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Abstract
This paper presents design of the sliding mode controller (SMC) via a nonlinear disturbance observer (NDO) for stabilization
of the rotational pendulum. The mathematical model is depicted by four first-order nonlinear differential equations with two
outputs and single input. The linear model is obtained by linearizing nonlinear equations. This linearized version is found to
be highly unstable. The applied NDO is capable of estimating extremely nonlinear terms (disturbance) present in the model.
Then, the NDO based SMC is designed using linear model and disturbance estimation, and hence is applied to the original
nonlinear system. The developed controller is enough to drive a sliding surface (which holds both actuated and unactuated
dynamics) attaining the sliding mode against severe nonlinearities existing in the model, in addition large parameter variations
and/or external disturbance. The sliding coefficients are determined using the linear quadratic regulator (LQR) technique.
The obtained controller parameters can establish the zero dynamics as of sliding mode dynamics asymptotically. Also, the
proposed control algorithm has potential to alleviate the chattering phenomenon occurred in the control signal. Overall, the
control scheme expands the stability region of an arm (in horizontal half-plane) and a pendulum (over vertical half-plane) both
for large initial conditions. Lastly, numerical simulations and quantitative measurements are validated with an established
controller in the literature.

Keywords Sliding mode control · Nonlinear disturbance observer · Rotational pendulum · Zero dynamics

1 Introduction

Over the last few decades, stabilization as well as track-
ing of an underactuated mechanical systems have drawn
researchers’ attention. The underactuated mechanical sys-
tems (UMS) are having sets of nonlinear dynamical equations
with lesser actuators than configuration variables. These sys-
tems are increasing demand day to day due to theoretical
hindrance and practical implementation. The control of UMS
requires a broad analysis because of its large applications
in robot manipulators, underwater vehicles, aerospace engi-
neering [1–3], etc. The lower numbers of control inputs in
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these class of systems have the perspectives of reducing
weight and cost, increasing reliability and sustaining less
energy. In order to design the controller, the class of sys-
tems play a crucial role because they fail to obey Brockett’s
necessary condition [4]; these are the non-minimum phase
systems and relative degrees of them are not properly defined
[5]. The feedback linearization (FL) is not realizable due to
nonlinear linked between actuated and unactuated degrees of
freedom. Also, until and unless the zero dynamics [6] stabi-
lization guarantees, the partial feedback linearization (PFL)
[7] is not possible for these particulars.

The rotational pendulum falls under category of an under-
actuatedmechanical systems, which yields above-mentioned
structural difficulties due to underactuation. TheRP system is
also familiar as Furuta pendulum (FP) by its inventor name
Katsuhisa Furuta. It composes of a driven arm which can
rotate 360◦ angles in the horizontal plane, and a pendulum
which is joined to the arm and spins vertically [8]. The actu-
ator is right attached to the arm of the rotational pendulum
system. There is no direct control signal for the pendulum,
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converting it underactuated. The research of the rotational
pendulum was motivated by an essential of controller design
to balance the rocket in a vertical steady position during the
time that it escapes. The RP model is highly nonlinear, cou-
pled, open-loop unstable, found to possess non-minimum
phase structure, and is not feedback linearizable. Therefore,
the original problem consists of stabilizing the pendulum
around its upright position during rotation of arm. There are
diverse control techniques for the rotational pendulum found
in the literature. The energy based controls are formulated
to swing-up the pendulum discussed in [9–11]. However,
these are explicitly applicable to the problem of swinging-
up. Furthermore, a nonlinear controller based on approximate
linearization [12], a constructive procedure via the FL [13], a
stabilizing controller through the PFL [14], the FL controller
selecting position and velocity tracking errors as an output
function [15], and a trajectory tracking controller derived
from the input–output FL [16] are applied to the FP. Any-
way, the closed loop analysis of the controllers developed
through linearization techniques, for e.g., partial lineariza-
tion, approximate linearization, and pseudo-linearization are
inconvenient to obtain. In addition, the rotational pendulum
system is highly uncertain in nature because of large non-
linear terms present in the model, unstructured dynamics,
coupling between actuated and unactuated variables along
with deviations in the model parameters and external distur-
bance interacting in it. The Kalman filtering based technique
applied to a similar one of the rotational pendulum system
is found in [17]. In [18], a flatness based approach is incor-
porated to design the controller for local stabilization of the
FP. Only unmodeled perturbation affecting in arm is consid-
ered to validate the controller. In [19], an active disturbance
rejection control (ADRC) is designed with two decoupled
linear observers which are obtained by flatness of linearized
model of FP. The number of observers in ADRC lead to
design complexity in the controller. Nonetheless, the flat-
ness property decomposes non-integral chain form of the
RP into integral chain, the controller design meets challenge
while the system is coupled, highly nonlinear, holds non-
minimum phase characteristics and is not in phase variable
form. Therefore, stabilization of the pendulum around its
upright position against unavoidable nonlinearities existing
in the model, large parametric uncertainty and external dis-
turbance requires the robust controller.

