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Abstract
In this paper, wind turbines dynamics are considered for nonlinear behavioral modeling and simulation. The modeling part
is concerned about the wind turbines exposed to lower range of wind speeds. The nonlinear model considered in this paper
is derived from the models published recently. The model then is analyzed through stability, eigenvalues, sensitivity and
Simulink verification versus General Electric and NREL models. The paper then introduces analysis and simulations for
the wind turbines dynamics approximated to fast–slow (two) time scales and fast–medium–slow (three) time scales. The
multiple time scale simulation analysis and results we present are a continuation for our previous work (Eisa et al. in Int J Dyn
Control 2017. https://doi.org/10.1007/s40435-017-0356-0) that concluded rigorous mathematical analysis for wind turbines
dynamics. The paper presents full numerical simulation results for the time scale work. Finally, the paper presents a practical
illustration by comparing the modeling work versus other models and real measured data from a wind farm.

Keywords Wind turbines ·Mathematical modeling ·Wind turbines system · Time scale in wind turbines ·Dynamic behavior ·
Wind turbine control system · DFIG · Multiple time scale simulations · Type-3

1 Introduction

The generation of renewable energies is increasing rapidly
when compared to fossil fuels. According to [2], wind is
the fastest growing renewable energy source. In the last two
decades, modeling the control components of Wind Tur-
bine Generators (WTGs) and their dynamics has been a
rapidly growing area of research. As found in [3], type-3
(wind turbine with three blades) WTGs are more efficient
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in extracting power than other types. This is due to the
fact that Coefficients of Performance (Cp) for type-3 can
go up to a 0.4–0.5 efficiency of extraction, as explained in
the introduction of [1,4–8]. Most of the studies in the lit-
erature, such as General Electric’s (GE) studies [9,10] and
Electric Power Institute/NREL study [11], suggested Dou-
bly Fed Asynchronous/Induction Generator (DFAG/DFIG)
technology for WTGs. Therefore, we consider the type-3
DFAG/DFIG in our paper.

In the literature, there are many sources and studies,
mostly in transfer functions (frequency) domain for type-
3 WTGs DFIG-based models. A good summary for these
models can be found in the introduction of [1,4–8]. The
models considered in these references mostly followGeneral
Electric (GE) modeling effort [9,10,12], which cited [13] as
a major source for building the model. We do notice that
the literature is almost empty or incomplete when it comes
to studies that analyzes WTGs in time domain, or studies
that explore the different time structure inside the WTGs
dynamics. It is important to recognize some of the stud-
ies that attempted to study WTGs in time domain, such as
[14–16], while studies such as [17–19] tried to consider the
different time structure in WTGs, with a way or another.
We can notice that some of these studies are not mathe-
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matically rigorous and have not been validated. The reason
behind this lack of research is due to the small amount of
work invested in nonlinear time domain modeling of wind
turbines dynamics, as opposed to frequency domain-based
studies. In this paper, we use the mathematical modeling
and analysis work in [1], extend it to the model under con-
sideration in this paper, perform stability, eigenvalues and
sensitivity analysis, verify the model versus GE and NREL
models through Simulink, and eventually, mathematically,
construct and simulate the multiple time scale structure that
exists in the wind turbines dynamics with validation versus
realmeasured data. This should have a significant importance
to understand the nonlinear effect resulting from integrat-
ing WTGs with other systems, such as other power systems
that are faster or slower than the WTG system, or energy
storage systems that have to act fast to back up or store
energy from and to the wind turbines system. As a result,
we may have better sensors that focus on pre-specified vari-
ables to conduct measurements depend on the time scale and
the application. That is, fast systems that are connected with
WTGs, will be in direct interaction with the fast time scale
dynamics, and vise versa. Also, having a well-constructed
multiple time scale structure will eventually improve the
computational efficiency for wind turbines simulators, as
the simulation will be running using smaller sizes of the
system, depending on the time scale. Therefore, we need
better understanding for the different time scale structure
in WTGs. While the mathematical analysis for the two
and three time scales have been briefly introduced in our
earlier work [1]. We remark that the two and three time
scale results introduced in this paper, are original and sub-
stantially new in the literature of WTGs nonlinear analysis
and simulation (based on our up to date search and cited
papers).

The structure of this paper

1. In the second section of this paper, we introduce and con-
struct the WTGs mathematical model of interest. This
will be by following and extending our previous work in
[1,4–8]. Then, we perform time domain (stability, eigen-
values and sensitivity) analysis for the nonlinear model,
similar towhatwas conducted particularly in [4–6]. Also,
we perform Simulink analysis, similar to [12], to verify
our time domain-based model. We do verify our model
versus the transfer functions-based GE and NREL mod-
els.

2. In the third section, we introduce the mathematical pro-
cess used for the multiple time scale approximations.

3. In the fourth section of this paper we provide all per-
formed two and three time scale simulations with discus-
sion, in addition to comparison of our time scale results
versus other models and real time measured data from a
wind farm.
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Fig. 1 Block diagram of wind turbine model’s components

2 Themathematical model

In this section, we build a full time domain mathematical
model that can be used by stiff numerical solvers of differen-
tial equations (such as ODE15s solve inMatlab). This should
allow for deeper and better control studies since the WTG
system is highly nonlinear. Also, having the system in time
domain allows for non-autonomous simulations that aremore
practical to present the different scenarios. In order to do that,
we explain the control blocks and translate them to differen-
tial equations and provide parameter values, Cp coefficients
values, and limiters values (control limits). From our result
in [1], we can rigorously eliminate the algebraic equation
(the network equation), resulting in a system of differential
equations instead of a system of differential-algebraic equa-
tions, allowing for simpler implementation within numerical
solvers. The proposed DFIG-based model is reduced only
for the WTG being exposed to lower wind speeds. As men-
tioned and explained in [5, Sect. 2.C] the operating regions
for the system (see figure 8 in [5]) are: low wind speeds
3 < vwind < 8.2, transitional stage 8.2 < vwind < 11.4
and high wind speeds 11.4 < vwind < 25. The model in
this paper focuses on lower range. Also, following [12], the
transients are neglected through the model.

