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Abstract
Often decision maker wants to optimize various conflicting objectives of real life optimization problem simultaneously,
classical techniques do not give suitable solution to the optimization problem due to partial information about values of
parameters. In many computational methods, fuzzy set or intuitionistic fuzzy set and its other version were used. But, it’s very
interesting to note that the experts opinion regarding values of parameters of optimization problem are different, therefore, the
single membership degree does not deal optimization problem properly than collection of degrees of values of parameters. In
this situation, hesitant fuzzy set plays important role instead of fuzzy set or intuitionistic fuzzy set. In this article, we introduce
hesitant membership function for each conflicting objective to present uncertainty and imprecision of multiobjective linear
programming (MOLP) problems. A computational algorithm based on hesitant fuzzy set is constructed for the solution of
MOLP and it is numerically verified by example and results of proposed algorithm are compared with existing methods.

Keywords Hesitant fuzzy sets · Linear programming problem · Objective function · Multiple membership functions

1 Introduction

Multiobjective linear programming problem is one of the
famous optimization problem which occurs daily in real life.
In formulation of aMOLPproblem, various factors of the real
world should be reflected in the description of parameters of
the optimization problem, and possible values of parameters
may be assigned by the experts. Due to this reason, the possi-
ble values of these parameters are imprecise or ambiguous. In
this case, it may be more appropriate to interpret the experts
understanding about parameters as fuzzy numerical data than
crisp data. Thus,multiobjective linear programming problem
involving fuzzy parameters would be viewed as a more real-
istic version than the conventional one. Zadeh [1] introduced
fuzzy set for dealing problem with uncertainty and impre-
cision, and which occurs naturally in management science,
industrial, and forecasting. Various kinds of multiobjective
linear programming models have been proposed to deal with
different decision-making situations that involve fuzzy val-
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ues in objective function parameters, constraints parameters,
or goals.

In several optimization problems, it has been observed
that a small violation in given constraints or conditions may
lead tomore efficient solution to the problem. Such situations
appear in frequent way in real life modeling. Many times it
is not practical to fix accurate parameters as many of these
are obtained through approximation or through some kind of
human observation. For example in a production optimiza-
tion problem, it is not necessary that all the produced are of
good quality and are completely sellable on a fixed price.
There is possibility that some of the products may be defec-
tive and are not sellable on the fixed price. Further prices
of raw material as well as market price of finished product
may vary depending on its surplus/deficiency in the mar-
ket due to some uncontrollable situations. Thus it is evident
that prices and/or productions are not purely deterministic
but in general these are imprecise or nondeterministic and
thus such problems of optimization are to be dealt with help
of some non classical methods. Modeling of most of real
life problems involving optimization process turns out to be
multiobjective programming problem in a natural way. Such
multiobjective programming problems may in general com-
prise of conflicting objectives. For example, if we consider
a problem of agricultural production planning, the optimal
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model should have the objectives of maximizing the profit
and minimizing the inputs and cost of cultivation. Thus these
objectives are conflicting in nature and hence solution of
such problems are in general compromise solutions which
satisfy each objective function to a degree of satisfaction and
a concept of belonging and non belonging arises in such sit-
uations.

It was Zimmermann [2] who first used the fuzzy set intro-
duced by Zadeh [1] for solving the fuzzy multiobjective
mathematical programming problem. Optimization in fuzzy
environment was further studied and was applied in vari-
ous areas by many researchers such as Tanaka and Asai [3],
Luhandjula [4], Sakawa and Yano [5], etc. A brief review of
studies of various research workers on optimization under
uncertainty can be found in work of Sahinidis [6]. Recently,
Bharati and Singh [7] have presented a computational algo-
rithm based on deviation degree of two trapezoidal fuzzy
numbers. In view of growing use of fuzzy set in modeling
of problems under situations when information available is
imprecise, vague or uncertain, various extension of fuzzy
sets immersed. In such extensions. Further, it is observed that
parameters of real life problem involves imprecision and hes-
itation. Such problem cannot be dealt with fuzzy set theory
properly.