The SMC, type of variable structure controllers (VSC), is
very powerful design strategy in the control systems commu-
nity due to its simple constructive procedure and robustness
property against matching condition [20]. A comparative
study of SMC strategies is found in [21]. In particular, there
has been some research on SMC in the literaturewhich is suc-
cessfully applied to the RP system. In [22], a nonlinear SMC
designed by the state-dependent Riccati equation (SDRE) is
applied for swinging-up and stabilizationof theFP.Acoupled

SMC forcing a coupled sliding surface to be reached in finite
time is proposed in [23]. The adaptive PID with SMC for
the RP is applied in which parameter gains of controller are
obtained via adaptive law given in [24]. An optimal sliding
mode cascade control is proposed in [25] for stabilization of
the pendulum. In [26], an adaptive SMC is implemented for
the FP. However, in presence of large parametric uncertainty
arising in the model and a bounded time-varying external
disturbance (with unknown upper bound) imposing in the
model, the above-mentioned schemes may not give satis-
factory performance. Therefore, the SMC design is fairly
inspiring for the underactuated rotational pendulum system.

The variations in pendulum dynamics with gravitational
change while it swings-up from its highly stable to most
unstable vertical upright locus through rotation of an arm,
is considered as an uncertainty. In addition, coupling coeffi-
cients between actuated and unactuated degrees of freedom
always introduce some uncertainty in the model. The moti-
vation of feedback control strategy, e.g. the SMC requires
feedforward control in additionwhich can estimate the highly
nonlinear terms (disturbance) in the model. The observer
based techniques, such as a nonlinear disturbance observer
has strong design structure to eliminate an adverse effects of
large nonlinearities. By design, the NDO is placed in forward
whereas the SMC is put in feedback as given in [27–30]. The
estimations of nonlinearities are included in the design part of
the SMC, so that it can stabilize the output variables in spite
of extremely nonlinear terms present in themodel, in addition
large perturbations along with external disturbance. Besides,
the conventional SMChas a significant disadvantage of high-
frequency oscillations [31] due to discontinuous function
in the control input. The oscillation is known as chattering
which can yield instability and unwanted system response.
One of the solutions is the higher-order SMC [32] which has
replaced classical slidingmode approach due to its chattering
avoidance properties [33]. But, the higher-order SMC has an
implementation complexity for the particular. The simpler
way to make control signal smooth is by introducing a satu-
ration function in the switching control which is designed as
a combination of power rate reaching law and proportional
rate term. The chattering is reduced by predefined boundary
layer in saturation function with some trade-off in control.

The contributions are highlighted as follows:

• A nonlinear disturbance observer based sliding mode
control law is proposed of stabilizing the fourth order
extremely nonlinear coupled rotational pendulum sys-
tem.

• The controller is developed to balance the pendulum
around its vertical unstable equilibrium locus from dif-
ferent initial positions through rotation of an arm.

• The design modification in the SMC is done by adding
disturbance (massive nonlinear terms present in the
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Fig. 1 The rotational pendulum system

model) estimation via a NDO, so that it can stabilize the
output variables in presence of severe nonlinearities in
the model with large parametric uncertainty and external
disturbance.

• As a result, the control strategy offers enlarged stabil-
ity region of an arm (in horizontal half-plane) and a
pendulum (over vertical half-plane) both for large initial
conditions.

• Also, the controller design ensures an asymptotic sta-
bility of the zero dynamics in the form of sliding mode
dynamics via obtained sliding coefficients using the LQR
technique.