2.1 The block diagrams, state variables, and steady
states

We summarize the model blocks and dynamics for the model
of interest (lowwind speeds) in Fig. 1, as it shows the primary
components of the model as explained in [4,9,10,12]. Units
are Per Unit (pu) except for the pitch which is in degrees.
The blocks with bold font are the one activated, otherwise
they are deactivated.

• The wind power model The power extracted by the tur-
bine is the power in the air-stream multiplied by Cp.
As mentioned in [10], Cp(λ, θ) = ∑4

i=0
∑4

j=0 αi, jθ
iλ j

whereαi, j are the polynomials coefficients, the tip ratio is
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Fig. 2 The reference speed
function as a quadratic before
vwind = 8.2m/s and constant
after that

λ = Kb(wt+w0)
vwind

, θ is the pitch angle, and Kb is a constant.
In the case of this paper 3 < vwind < 11.4m/s, θ will
be zero during the computation of Cp to extract the max-
imum allowed power. Note that Cp given in this paper
is also used in [12] and it is an empirical approximation.
The mechanical power Pmech = 1

2CpρArv
3
wind .• Rotor model One mass model, as in [20], or two mass

model, as in [9,10,12]. This paper considers the two
mass model as in our previous work [1,5,6]. The shaft
speed is controlled by a reference speed given bywre f =
−0.75P2

elec + 1.59Pelec + 0.63. wre f in this paper as in
lowwind speedswre f cannot reach the rated speed,which
is 1.2 (pu). Figure 2 shows the reference speed function.
Equations (1)–(3) represent the two mass model. wt , wg

represent the turbine and generator speeds respectively,
after adding w0, an initial speed that prevent singularity
in the model [9,10,12]. Note that this initial value will
not have any physical effect as the generator speed is
w = wg +w0 and the turbine speed iswrotor = wt +w0.
The steady state occurs when wg = wt so

d(�θ)
dt = 0

[see Eq. (3)] and Pelec = Pmech . This is one of the main
assumptions in themodelwe are following, that no power
loss occurs inside the WTG.

• The power orderThe power order ismainly dependent on
the difference between the shaft speed and the reference
speed, aswell as the shaft speed itself. Equation (6) shows
that the steady state for the power order Pinp happens
when w = wre f and Pinp = Kitrqwgenerator f1.

• Reactive power control This block feeds reactive power
command to the generator and controls the reactive
power. This control can use a power factor or supervi-
sory voltage modes. The power factor angle PFA can
be designed as needed. In our study, we assume it as a
small constant, so we get a small reactive power com-
pared to the active power. Equation (8) shows how to
generate the reference voltage after having the reactive

WTG

Pelec + jQgen

R + jX

Infinite Bus

V ejφ Eej0

Fig. 3 Single-Machine Infinite-Bus test system

power command Qcmd = tan(PFA)P1elec, where P1elec
is a filtered version of Pelec and they are equivalent in
the steady state. Equation (9) shows the reactive voltage
command Eqcmd that goes to the generator.

• DFIG generator This block models the generator and
how both the reactive and active powers are delivered
to the grid. The model has two branches that feed the
generator, the reactive and the active branches. Equa-
tions (10)–(11) show how the the active current Iplv and
the reactive voltage Eq behave. The network equation
provides an algebraic constraint that relates the terminal
voltage to the dynamics basedon the infinite-busmodel of
the grid to which the single wind turbine is connected, as
in [12], also see Fig. 3. This algebraic constraint is given
by Eq. (12). In this equation, V represents the terminal
voltage as a magnitude. In the whole model, as shown in
[12], the electric power delivered to the grid is given by
Pelec = V Iplv and Qgen = V (Eq−V )

Xeq
. Eqcmd , Eq , and

Iplv are the generator state variables. The steady state
occurs when the reference and the terminal voltages are
the same, the reactive voltage Eq equals the reactive volt-
age command Eqcmd , and the active current Iplv equals
the power order divided by the magnitude of the terminal
voltage.

123



Wind turbines control system: nonlinear modeling, simulation, two and three time scale… 1779

2.2 Differential equations, parameters, and control
limits

Two-mass rotor:

dwg

dt
= 1

2Hg

[

− Pelec
wg + w0

− Dtg(wg − wt ) − Ktg�θm

]

.

(1)
dwt

dt
= 1

2H

[
Pmech

wt + w0
+ Dtg(wg − wt ) + Ktg�θm

]

. (2)

d(�θm)

dt
= wbase(wg − wt ). (3)

A one-mass model can be used to simplify the two-mass
model in group 1. This has been discussed in [10]. This
one-mass differential equation was introduced in [15]. The
following equation represents the one mass model:

dw

dt
= 1

Hwbase
[Pmech − Pelec].

Regardless of whether a two-mass model is used (as in this
paper) or one-mass model, we use the following relations:

Pmech = 1

2
Cp(λ, θ)ρArv

3
wind = 1

2

⎛

⎝
4∑

i=0

4∑

j=0

αi, j θ
iλ j

⎞

⎠ ρArv
3
wind

and,

Pelec = V Iplv.

Reference speed:

dwre f

dt
= 1

60
[−0.75P2

elec + 1.59Pelec + 0.63 − wre f ]. (4)

Power order:
The integrator f1 is given by,

d f1
dt

= wg + w0 − wre f (5)

and,

dPinp
dt

= 1

Tpc

[
(wg + w0)(Kptrq

(
wg + w0 − wre f

)

+Kitrq f1) − Pinp
]
. (6)

Reactive power control (power factor case) and electrical
control:

dP1elec
dt

= 1

Tpwr
[Pelec − P1elec]. (7)

dVre f
dt

= KQi [Qcmd − Qgen] (8)

where,

Qgen = V (Eq − V )

Xeq
,

and,

Qcmd = P1elec · tan(PFAref ).

DFIG generator/converter:

dEqcmd

dt
= Kvi [Vref − V ]. (9)

dEq

dt
= 1

0.02
[Eqcmd − Eq ]. (10)

d Iplv
dt

= 1

0.02

[
Pord
V

− Iplv

]

. (11)

The algebraic (network) equation:

0 = (V 2)2 − [2(Pelec R + Qgen X) + E2]V 2

+(R2 + X2)(P2
elec + Q2

gen). (12)

The algebraic equation (12) can be eliminated by using the
unique terminal solution in Eq. (13).