Atanassov [8] introduced the intuitionistic fuzzy sets as a
powerful extension of fuzzy set, in his studies emphasized
that in view of handling imprecision, vagueness or uncer-
tainty in information both the degree of belonging and degree
of non belonging should be considered as two independent
properties as these are not complement of each other. This
concept of membership and nonmembership was considered
by Angelov [9] in optimization problem and gave intuition-
istic fuzzy approach to solve optimization problems. Later,
Bharati and Singh [10–17] studied intuitionistic fuzzy set and
used it in various real optimization problems, Jana and Roy
[18] studied themultiobjective intuitionistic fuzzy linear pro-
gramming problem and applied it to transportation problem.
Further, Garai and Ray [19] have studied generalized intu-
itionistic fuzzy set and presented an optimization method
for MOLP problem. Luo and Yu [20] applied the inclusion
degree of intuitionistic fuzzy set to multi criteria decision
making problem. Further many workers such as Mahapa-
tra et al. [21], Nachammai and Thangaraj [22] etc. have
also studied linear programming problem under intuitionistic
fuzzy environment.Dubey andMehra [23] studied linear pro-
gramming problem in intuitionistic fuzzy environment using
intuitionistic fuzzy number and interval uncertainty in fuzzy
numbers. Further, it is very interesting to note that experts
opinions about possible values of the parameters of real life
problem are conflicting. In such situation fuzzy or intuition-
istic fuzzy cannot present the real solution to the problem.

Torra and Narukawa [24] presented the concept of hesitant
fuzzy set in which an element is characterized by a collection
of membership degrees.

Torra [25] introduced the concept of hesitant fuzzy set
which is an effective extension of Zadeh fuzzy set. Hesi-
tant fuzzy set is a very useful tool in situations where there
are some difficulties in determining the membership of an
element to a set caused by a doubt between a few different
values. Hesitant fuzzy set whose membership degree pre-
sented by a collection of possible values, are a new useful
tool to express non-statistical imprecision and human hesita-
tion of real life problems more accurately. The present study
gives a computational algorithm for the solution of multi-
objective linear programming problem under hesitant fuzzy
circumstances. Here, we define hesitant fuzzy membership
functions for each conflicting objectives. Present paper is
organized as follows: Sect. 2, we develop the computational
algorithm by introducing some new terms concerning hes-
itant fuzzy set, Sect.. 3 contains computational algorithms
based on hesitant fuzzy set and the algorithm has been ver-
ified by using production planning problem in Sect. 4 and
the result obtained has been placed in Sect. 5 followed by
references.

2 Preliminaries

Definition 1 Multiobjective optimizationproblem is occurred
in optimization of multiple, conflicting, non-commensurable
objective functions subject to certain conditions. In general,
a multiobjective optimization problem with p objectives, q
constraints and n decision variables, is follows as:

Maximize f = { f1, f2, . . . , f p}
Such that g j (x) ≤ 0 i = 1, 2, . . . , q

x j ≥ 0, i = 1, 2, . . . , n.

(1)

Definition 2 (Torra [25], Torra and Narukawa [24]) Let X
be a fixed set, a hesitant fuzzy set on X is in terms of a
function that when applied to X returns a subset of [0, 1].
Further, Xia and Xu [26] expressed it mathematically by:
A = {(x, hA(x))|x ∈ X}, where hA is set of some values
in [0, 1], is called the possible membership degree of the
element x ∈ X .

Definition 3 Let h1 and h2 be two hesitant fuzzy sets. Then
union and intersection of h1 and h2 are defined as:

(i) h1 ∩ h2 = ⋃
λ1∈h1,λ2∈h2 min{λ1, λ2}

(ii) h1
⋃

h2 = ⋃
λ1∈h1,λ2∈h2 max{λ1, λ2}
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Definition 4 Multiobjective linear programming problem (1)
can be converted into uncertain multiobjective linear pro-
gramming problem which is represented below:

Find x

Such that Zk(x) � gk, k = 1, 2, . . . , p

g j (x) ≤ 0, j = 1, 2, . . . , q

x ≥ 0.