• Furthermore, the chattering is mitigated with the combi-
nation of power rate reaching law and proportional rate
term in the switching control.

• The asymptotic stability of the overall rotational pen-
dulum system is proven using energy like Lyapunov
function.

The rest of the paper is outlined as follows. In Sect. 2,
the dynamic model of the RP is described. The NDO and its
stability proof are formulated in Sect. 3. Section 4 explains
development of the NDO based SMC scheme for stabiliza-
tion of the pendulum together with stability analysis. The
zero dynamics stabilization is narrated in Sect. 5. The sim-
ulation results with discussions are presented in Sect. 6.
Concluding remarks are conveyed in Sect. 7, followed by
acknowledgements and references.

2 Dynamic model of the rotational
pendulum

The equations of motion for the RP system shown in Fig. 1
is described by Euler–Lagrange method as [2]

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= F(q)u (1)

where the kinetic and the potential energies are K and P ,
and the Lagrangian of the system is L = K − P; the output
variables (actuated and unactuated) and their velocities are
q = [q1, q2]T ∈ R

2 and q̇ = [q̇1, q̇2]T ∈ R
2, respectively;

F(q) = [1, 0]T is the input matrix; and u ∈ R
1 is the control

signal.
Equation (1) is written alternatively as

[
d11 d12
d21 d22

]
︸ ︷︷ ︸

D(q)

[
q̈1
q̈2

]
+
[
c11 c12
c21 c22

]
︸ ︷︷ ︸

C(q,q̇)

[
q̇1
q̇2

]
+
[
g1
g2

]
︸︷︷︸
G(q)

=
[
u
0

]
(2)

where the inertia matrix D(q) is symmetric and positive-
definite, coriolis and centrifugal force matrix is C(q, q̇), and
gravitational force vector is G(q).
(or),

[
J1 + m2(l21 + l22 sin

2 φ2) m2l2l1 cosφ2

m2l2l1 cosφ2 J2 + m2l22

] [
φ̈1

φ̈2

]

+
⎡
⎣

1
2m2l22 sin(2φ2)φ̇2 − m2l2l1 sin(φ2)φ̇2

+ 1
2m2l22 sin(2φ2)φ̇1

− 1
2m2l22 sin(2φ1)φ̇1 0

⎤
⎦
[
φ̇1

φ̇2

]

+
[

0
− m2gl2 sin φ2

]
=
[
u
0

]
(3)

where pendulum mass is m2; arm length and distance to the
center of gravity (CG) of pendulum are l1 and l2; arm inertia
and pendulum inertia around its CG are J1 and J2; rotational
angles of arm and pendulum are φ1 and φ2, respectively.

Now, the following state space form of (3) obtained using
the property of Legendre transformation in [3] is

ż1 = z2

ż2 = a1(z) + b1(z)u

ż3 = z4

ż4 = a2(z) + b2(z)u (4)

where z1 = φ1, z2 = φ̇1, ż2 = φ̈1, and z3 = φ2,
z4 = φ̇2, ż4 = φ̈2. Also, a1(z), a2(z), b1(z), and b2(z) are
smooth functions obtained from (3). The disturbances dc1
and dc2 imposed through the control input channels of (4)
are accounted as matched, respectively.

Remark 1 The SMC law based on NDO is designed for the
4th order coupled nonlinear rotational pendulum system in
(4) where extremely nonlinear terms in the model are accu-
rately estimated through aNDOexplained in the next section.

123



1666 K. Majumder, B. M. Patre

3 Nonlinear disturbance observer

The full order observer in [27] applied to the 4th order highly
nonlinear coupled RP model in (4) is in the form of

˙̂d j = p j (ẑ j+1 − z j+1)

˙̂z j+1 = a j (z) + b j (z)u

− p j+1(ẑ j+1 − z j+1) − d̂ j

⎫⎪⎪⎬
⎪⎪⎭
for j = 1 (5)

˙̂d j = p j+1(ẑ j+2 − z j+2)

˙̂z j+2 = a j (z) + b j (z)u

− p j+2(ẑ j+2 − z j+2) − d̂ j

⎫⎪⎪⎬
⎪⎪⎭
for j = 2 (6)

where d̂ j is the estimation of disturbance d j (represents
severe nonlinearities in the model), ẑ j+1 and ẑ j+2 are the
estimations of states z j+1 and z j+2, respectively, and the
observer gains p j , p j+1 (for j = 1) and p j+1, p j+2 (for
j = 2) must be greater than zero.