V = f (Iplv, Eq; X; R; E) = −B + √
B2 − 4AC

2A
, (13)

with A = 1 + 2X
Xeq

+ R2+X2

Xeq
, B = −

[
2IplvR + 2XEq

Xeq

+ 2(R2+X2)Eq
Xeq

]
, and C = R2+X2

Xeq
+ (R2 + X2)I 2plv − E2.

The elimination of the algebraic constraint was given as a
proof in [1].

Tables 1 and 2 show the parameters used in the model
(also see [4,10,12]).

2.3 Time domain analysis

In this subsection, we perform a nonlinear analysis that build
better understanding and characterization of the model under
consideration. Stability, eigenvalues and sensitivity analysis
are always considered an essential aspect of any nonlinear
modeling analysis-basedwork. In this regard,wewill provide
a comprehensive and including analysis following the papers
[4,5,8].

2.3.1 The steady sates and eigenvalues

By setting the derivatives in Eqs. (1)–(11) to zero, we can
solve numerically to find the steady state. The steady state
is function of vwind . Figures 4, 5 and 6 show the steady
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Table 1 Parameter used in the Model are in Per Unit base

Parameter Value

w0 1 (any choice bigger than 0)

Xeq , Dtg 0.8,1.5

Ktg, wbase 1.11,125.66 respectively
1
2ρAr , Kb 0.00159 and 56.6 respectively

H(two mass) 4.33

H(one mass) 4.94

Hg, Kitrq 0.62 ,0.6 respectively

Tpc, Kptrq 0.05, 3 respectively

Tpwr , KQi 0.05, 0.1 respectively

Kpp, Kip 150, 25 respectively

Kpc, Kic 3, 30 respectively

Kvi , R, E 40, 0.02, 1.0164 respectively

X = Xl + Xtr Xl = 0.0243, Xtr = 0.00557

Table 2 Cp coefficients αi, j

i j αi, j i j αi, j

4 4 4.9686e−10 4 3 −7.1535e−8

4 2 1.6167e−6 4 1 −9.4839e−6

4 0 1.4787e−5 3 4 −8.9194e−8

3 3 5.9924e−6 3 2 −1.0479e−4

3 1 5.7051e−4 3 0 −8.6018e−4

2 4 2.7937e−6 2 3 −1.4855e−4

2 2 2.1495e−3 2 1 −1.0996e−2

2 0 1.5727e−2 – – –

1 4 −2.3895e−5 1 3 1.0683e−3

1 2 −1.3934e−2 1 1 6.0405e−2

1 0 −6.7606e−2 0 4 1.1524e−5

0 3 −1.3365e−4 0 2 −1.2406e−2

0 1 2.1808e−1 0 0 −4.1909e−1

states versus wind speed. One of the assumptions about the
model is that there are no power losses, therefore as expected
Pelec = Pmech = Pinp in the steady state. We notice that
Pelec = IplvV = constant for every given wind speed and
Qgen has the same distribution as Pelec, which comes from

the power factor Qgen
Pelec

= tan(PFAref ) (tan(PFAref ) = π
20 in

this trial). It is clear that both wg and wt differ by one from
wre f because, wgenerator = w0 + wg, wturbine = w0 + wt

and in this trialw0 = 1 (initial speed that prevents singularity
in the system [10,12]). We linearize about the steady states
and compute the eigenvalues. We notice that the eigenvalues
are not changingmuchwith differentvwind . Table 3 shows the
eigenvalues around at the steady state. Since the real part of
all eigenvalues is less than zero, we guarantee local stability.
Our code changed vwind from 3 to 8.2 (by steps of 0.01) and
for every given wind speed we construct the Jacobian about
the steady state and compute the eigenvalues. All eigenval-
ues have negative real parts for all different wind speeds.
Sensitivity analysis will be discussed later (Sect. 2.3.3).

2.3.2 Grid parameters and stability

The grid parameters that we focus on are the resistance
R and the reactance X , as shown in Fig. 3, where X =
Xtr + Xl . Any change in these parameters with fixed vwind

(7m/s in this trial) will affect the terminal voltage as V =
f (Iplv, Eq; R; X). Any change in V will produce a change
in the whole dynamics as it is involved in many controls
as a feedback. We ran a code that discretizes the parameter
space of R and X using a high resolution unit square grid,
and found the steady states based on the given parameters
at each point. The code computes the Jacobian matrix and
linearizes about the steady states. By checking the eigenval-
ues, the code checks local stability. If the point is stable it
is assigned ’red star’, otherwise, it is assigned ’black star’.

Fig. 4 V and Vref (the upper
curve), and Eqcmd and Eq (the
lower curve) in steady state
versus vwind
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Fig. 5 All the powers (the upper
solid curve) and Iplv (the dashed
curve) in steady state versus
vwind

Fig. 6 wre f (the solid line), wg
and wt (the dashed line), and
Qgen (the doted line) in steady
state versus vwind

Table 3 Eigenvalues of the system in the steady state

Real part Imag part

λ1 −51.8438 0

λ2 −48.7939 0

λ3 −20 0

λ4 −16.3475 0

λ5,6 −1.4068 ±12.0785

λ7,8 −0.6869 ±2.1513

λ8,10 −0.1962 ±0.1878

λ11 −0.0.131 0

Figure 7 shows this result of local stability in R2 of R and
X .

The combinations of the parameters in the black region in
Fig. 7 might produce no real steady state or unstable ones.
Figures 8, 9, 10, 11, and 12 represent the steady state as a
function of R and X . It is noticeable, that in the stable region
we have the steady states as a smooth surface and the values

Fig. 7 Region of guaranteed local stability in the parameter space of R
and X , [Red (light) → Stable, Black (dark) → Unstable]

are reasonable and match the functions of the control. Also,
it is interesting to notice that the “Safe Region”, analytically
provided in Fig. 2 [1], is included in our computational result
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Fig. 8 Real(V ) in stable and
unstable regions

Fig. 9 Image (V ) in stable and
unstable regions

Fig. 10 Real(Pelec) in stable
and unstable regions
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Fig. 11 Imag(Pelec) in stable
and unstable regions

Fig. 12 Iplv in stable and
unstable regions

in Fig. 7. This means that the sample value of R and X in
table 2.2 or neighboring values are giving steady state within
the control limits, while the surface of the steady state grad-
ually goes out of the control limits as the values of R and X
become more extreme. Figures 8 and 9 show the real and the
imaginary parts for V . V is defined as a magnitude, which
means that we should not expect complex roots for V any-
where in the stable region. This is what Figs. 8 and 9 show
as V has only real values in the stable region, while in some
parts of the unstable region it has imaginary values. This part
where V has imaginary part is the part where no real steady
state exists. The resultant Pelec is expected to be constant for
a given constant wind speed, as the controls of the system
reduce the active current Iplv to correspond to any increase
in V , so Pelec stays stable and constant. This is expected to
be the case in the stable region, and not to hold otherwise.
Figures 10 and 11 show the real and the imaginary parts of
the computed Pelec. As expected, we have only constant real
Pelec in the stable region. In our simulation we noticed that
in the unstable part Pelec does not match Pmech .