(2)

Definition 5 Let X be the feasible space of the problem
(2), then x0 is said to be complete hesitant fuzzy optimal
solution for problem (2) if there exist x0 ∈ X such that
hk(x0) ≥ hk(x), k = 1, 2, . . . , p, for all x ∈ X . However,
in general such complete hesitant fuzzy optimal solutions that
simultaneously maximize all of the multiobjective functions
are conflicting in nature. Thus instead of a complete hesi-
tant fuzzy optimal solution a solution concept, called pareto
hesitant fuzzy optimality was introduced in multiobjective
programming problems.

Definition 6 Let X be the feasible space of the problem (2),
then x0 ∈ X is said to be pareto optimal solution for (2) if
there does not exist another x ∈ X such that hk(x0) ≥ hk(x)
for all k = 1, 2, . . . , p, h j (x0) > h j (x) for at least one
j ∈ {1, 2, . . . , p}.
Definition 7 Fuzzy optimizationmethod [2] for the uncertain
multiobjective linear programming problem (2) is described
below:

Maximize α

Such that μk(x) ≥ α, for all k

g j (x) ≤ 0, j = 1, 2, . . . , q

x ≥ 0.

(3)

Definition 8 Angelov [9] Intuitionistic fuzzy optimization
method for the uncertain multiobjective linear programming
problem problem (2) is stated below:

Maximize (α − β)

subject to α ≤ μk(x) k = 1, 2, . . . , p + q

β ≥ νk(x) k = 1, 2, . . . , p + q

α + β ≤ 1

α ≥ β, β ≥ 0

x ∈ X .

(4)

3 Development of computational algorithm
based on hesitant fuzzy set

In present paper, for development of proposed method
first we introduce union and intersection of hesitant fuzzy

Fig. 1 Graphical representation of hesitant fuzzymembership of objec-
tive functions

sets. These are defined in following manner: Let h1 =
(δ1, δ2, . . . , δn) and h2 = (γ1, γ2, . . . , γn) where δ1 ≤ δ2 ≤
· · · ≤ δn; γ1 ≤ γ2 ≤ · · · ≤ γn; 0 ≤ δi ≤ 1; 0 ≤ γi ≤
1, i = 1, 2, . . . , n be two hesitant fuzzy sets. Then union
and intersection of h1 and h2 are defined as:

(i) h1 ∩ h2 = ⋃{δ1 ∧ λ1, δ2 ∧ λ2, . . . , δn ∧ λn}
(ii) h1

⋃
h2 = ⋃{δ1 ∨ λ1, δ2 ∨ λ2, . . . , δn ∨ λn}.

Problem (1) is reconsidered as:

Find x

Such that Zk(x) � gk, k = 1, 2, . . . , p

g j (x) ≤ 0, j = 1, 2, . . . , q

x ≥ 0.

(5)

where gk, for all x , denote the goals and all objective func-
tions are assumed to be maximized, and � is hesitant fuzzy
inequality which is represented by Fig. 1. Here objective are
considered as hesitant fuzzy constraints. To establish pos-
sible membership functions of various objective functions
we could first obtain the Table of positive solutions (PIS).
Using PIS we obtain the lower and upper bound of each
objective function moreover we define possible membership
functions for each objective function. Zimmermann [2] first
used the Max–min operator given by Bellman and Zadeh
[27] to solve multiobjective linear programming problem.
Further, it was extended by Angelov [9]. Here, we develop a
method of MOLP problem as:

F ∩ C =
⋃

{δ1 ∧ λ1, δ2 ∧ λ2, . . . , δn ∧ λn} (6)

where, F is hesitant fuzzy objective and C denotes hesi-
tant fuzzy constraints. Further, the hesitant fuzzy decision
set (HFDS) denoted as D̃:
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D = F ∩ C = {(x,
⋃

{δ1 ∧ λ1, δ2 ∧ λ2, . . . ,

δn ∧ λn}(x)|x ∈ X}
= {(x, α1 + α2 + · · · + αn

n
)|x ∈ X}

α1 = δ1 ∧ λ1 = min{δ1, λ1}
α2 = δ2 ∧ λ2 = min{δ2, λ2}
· · ·
· · ·
αn = δn ∧ λn = min{δn, λn}

(7)

where, μD(x) denotes the degree of acceptance of hesitant
fuzzy decision solution of hesitant fuzzy decision. The above
problem (1) can be transformed into the following system:

Maximize
α1 + α2 + · · · + αn

n

Such that μE1
k ( fk(x)) ≥ α1, for all k

μ
E2
k ( fk(x)) ≥ α2, for all k

. . .