3.1 Stability of NDO

Theorem 1 The NDO in (5)–(6) implemented for the 4th
order rotational pendulum system is efficiently able to esti-
mate severe nonlinearities existing in the model.

Proof The Lyapunov function is selected as

VDO1 = 1

2p1
d̃21 + 1

2
ẽ22 (7)

where d̃1(= d1 − d̂1) and ẽ2(= z2 − ẑ2) are the estimation
errors in disturbance d1 and state z2.
Now, we have

V̇DO1 = 1

p1
d̃1

˙̃d1 + ẽ2 ˙̃e2

= 1

p1
d̃1
(
ḋ1 − ˙̂d1

)
+ ẽ2

(
ż2 − ˙̂z2

)
(8)

Putting (4) and (5) into (8), we get

V̇DO1 = 1

p1
d̃1
(
ḋ1 − ˙̂d1

)

+ ẽ2
{
ż2 −

(
a1(z) + b1(z)u − p2

(
ẑ2 − z2

)− d̂1
)}

= 1

p1
d̃1ḋ1 − 1

p1
d̃1 p1

(
ẑ2 − z2

)+ ẽ2 {a1(z) + b1(z)u − d1

−
(
a1(z) + b1(z)u − p2

(
ẑ2 − z2

)− d̂1
)}

= 1

p1
d̃1ḋ1 − d̃1

(
ẑ2 − z2

)+ ẽ2
(
− d1 + d̂1 + p2

(
ẑ2 − z2

))

= 1

p1
d̃1ḋ1 + d̃1ẽ2 + ẽ2

(
− d̃1 − p2ẽ2

)

= 1

p1
d̃1ḋ1 − p2ẽ

2
2 ≤ 0 (9)

Also, for disturbance d2, the Lyapunov candidate is

VDO2 = 1

2p3
d̃22 + 1

2
ẽ24 (10)

where, the estimation errors are d̃2(= d2 − d̂2) and ẽ4(=
z4 − ẑ4).
In similar way of (9), it can be proven that

V̇DO2 = 1

p3
d̃2ḋ2 − p4ẽ

2
4 ≤ 0 (11)

Remark 2 Since the estimations of disturbance and state
compensate each other derived by (5) and (6), therefore, the
errors in disturbance estimation as well as in state estimation
are bounded in the sense of Lyapunov. Equations (9) and (11)
strictly say that the errors in both the estimations converge
to zero asymptotically.

4 Controller design

The linearized dynamics of (4) is defined as

ż(t) = Az(t) + Bu(t) (12)

The sliding surface is considered as

σ = Kz(t) (13)

Taking differentiation of (13) and then substituting (12), we
obtain

σ̇ = K Az(t) + K Bu(t) (14)

The equivalent control is designed by equating σ̇ = 0 in (14)
as

ueq = (K B)−1
{
− K Az(t) + d̂1 + d̂2

}
(15)

and the switching control is defined as a combination of
power rate reaching law (where 0 < γ < 1) and propor-
tional rate term i.e.

usw = (K B)−1(− c1|σ |γ sat(σ ) − c2σ) (16)

where c1 and c2 are chosen larger thanmaximumboundof the
errors in disturbance estimations d̃1 and d̃2 to ensure sliding.
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Therefore, the sliding mode controller incorporates an
equivalent control and the switching control, and we have

u(t) = ueq + usw (17)

In order to mitigate chattering in the control signal, a
saturation function sat(σ ) is taken up instead of a signum
function sgn(σ ) and is written as

sat(σ ) =

⎧⎪⎨
⎪⎩
1, σ > Ω

kσ, |σ | ≤ Ω and k = 1
Ω

− 1, σ < − Ω

where Ω is the boundary layer.
In sat(σ ) function, the switching control takes action

while states are beyond the boundary layer, otherwise, the
feedback control is involved. Hence, chattering issue can be
limited entirely.

