effectiveness of the SSS method is observed by the MCS
method.
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