. . .

μ
En
k ( fk(x)) ≥ αn, for all k

0 ≤ α1, α2, . . . , αn ≤ 1,

g j (x) ≤ 0, j = 1, 2, . . . , q

x ≥ 0.

(8)

where,

μ
E1
k ( fk(x)) membership degrees are given by 1st expert,

μ
E2
k ( fk(x)) membership degrees are given by 2nd expert,

· · ·
· · ·
μ
En
k ( fk(x)) membership degrees are given by nth expert.

4 Computational algorithm

Step 1 Taking the first objective function from set of k objec-
tives of the problem and solve it as a single objective subject
to the given constraints. Find value of objective functions and
decision variables.
Step 2 From values of these decision variables compute val-
ues of remaining (k − 1) objectives.
Step 3 Repeat the step 1 and step 2 for remaining (k − 1)
objective functions.
Step 4 Tabulate values of objective functions thus obtained
from step 1, step 2 and step 3 to form a Table 1 known as
PIS.
Step 5Fromstep 4, obtain the lower bounds andupper bounds
for each objective functions, where f ∗

k and f ,
k are the maxi-

mum, minimum values respectively.

Table 1 Positive ideal solution

Maximum f1 f2 f3 ... fk X

Maximum f1 f ∗
1 ... fk(X1) X1

Maximum f2 f ∗
2 ... fk(X2) X2

Maximum f3 f ∗
3 ... fk(X3) X3

... ... ... ...

Maximum fk ... f ∗
k Xk

Minimum f ′
1 f ′

2 f ′
3 ... f ′

k

Step 6 Here, we denote and define upper and lower bounds
byUμ

K = max(ZK (Xr )) and L
μ
K = min(ZK (Xr )), 1 ≤ r ≤

p respectively for each uncertain and imprecise objective
functions of MOLP problems.
Step 7 In this step, we present uncertain and imprecise
objectives of MOLP by using the following linear hesitant
membership functions μE1

k ( fk(x)):

μE1

k ( fk(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

0, i f fk(x) ≤ Lμ
K

α1
fk (x)−Lμ

K
Uμ
K−Lμ

K
, i f Lμ

K ≤ fk(x) ≤ Uμ
K

1, i f fk(x) ≥ Lμ
K

(9)

μE2

k ( fk(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

0, i f fk(x) ≤ Lμ
K

α2
fk (x)−Lμ

K
Uμ
K−Lμ

K
, i f Lμ

K ≤ fk(x) ≤ Uμ
K

1, i f fk(x) ≥ Lμ
K

(10)

. . .

. . .

μEn

k ( fk(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

0, i f fk(x) ≤ Lμ
K

αn
fk (x)−Lμ

K
Uμ
K−Lμ

K
, i f Lμ

K ≤ fk(x) ≤ Uμ
K

1, i f fk(x) ≥ Lμ
K

(11)

where, 0 ≤ α1, α2, . . . , αn ≤ 1.
Step 8 Now the hesitant fuzzy optimization method for
MOLP problem (1) with linear membership functions gives
a equivalent linear programming problem as:

Maximize
α1 + α2 + · · · + αn

3
Such that μE1

k (x) ≥ α1, for all k

μ
E2
k (x) ≥ α2, for all k

. . .

. . .

μ
En
k (x) ≥ αn, for all k

0 ≤ α1, α2, . . . , αn ≤ 1,

g j (x) ≤ 0, j = 1, 2, . . . , q

x ≥ 0.

(12)
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Table 2 Physical parameter values

Machine type Machine hours Unit price Products

x1 x2 x3

Milling 1400 0.75 12 17 0

Lather 1000 0.60 3 9 8

Grinder 1750 0.35 10 13 15

Jig saw 1325 0.50 6 0 16

Drill press 900 1.15 0 12 7

Band saw 1075 0.65 9.5 9.5 4

Total capacity cost 4658.75

Step 9 The above linear programming problem (12) can be
easily solved by the above simplex method.