2.3.3 Sensitivity analysis

We can study the sensitivity to the parameters by analyzing
the effect of changing one parameter while fixing the others.
We consider the reference values of the parameters as in
table 2.2. Since there is a difference between [10] and [12]
about the coefficients of the quadratic representing wre f =
f (Pelec), we consider wre f = a2P2

elec + a1Pelec + a0 in the
steady states, where the reference values for a2, a1, and a0
are as given in [10] (−0.75, 1.59, and 0.63 respectively). By
studying the sensitivity of these coefficients we can see how
the results of the models in [10,12] differ from each other for
low wind speeds (the focus in this paper). One of the most
important parameters to study is vwind as it is realistic to
expect in real life at least small changes around the reference
wind speed. During our study of the parameters the wind
speed should by somewhere between3m/s (the cut off speed)
and 8.2m/s, so we fix it at vwind = 7m/s. By looking at the
differential equations in this study [Eqs. (1)–(11)], we see
that the state variables in the steady state can be affected
by vwind , Kitrq , a2, a1, a0, and the grid parameters (R, X ,
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Table 4 Sensitivity of the steady state for 10% change in parameter

wre f wg pinp Eq Iplv V

E 0 0 0 9.256 −8.987 9.875

R 0 0 0 0.049 −0.053 0.053

X 0 0 0 0.011 −0.011 0.011

vwind 10 616.54 33.1 1.28 32.82 21.52

Kitrq 0 0 0 0 0 0

a0 6.42 394.6 0.708 0.027 0.703 0.004

a1 4.61 283.19 0.627 0.024 0.6231 0.4092

a2 0.618 38.013 0.1196 0.004 0.1189 0

Dtg 0 0 0 0 0 0

Kptrq 0 0 0 0 0 0

Table 5 Sensitivity of the
steady states for 1% change in
parameter

wre f wg pinp Eq Iplv V

vwind 0.969 59.542 3.023 0.1175 3.003 0.0197

a0 0.6608 40.585 0.1273 0.027 0.0049 0.0008

a1 0.468 28.74 0.0915 0.0035 0.0909 0.00005

a2 0.0619 3.8037 0.01247 0.0004 0.01239 0.00008

and E). We built a code that approximated the derivatives of
the state variables with respect to a given parameter using
a regular finite difference scheme. We studied first the state
variables versus the parameters and found that the curves are
monotone and smooth reasonably well, so finite differences
should approximate the derivatives. The derivatives tell how
the state variables change with a given parameter. Also, they
allow us to analyze the sensitivity of the parameters when we
perturb around the reference values of the parameters. For a
given parameter x and a state variable y, x0 is a specified
parameter value, then�y ≈ �x ∂ y

∂x |x0 , where�y = y2 − y1,
�x = x2−x1, x0 ∈ [x1, x2], and y(x0) ∈ [y1, y2]. By having
an idea about the sensitive parameters, we can explore how
the state variables change in two dimensions by changing two
parameters at once.Also,we can explore how the eigenvalues
change with the parameters.

We ran a code that used the derivative at the reference
values for the parameters and found the percent change of the
state variables, by increasing the parameter reference values
by 10%. Table 4 summarizes the result of this trial. From
Table 4, we see that the highest sensitivity results comes from
changing vwind , a2, a1, and a0, so we repeated the trials again
for those specific parameters but with only a 1% increase of
their reference values. Table 5 summarizes the results of this
trial.

• vwind : All state variables show sensitivity to wind speed.
wg andwt are highly sensitive. We found that the deriva-
tive ofwg is very large compared to its steady state value,
which is close to zero.wre f shows sensitivity for vwind as

well, but not as high as wg because wre f = wg +w0 and
w0 =constant= 1 and is independent on vwind . When
compared to their steady state values, sensitivity of Pinp,
Iplv , and V to vwind are relatively high, while Eq shows
small sensitivity to vwind .

• a2, a1, and a0: The quadratic fitting for wre f varies
in the literature ([10] and [12]). This suggests study-
ing the sensitivity to a2, a1, and a0. wg has high and
very high sensitivity to a2, a1, and a0 when compared
to the steady state values, while other state variables
show small and very small sensitivity to them. The sen-
sitivity to a2 is small compared to a1 and a0, and the
derivatives are constants, w′

re f (a2) ≈ 0.084, w′
g(a2) ≈

0.084, P ′
inp(a2) ≈ 0.005, E ′

q(a2) ≈ 0.0007, I ′
plv(a2) ≈

0.005, and V ′
term(a2) ≈ 0.0012 (see Table 4 for percent

changes). Themodels ([10] and [12]) havewre f gradually
following the changes in Pelec until it reacheswre f = 1.2.
Due to the differences in a2, a1, and a0 between the
two models the rated reference speed is approached at
Pelec ≈ 0.45 in [10] and another time ≈ 0.75 as in [12].
This can’t be true in real life. Our sensitivity analysis
suggests that this part of the model is ill defined. It is
necessary to model this part with a higher order polyno-
mial or other fitting that cause lower sensitivity. In the
current time, we follow GEmodels [9,10] since they ver-
ified their model with many simulations and measured
data.

• The grid parameters X , R, and E : The state variables in
general did not show show high sensitivity to the grid
parameters, see Table 4 for percent changes when com-
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Fig. 13 V in vwind and E space

Fig. 14 Eq in vwind and E
space

pared to the steady state values. The sensitivity to X and
R is very small (almost negligible) for all of the state
variables. Eq , Iplv , and V show sensitivity to E . The
derivatives of these three state variables with respect to E
are almost constants. E ′

q(E) ≈ 0.958, I ′
plv(E) ≈ −0.27,

and V ′
term(E) ≈ 0.993.