5 Numerical verification of the proposed
computational algorithm

5.1 Production planning problem

Consider a park of six machine types whose capacities are to
be devoted to production of three products.A current capacity
portfolio is available, measured in machine hours per weak
for each machine capacity unit priced according to machine
type. The necessary data in Table 2 is summarized.

Let x1, x2, x3 denote three products, then the complete
mathematical formulation of the above mentioned problem
as a multiobjective linear programming problem is given as:

Maximize f1(x) = 50x1 + 100x2 + 17.5x3 (Profit)

Maximize f2(x) = 92x1 + 75x2 + 50x3 (Quality)

Maximize f3(x) = 25x1 + 100x2 + 75x3

(Worker satisfaction)

Subject to the constraints

12x1 + 17x2 ≤ 1400

3x1 + 9x2 + 8x3 ≤ 1000

10x1 + 13x2 + 15x3 ≤ 1750

6x1 + 16x3 ≤ 1325

x1, x2, x3 ≥ 0.

(13)

Stepwise numerical verification of the proposed algorithm
are presented below:
Step 1 In this step, we reduce multiobjective linear program-
ming problem into single linear programming problemwhich
is given below:

Table 3 Positive ideal solution

f1 f2 f3 X

Maximum f1 8041 10,020.33 9319.25 X1

Maximum f2 5452.63 10,950.59 5903.00 X2

Maximum f3 7983.60 10,056.99 9355.90 X3

Maximize f1(x) = 50x1 + 100x2 + 17.5x3

Subject to the constraints

12x1 + 17x2 ≤ 1400

3x1 + 9x2 + 8x3 ≤ 100

10x1 + 13x2 + 15x3 ≤ 1750

6x1 + 16x3 ≤ 1325

12x2 + 7x3 ≤ 900

9.5x1 + 9.5x2 + 4x3 ≤ 1075

x1, x2, x3 ≥ 0.

(14)

Solving single objective linear programming problem (14),
we get the following optimum solutions: x1 = 44.93, x2 =
50.63, x3 = 41.77, ( f1)1 = 8041.14.
Step 2 With these decision variables, computed values of
other remaining objective functions are: ( f2)1 = 10,020.33,
( f3)1 = 9319.25.
Step 3 Step 1 and Step 2 are repeated for other objective
functions f2, f3.
Step 4 The Positive Ideal Solution obtained are placed in
Table 3.
Step 5
Step 6 In this step, we calculate lower and upper bounds for
each objective functions:

Lμ
1 = 5452.63,Uμ

1 = 8041.14
Lμ
2 = 10,020.33,Uμ

2 = 10,950.59
Lμ
3 = 9355.90,Uμ

3 = 5903.00

Step 7 Use following linear membership function μE1

k
( fk(x)) for each objective functions:

μE1
(50x1 + 100x2 + 17.5x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

0.9650x1+100x2+17.5x3−5452.63
8041.14−5452.63 , if 5452.63

≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

(15)
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μE2
(50x1 + 100x2 + 17.5x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

0.9850x1+100x2+17.5x3−5452.63
8041.14−5452.63 , if 5452.63

≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

(16)

μE3
(50x1 + 100x2 + 17.5x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63
50x1+100x2+17.5x3−5452.63

8041.14−5452.63 , if 5452.63

≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

(17)

μE1
(92x1 + 75x2 + 50x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10,020.33

0.9692x1+75x2+50x3−10,020.33
10,950.59−10,020.33 , if 10,020.33

≤ 92x1 + 75x2 + 50x3 ≤ 10,950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10,020.33

(18)

μE2
(92x1 + 75x2 + 50x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10,020.33

0.9892x1+75x2+50x3−10,020.33
10,950.59−10,020.33 , if 10,020.33

≤ 92x1 + 75x2 + 50x3 ≤ 10,950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10,020.33

(19)

μE3
(92x1 + 75x2 + 50x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10,020.33
92x1+75x2+50x3−10,020.33

10,950.59−10,020.33 , if 10,020.33

≤ 92x1 + 75x2 + 50x3 ≤ 10,950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10,020.33

(20)

μE1
(25x1 + 100x2 + 75x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00

0.9625x1+100x2+75x3−5903.00
9355.90−5903.00 , if 5903.00

≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00

(21)