• Kitrq , Kptrq , Ktg , and Dtg: As shown in Table 4 the state
variables have almost no sensitivity to these parameters.
The derivatives of the state variables with respect to them
are ≈ zero.

For sensitivity to double parameters, we built a code that
computed the steady state values in two dimensional param-
eter space by changing two parameters in a way that contain
the reference value and fixing the others. Sensitivity in a1
and a2 space is high for Pelec and therefore many other state
variables. Other sensitivity we found, was V and Eq in vwind

and E space. Figure 13 shows how change inwind speed over
the range 3–8.2 with change of E over 1 to 1.02 can cause
a change of up to 3% in V . Figure 14 shows how similar
changes of vwind and E can make a change up to 8% in Eq .

Table 6 1% changes of real parts of some of the eigenvalues for a large
change in a2, a1, and a0

λ9,10 λ11 Interval of the parameter

a0 −6.94 − 31.13 a0 ∈ [0.5, 0.8]
a1 −8.49 − 2.05 a1 ∈ [1.4, 1.8]
a2 −1.95 0.83 a2 ∈ [− 0.85,− 0.65]

A noticeable similar percentages of change happen in case
of changing V and Eq in vwind and R space, although R
changes over 0.01–0.04 only.

Sensitivity of the eigenvalues is almost negligible to wind
speed. This is why the eigenvalues in Table 3 are almost the
same for any given wind speed in the range 3–8.2m/s. The
eigenvalues show sensitivity of 1% change for a relatively
large change in a2, a1, and a0. Table 6 summarizes this result
by showing the final change for the real parts of some of the
eigenvalue (from Table 3) by changing the parameter over a
given interval.
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Fig. 15 Response of
implementations in Matlab
ODE15s solver (solid line) and
Simulink simulation (stars) to
the same initial conditions

Fig. 16 Pelec response to
oscillating wind speed from
ODE15s solver (solid line) and
Simulink simulation (stars)

2.4 Verification of themodel and comparison with
general electric and NREL

We built Simulink models that simulate the blocks and
transfer functions of the model given by GE [9,10,21] and
NREL [11] to verify the similarity of the results between the
Simulink simulations and the numerical solutions of the dif-
ferential equations [Eqs. (1)–(11)]. Both GE and NREL are
similar in their transfer functions for the model of interest in
this paper. However, the reader is recommended to review
what we have provided at the beginning of Sect. 2 regarding
the operating condition of the model. Also, it is important to
mention that the NREL model [11] (also see [21]) did not
give explicit parameter values, but they gave range of values,
which GE parameters fit. This is why, by fixing the parame-
ters as given by GE, both of the GE and NREL models are
essentially the same.

First, we built a Simulink model for the system of GE and
NREL and ran an autonomous case for a fixed wind speed of
vwind = 8.2m/s. We found the results similar for all the state

variables; Pmech , Pelec, and V . Figure 15 shows a sample of
the results forV by setting the initial conditions to be the same
in both Simulink and ODE15s (numerical solver) and cap-
tures the behavior until it settles down to the steady state. The
reason we choose this sample is that V is a direct function of
two state variables, the main term to calculate both the active
and reactive power, and the most indicative factor for faults.
Thus, it is important to capture its behavior. Second, we built
another Simulink model for the GE and NREL system with
a wind speed that is oscillating at vwind = 8 + sin(10t) and
captured the response of the model. We solved the differen-
tial equations system numerically with time dependent wind
speed. The result shows the reliability of our mathematical
model. It gives comparable results as Simulink and allows us
to analyze and understand the controls and their functions.
Figure 16 show Pelec responses to the continuous oscillation
of the wind speed.
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3 Multiple time scale approximations:
mathematical analysis

Multi-time scale analysis is often possible when there are
some variables that change quickly in comparison to some
other variables. If we consider the wind speed range 3 <

vwind < 8.2 and linearize the system consists of Eqs. (1)–
(11) with V from Eq. (13), we can see that, at least locally,
variables correspond to eigenvalues with significant differ-
ences inmagnitude. As seen in Table 3, λ1−4 are significantly
larger in magnitude than the other eigenvalues. Also, the
opposite holds true for λ11, as it is significantly smaller in
magnitude compared to the other eigenvalues.

Another factor that encourages a multi-time scale study, is
that, for the given range of wind speeds, eigenvalues are not
sensitive to wind speed. Locally we can linearize around the

steady state and diagonalize in such a way that we have a new
eleven variables that correspond one to one with the eigen-
values. Locally then, we can divide the system into smaller
systems within different time scales. After that, we can test
how far from the steady state the new systems can approxi-
mate the main system.

Since the eigenvalues in the range 3 < vwind < 8.2 are
not sensitive to vwind (concluded in [4]), then we choose any
wind speed value in that range to compute the eigenvectors
and the Jacobian matrix. We start with fixing vwind = 5m/s
and the parameters in Tables 1 and 2. We compute the
Jacobian matrix (A) at the steady state for the differential
equations system consisting of Eqs. (1)–(5), (4)–(6), (7)–(8),
(9)–(11). For this system of 11 nonlinear differential equa-
tions, we eliminate the algebraic equation using Eq. (13), and
compute the matrices P , P−1, and D such that,

P−1AP = D , A = PDP−1 (14)

where D = diag(�λ) with �λ the eigenvalues in order as in
Table 3.

Now, let i, j be indices for the rows and columns respec-
tively of the matrix P. We construct a matrix

PP = [
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11

]

such that φk = Pi=1...11, j=k for k = 1, 2, 3, 4, 11.
Those columns are the eigenvectors associated with the real
eigenvalues λ1,2,3,4,11. However, φ5 = Real[Pi=1...11, j=5],
φ6 = Imag[Pi=1...11, j=5], φ7 = Real[Pi=1...11, j=7], φ8 =
Imag[Pi=1...11, j=7], φ9 = Real[Pi=1...11, j=9], and φ10 =
Imag[Pi=1...11, j=9].

We can see now that

PP−1 · A · PP = DD , A = PP · DD · PP−1 (15)

where DD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−51.61 0 0 0 0 0 0 0 0 0 0
0 −48.66 0 0 0 0 0 0 0 0 0
0 0 −20 0 0 0 0 0 0 0 0
0 0 0 −16.47 0 0 0 0 0 0 0
0 0 0 0 −1.42 12.03 0 0 0 0 0
0 0 0 0 −12.03 −1.42 0 0 0 0 0
0 0 0 0 0 0 −0.68 2.13 0 0 0
0 0 0 0 0 0 −2.13 −0.68 0 0 0
0 0 0 0 0 0 0 0 −0.19 0.19 0
0 0 0 0 0 0 0 0 −0.19 −0.19 0
0 0 0 0 0 0 0 0 0 0 −0.014

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The target for us now, is to diagonalize and have a set of new
variables that correspond to the real canonical basis.

Let the new variables be Vi , i = 1..11 such that,

�V = [
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

]T = PP−1 �y∗

= PP−1[wre f f1 wg wt �θm Pinp P1elec Vre f Eqcmd Eq Iplv
]T

.

(16)

The transformation between the new set of variables and the
old ones is given by,

�V = PP−1 · �y∗ , �y∗ = PP · �V . (17)

We already have the system d �y∗
dt = f ( �y∗) and we want to

construct d �V
dt = f ( �V ). We start with the terminal voltage

in Eq. (13). We let the terminal voltage in terms of the new
variables be Vnew and derived as following,

V = V ∗(Eq = y∗
10, Iplv = y∗

11)

= V ∗(PPi=10, j=1..11 · �V , PPi=11, j=1..11 · �V )

= Vnew( �V ). (18)
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Since we have
dy∗

k
dt = d

dt

[
PPi=k, j=1..11 · �V

]
, for all

k=1…11, then
dy∗

k
dt can be rewritten,

dy∗
k

dt
=

n=11∑

n=1

PPi=k, j=n
dVn
dt

for allk = 1 . . . 11. (19)

For the vector function f ( �y∗), every vector component
fk( �y∗) = fk(PP · �V ). Simply, in the right hand side of
the differential equations, we substitute,

y∗
k = PPi=k, j=1,...,11 · �V =

n=11∑

n=1

PPi=k, j=nVn for allk = 1 . . . 11.

(20)

Now we combine Eqs. (18)–(20), then we get:

n=11∑

n=1

PPi=k, j=n
dVn
dt

= fk(PP · �V ) for allk = 1 . . . 11.(21)

For every given k, we have an equation out of Eq. (21). We
stored the resulting values of the computations in the arrays
Ca, Cb, Cc, Cd, Ce, C f ,Cg ,Ci ,C j ,Ck ,Cl ,and Cm
where they have a size of 11 rows and 12 columns. The row
k corresponds to the coefficients of V1...11 and the constant
term respectively on the right hand side of the differential
equation dVk

dt in the system. After solving this system of 11
equations, we get:

dVk
dt

=
n=11∑

n=1

Cai=k, j=nVn + Cai=k, j=12 +
∑n=11

n=1 Cli=k, j=nVn + Cli=k, j=12

Vnew
+

(
n=11∑

n=1

Cbi=k, j=nVn + Cci=k, j=12

)

(
n=11∑

n=1

Cci=k, j=nVn + Cci=k, j=12

)

+ Vnew

(
n=11∑

n=1

Cdi=k, j=nVn + Cdi=k, j=12 +
∑n=11

n=1 Cei=k, j=nVn + Cei=k, j=12
∑n=11

n=1 C fi=k, j=nVn + C fi=k, j=12

)

+

[
∑n=11

n=1 Cgi=k, j=nVn + Cgi=k, j=12 +
(∑n=11

n=1 Chi=k, j=nVn + Chi=k, j=12

)2
]

∑n=11
n=1 Cki=k, j=nVn + Cki=k, j=12

+

[(∑n=11
n=1 Cii=k, j=nVn + Cii=k, j=12

)3 +
(∑n=11

n=1 C ji=k, j=nVn + C ji=k, j=12

)4
]

∑n=11
n=1 Cki=k, j=nVn + Cki=k, j=12

+V 2
new

(
n=11∑

n=1

Cmi=k, j=nVn + Cmi=k, j=12

)2

for allk = 1 . . . 11. (22)

The vector of the steady state, of the original system xstates ,
relates to the vector of the steady state of the new system
Vstate as follows,

�Vstate = PP−1 · �xstate , �xstate = PP · �Vstate. (23)

The same holds for the vectors of initial conditions in the
original and new systems respectively �xinitial and �Vinitial ,
�Vinitial = PP−1 · �xinitial , �xinitial = PP · �Vinitial . (24)

For vwind = 5 and parameters in Tables 1 and 2, we derived
the new system as in Eq. (22). We computed �Vstate both by
the transformation in Eq. (23) and numerical solving of the
system by setting the derivatives to zero. As a first validation,
we found them matching. Table 7 shows the result in one to
one correspondence between �xstate and �Vstate.

A second validation, will be by linearizing the new system
and then substituting the new steady state into the Jacobian
matrix. The eigenvalues are typical in values to the original
system and Eq. (14) holds for D such that,

P−1
new · Anew · Pnew = D , Anew = Pnew · D · P−1

new (25)
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Table 7 Steady state in both original and new systems

�xstate �Vstate
0.7855 1.5818

0.2181 0.4480

− 0.2144 − 22.1727

− 0.2144 24.6789

− 0.1179 1.1625

0.1028 1.8988

0.1028 0.5029

1.0188 29.0176

1.0316 0.3902

1.0316 − 7.2672

0.1008 1.0960

where Pnew =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 − 1 0 0 0 0 0 0 0 0
0 0 0 − 1 0 0 0 0 0 0 0
0 0 0 0 − 0.7071 − 0.7071 0 0 0 0 0
0 0 0 0 − 0.7071i 0.7071i 0 0 0 0 0
0 0 0 0 0 0 − 0.7071i 0.7071i 0 0 0
0 0 0 0 0 0 0.7071 0.7071 0 0 0
0 0 0 0 0 0 0 0 − 0.7071i 0.7071i 0
0 0 0 0 0 0 0 0 0.7071 0.7071 0
0 0 0 0 0 0 0 0 0 0 − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and Anew = DD (see Eq. (15)).