μE2
(25x1 + 100x2 + 75x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00

0.9825x1+100x2+75x3−5903.00
9355.90−5903.00 , if 5903.00

≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00

(22)

μE3
(25x1 + 100x2 + 75x3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00
25x1+100x2+75x3−5903.00

9355.90−5903.00 , if 5903.00

≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00

(23)

Table 4 Solution based on proposed algorithm

x1 x2 x3 α1 α2 α3

70.7681 20.677 51.5679 0.3916 0.3997 0.4079

Step 8 Linear programming problem in hesitant fuzzy sense
is presented below:

Maximize
α1 + α2 + α3

3

Such that 0.96
50x1 + 100x2 + 17.5x3 − 5452.63

8041.14 − 5452.63
≥ α1

0.96
92x1 + 75x2 + 50x3 − 10,020.33

10,950.59 − 10,020.33
≥ α1

0.96
25x1 + 100x2 + 75x3 − 5903.00

9355.90 − 5903.00
≥ α1

0.98
50x1 + 100x2 + 17.5x3 − 5452.63

8041.14 − 5452.63
≥ α2

0.98
92x1 + 75x2 + 50x3 − 10,020.33

10,950.59 − 10,020.33
≥ α2

0.98
25x1 + 100x2 + 75x3 − 5903.00

9355.90 − 5903.00
≥ α2

50x1 + 100x2 + 17.5x3 − 5452.63

8041.14 − 5452.63
≥ α3

92x1 + 75x2 + 50x3 − 10,020.33

10,950.59 − 10,020.33
≥ α3

25x1 + 100x2 + 75x3 − 5903.00

9355.90 − 5903.00
≥ α3

0 ≤ α1 ≤ 1

0 ≤ α2 ≤ 1

0 ≤ α3 ≤ 1

12x1 + 17x2 ≤ 1400

3x1 + 9x2 + 8x3 ≤ 1000

10x1 + 13x2 + 15x3 ≤ 1750

6x1 + 16x3 ≤ 1325

x1, x2, x3 ≥ 0.
(24)

Step 9 Applying the proposed algorithm, the solutions of the
mentioned MOLP is listed in Table 4.

6 Conclusions

In recent decades, many extensions and generalizations of
fuzzy optimization techniques have been proposed in litera-
ture for the solutionofmultiobjective programmingproblems
for example, interval-valued fuzzy optimization [28], intu-
itionistic fuzzy optimization [9], generalized intuitionistic
fuzzy optimization [19], etc. In present article a new con-
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Table 5 Optimal solutions
obtained by various methods

Decision variables
objective

Fuzzy optimization
technique

Intuitionistic fuzzy
optimization
technique

Hesitant fuzzy
optimization
technique

x1 65.2571 58.4833 70.7681

x2 26.9187 34.5907 20.6770

x3 49.8324 47.6992 51.5679

f1 6826.7920 7217.9710 6508.5432

f2 10,514.1757 10,359.7261 10,639.8352

f3 8060.6952 8498.5925 7704.4950

Fig. 2 Comparison of results
with existing methods

cept of optimality is presented and in view of comparing
the hesitant fuzzy optimization with fuzzy optimization,
and intuitionistic fuzzy optimization, we also obtained the
solution of the undertaken numerical problem by fuzzy opti-
mization method given by Zimmermann [2] and took the
best result obtained for comparison with present study. We
considered the best solution obtained by the developed algo-
rithm and are placed in Table 5 for comparison with each
other and also to compare with the results obtained by fuzzy
optimization method.

The objective of the present study is to give the effec-
tive algorithm for hesitant fuzzy optimization method for
getting optimal solutions to a multiobjective linear program-
ming problem. The merit of the method lies with fact that
it gives a set of solutions based on various experts levels.
The decision makers may choose a suitable optimal solu-
tion according to the demand of the actual situation. Further,
the comparisons of results obtained for the undertaken prob-
lem clearly show the superiority with respect to quality of
products of hesitant fuzzy optimization over fuzzy and intu-
itionistic fuzzy optimizations which are presented in Fig. 2.
Present work can be further applied in nonlinear multiob-
jective programmingproblems,multiobjective transportation

problems, multiobjective assignment problems, multiobjec-
tive fractional problems, game theory, etc.
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