3.1 TwoTime scales for any wind speed

We ran a simulation for the 11 by 11 system generated
by Eq. (22). Then, we constructed two time scale systems to
approximate the solutions of the full system. Since locally
V1...4 correspond to very large negative eigenvalues λ1...4
respectively, then we treat them as fast variables. Conversely,
V5...11 correspond to λ5...11 which are slow variables. While
the dynamics of the fast variables V1...4 are taking place in
the fast time scale, the derivatives of the slow variables, with
respect to the fast time scale, are approximately zero, which
means that they stay constant as their initial conditions in the
fast time scale. After the fast variables reach their steady state
in the fast time scale, the slowvariables start their dynamics in
the slow time scale and the the derivatives of the fast variables
become algebraic equations coupled with the slow system.
This means that during the slow dynamics V1...4 change alge-
braically with V5...11 until they reach the steady state of the
original system. This way the multiple time scale approxi-
mation is more rigorous mathematically, so we do not have

different steady states between the fast dynamics and the
original system if we neglect the algebraic coupling.

From the physical system, we have the initial conditions
�xinitial and we calculate the corresponding �Vinitial from
Eq. (24). We let t f and ts represent the fast and slow time
scales respectively, then we have the following two systems
which approximate the behavior of the system in Eq. (22):

dVk
dt f

= fk(t f , V1..4) for allk = 1 . . . 4 (system of 4 DEs)

Vk = = constant = initial condition for allk = 5 . . . 11

(26)

and,

dVk
dt f

= 0 = fk(ts, V1...11) for allk = 1 . . . 4

dVk
dts

= fk(t f , V5...11) for allk = 5 . . . 11

(system of 7 DEs and 4 algabraic equations). (27)

3.2 Three time scales for any wind speed

By looking at the magnitudes of the eigenvalues, we notice
that we can group them not only in two scales, but in three
as well. The order of λ11 is, by far, the smallest and still sig-
nificantly smaller than λ5...10. As a result, we ran another
simulation for the system by approximating the solution
behavior by three time scales smaller systems. t f is still the
fast time scale, in which V1...4 (the fast variables) dynamics
take place while, V5...11 stay constant at their initial condi-
tions. tm is a medium time scale in which V1..4 are at their t f
steady state resulting in four algebraic equations, while V11
is still constant equal to its initial condition. The variables
V5...10 are the medium variables for which their dynamics
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take place in tm . ts represents the slow time scale in which
the derivatives of V1...10 equal zero and only V11 dynamics
take place in this time scale. We tested the system for ini-
tial conditions that are close enough to the steady state and
the results were as expected, however, we prefer to present
results of nonlinear behavior.

dVk
dt f

= fk(t f , V1...4) for allk = 1 . . . 4 (system of 4 DEs)

Vk = constant = initial condition for allk = 5 . . . 11 (28)

and,

dVk
dt f

= 0 = fk(tm, V1...11) for allk = 1 . . . 4

dVk
dtm

= fk(tm, V5...10) for allk = 5 . . . 10

Vk = constant = initial condition for k = 11

(system of 6 DEs and 4 algabraic equations) (29)

and,

dVk
dtm

= 0 = fk(ts, V1...11) for allk = 1 . . . 10

dVk
dts

= fk(ts, V5..11) fork = 11

(one DE and 10 algabraic equations). (30)

4 Simulations, comparison, and validation
versus real data

We ran simulations when the initial conditions are very close
to the steady states and the results were as expected, notice-
ably good (almost typical). That was not surprising, as the
approximation is more accurate the closer the initial con-
ditions are to the steady state (more local). This is due to
the approximation utilized, as the fast, medium and slow
approximating manifolds are first order ones (linear approx-
imations). That is, the tangent space at the initial point of the
dynamics on the original systemmanifold, acts as an approxi-
mating manifold to the original one, where the fast dynamics
take place. Then, the dynamics move from the fast mani-
fold (after reaching steady state) to the slow one, where the
dynamics eventually reach the final destination that would
have been reached using the original manifold, where the
original dynamics take place. In the case of three time scales,
the sequence of approximating linearmanifolds has a an addi-
tional member in the middle (between the fast and the slow).
Computationally speaking, order of complexity is better than
the original system, as in each approximating manifold, the
system is smaller, which is less complex for the numerical
solver. The accuracy however, is an open problem, because

most of what we know when we linearize is that the error is
of second order, and for most highly nonlinear systems, this
is the most we can prove. So, simulating the system from
initial points that are close to the steady state might not be
useful for the application and the concept of multiple time
scale approximation.

Now, we want to test the nonlinear dynamics when the
initial conditions are far from the steady state, so the ben-
efit and the potential of multiple time scale approximations
can be seriously tested. We ran a simulation for �xinitial =
�xstate + �0.5, which are extreme initial conditions that exceed
the control limits (allowable control bounds, see Table 3 [1])
for some of the state variables. This should be a serious test
for the potential benefits of the approximation.

4.1 Simulation results for two time scale
approximations versus full system

Captures of a sample from the results are found in Figs. 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28. We found the
approximation is good for the big picture of the nonlinear
dynamics starting from a far initial condition. We included
the results of V1 and V2 as representatives for fast variables,
V6 as a slow variable that locally corresponds to eigenvalue
with an imaginary part (oscillatory) and V11 as it is the slow-
est variable. It is interesting to notice that for the fastest two
variables, V1 and V2, the big picture of the dynamics looks
very similar when compared to the original full size dynam-
ics, as shown in Figs. 17 and 20. This is expected to be the
case in local results, but this is a good indication that the
WTG system maintains the good approximation results even
for the nonlinear dynamics. For more focused versions of the
simulation (Figs. 18, 19, 21, 22), it can be noticed that the fast
solutions for the reduced fast dynamics are followed by a bit
noticeable differences between the approximating dynamics
and the original ones. Then, as time passes the approximating
dynamics converge and eventually make it to the same final
steady state as the original full size dynamics. Similar obser-
vation can made for V6 (Figs. 23, 24, 25), where actually the
nonlinear oscillations were captured in the approximation,
but the fast solution is just a constant function since V6 is a
slow variable. The variable V11 corresponds to a very small
real eigenvalue and therefore, it is by far the slowest vari-
able in the system. Interestingly, this can be noticed from
the approximations (Figs. 26, 27, 28), as the results are more
similar and even the very focused version (Fig. 28) shows
very small deviation between the constant fast solution and
the full size original dynamics. This is because the variable
is too slow to propagate away from the initial point until the
dynamics take the system to slow manifold.
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Fig. 17 Full picture of V1
solution in both the full system
(solid line) and the reduced ones
(dashed line for the slow and
dotted line for the fast)

Fig. 18 Zoomed in figure to
capture the behavior of slow
solution of V1. The full system
is in solid line and the reduced
ones are dashed line for the slow
and dotted line for the fast

Fig. 19 Zoomed in figure to
capture only the fast solution of
V1 (solid line for the full system
solution and dotted line for the
fast solution)
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Fig. 20 Full picture of V2
solution in both the full system
(solid line) and the reduced ones
(dashed line for the slow and
dotted line for the fast)

Fig. 21 Zoomed in figure to
capture the behavior of slow
solution of V2. The full system
is in solid line and the reduced
ones are dashed line for the slow
and dotted line for the fast

Fig. 22 Zoomed in figure to
capture the fast solution of V2
(solid line for the full system
solution and dotted line for the
fast solution)
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Fig. 23 Full picture of V6
solution in both the full system
(solid line) and the reduced ones
(dashed line for the slow and
dotted line for the fast)

Fig. 24 Zoomed in figure to
capture the behavior of slow
solution of V6. The full system
is in solid line and the reduced
ones are dashed line for the slow
and dotted line for the fast

Fig. 25 Zoomed in figure to
capture the fast solution of V6
(solid line for the full system
solution and dotted line for the
fast solution)
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Fig. 26 Full picture of V11
solution in both the full system
(solid line). The reduced ones
are hard to notice because the
variable is too slow

Fig. 27 Zoomed in figure to
capture the behavior of slow
solution of V11. The full system
is in solid line and the reduced
ones are dashed line for the slow
and dotted line for the fast

Fig. 28 Zoomed in figure to
capture the fast solution of V11
(solid line for the full system
solution and dotted line for the
fast solution)
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4.2 Simulation results for three time scale
approximations versus full system

We ran the simulation with the same initial conditions as in
the previous subsection. Figures 29, 30, 31, 32, 33, 34, 35
represent a sample from our captured results. We found the
approximation is good for the big picture of the nonlinear
dynamics starting from a far initial condition, but less accu-
rate at times compared to the two time scales results. We
included the results V2 as a representative for fast variables,
V6 as a representative for medium variables and V11 as the
only slow variable in the slow time scale.

It is interesting to notice that for the fast variable V2, the
big picture of the dynamics looks very similar when com-
pared to the original full size dynamics and the two time
scales result, as shown in Fig. 29. This is a good indication
that a three approximating (fast, medium and slow) mani-
folds are still good approximation for the nonlinear dynamics
of the WTGs. For more focused versions of the simulation
(Figs. 30, 31), it can be noticed that the fast dynamics solu-

tion is followed by a bit noticeable differences between the
approximating dynamics and the original ones. Then, as time
passes the approximating dynamics converge and eventually
make it to the same final steady state as the original full size
dynamics. Similar observation canmade for V6 (Figs. 32, 33,
34), where actually the nonlinear oscillations were captured
in the approximation. The variable V11 (Fig. 35) is the only
slow variable and therefore, it is just a constant solution dur-
ing the fast and medium scales (very clear in Fig. 35). As
time passes, the approximation converges to the original full
size dynamics. However, it is noticeable that large time sim-
ulation is needed for the slow variable to catch up with the
original system dynamics. It is interesting to remember that
all the simulations that is in the slow time scale is only solving
ONE differential equations coupled with 10 algebraic equa-
tions, where all other non-slow variables are parametrized
by v11 the slow variable. This should saves a lot of compu-
tational coast.

Fig. 29 V2 in solid line (full
system), dotted line (fast),
dashed (medium), and stars
(slow). Slow system is almost
not noticeable

Fig. 30 Zoomed in figure to
capture the behavior of medium
solution of V2. The full system
is in solid line and the reduced
ones are dashed line for the
medium and dotted line for the
fast
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Fig. 31 Zoomed in figure to
capture the fast solution of V2
(solid line for the full system
solution and dotted line for the
fast solution)

Fig. 32 V6 in solid line (full
system), dotted line (fast),
dashed (medium), and stars
(slow). Slow system is almost
not noticeable

Fig. 33 Zoomed in figure to
capture the behavior of medium
solution of V6. The full system
is in solid line and the reduced
ones are dashed line for the
medium and dotted line for the
fast

4.3 Comparison and validation for themodel

In order to compare the proposedmodel with another one, we
need to select a model that includes most of the WTGs con-

trol blocks similar to how our model is. The model proposed
and studied by Tsourakis et al. [12] mainly cited [13], both
of which are highly cited from scholars working on WTGs
studies. Therefore, we will compare our results with them.
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Fig. 34 Zoomed in figure to
capture the fast solution of V6
(solid line for the full system
solution and dotted line for the
fast solution)

Fig. 35 V11 in solid line (full
system), dotted line (fast and
medium), and dashed (slow).
Slow solution is significant in
the full picture for the slow
variable v11

Fig. 36 Real data of a WTG
(stars) versus power-wind speed
curves for the proposed model
(solid) and [12,13] (dashed)

We calculated Pelec from out multiple time scale approxi-
mations and transfered it back to the physical values using
Eq. (17).

Observations from the comparison and the validation The
power-wind speed profile results from our model are better
than [12,13] when compared to the real time measured data
(Fig. 36). The stable steady state of Pelec does not have to
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average the dynamic measured data, but for large numbers of
measured data (the case in our trial) we expect the data to be
close to some form of normal distribution around the stable
steady state. Our model shows better results in that sense.

5 Conclusion

In this paper, a nonlinear modeling for WTGs exposed to
lower range of wind speeds, is proposed. The study covered
steady state, stability, eigenvalues and sensitivity analysis.
Moreover, a verification using Simulink to compare the
model versus GE and NREL models, is given. The paper
then introduces a multiple time scales (two and three scales)
approximations followed by simulation results. To the best
of our knowledge, this is original in literature as it has been
done in a mathematically rigorous way. Finally, the paper
presented a validation of the results versus real measured
data from a wind farm and comparison versus some other
models.
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