4.1 Stability of SMC

Theorem 2 The designed control law in (17) is capable to
bring the states into sliding manifold. Also, the controller
forces the states to reach to the origin asymptotically once
the errors in estimations converge to zero via the NDO in
(5)–(6) and retains them there thereafter.

Proof The chosen Lyapunov function is

VSMC = 1

2
σ 2 (18)

Taking derivative of (18), we have

V̇SMC = σ σ̇

= σ {K Az(t) + K Bu(t)}
= σ

{
K Az(t) +

(
− K Az(t) + d̂1 + d̂2 − c1|σ |γ sat(σ ) − c2σ

)}

= σ
{
d̂1 + d̂2 − c1|σ |γ sat(σ ) − c2σ

}

=‖ d̂1 ‖| σ | + ‖ d̂2 ‖| σ | −c1|σ |γ |σ | − c2|σ |2
≤ 0 (19)

Now, for an entire closed loop system, the Lyapunov candi-
date is outlined from (7), (10), and (18) as

Vtotal = VDO1 + VDO2 + VSMC

= 1

2p1
d̃1 + 1

2
ẽ2 + 1

2p3
d̃2 + 1

2
ẽ4 + 1

2
σ 2

It follows V̇total ≤ 0. ��
Remark 3 The power rate reaching law including the propor-
tional rate term in the switching control varies the reaching

speed to retain states within switching manifold forever.
Also, the selection of saturation function makes control sig-
nal smooth.

5 Zero dynamics

The study of zero dynamics for the RP system is explained
in this section.

Theorem 3 The sliding surface in (13) is governed for devel-
oping an SMC law in (17) based on the NDO that actively
estimates severe nonlinearities in the dynamic model of the
RP in (4). With its robustness property, the SMC scheme is
able to take the states into the sliding mode and keeps them
to the origin forever. Therefore, the closed loop dynamics of
(3) is formed as follows

φ̈1 = D−1(φ)

[
− d22u +

(
− d11d22v12

d12
+ d22v11 − v21D

d12

)
φ̇1

+ d22v12φ̇2 −
(

D

d12
+ d11d22

d12

)
g2

]

φ̈2 = D−1(φ)
[
d12u + (d11v21 − d12v11)φ̇1 − d12v12φ̇2 + d11g2

]
(20)

The calculating dynamics of (20) acts as the zero dynamics
which can be represented like as the sliding mode dynamics

M(φ)φ̈ + N (φ)φ̇ + P(φ) = Q(t) (21)

Proof The sliding surface is given by

K1φ1 + K2φ̇1 + K3φ2 + K4φ̇2 = 0 (22)

which yields the sliding mode. Differentiation of (22)
involves

K1φ̇1 + K2φ̈1 + K3φ̇2 + K4φ̈2 = 0 (23)

φ̇1 and φ̈1 are determined from (22) and (23) as

φ̇1 = −K1

K2
φ1 − K3

K2
φ2 − K4

K2
φ̇2

= Θ(φ1, φ2, φ̇2) (24)

φ̈1 = K 2
1

K 2
2

φ1 + K1K3

K 2
2

φ2 +
(
K1K4

K 2
2

− K3

K2

)
φ̇2 − K4

K2
φ̈2

= Ξ(φ1, φ2, φ̇2, φ̈2) (25)
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Now, putting φ̇1 in (24) and φ̈1 in (25) into (3), and we have

[
J1 + m2

(
l21 + l22 sin

2 φ2
)

m2l2l1 cosφ2

m2l2l1 cosφ2 J2 + m2l22

][
Ξ(φ1, φ2, φ̇2, φ̈2)

φ̈2

]

+

⎡
⎢⎢⎣

1
2m2l22 sin(2φ2)φ̇2 − m2l2l1 sin φ2φ̇2

+ 1
2m2l22 sin(2φ2)φ̇1

− 1
2m2l22 sin(2φ2)φ̇1 0

⎤
⎥⎥⎦
[
Θ(φ1, φ2, φ̇2)

φ̇2

]

+
[

0

− m2gl2 sin φ2

]
=
[
u

0

]
(26)

The control strategy u in (17) forces (26) in getting the zero
dynamics given by (21) in the structure of sliding mode
dynamics

(m2l2l1 cosφ2)Ξ
(
φ1, φ2, φ̇2, φ̈2

)+ (
J2 + m2l

2
2

)
φ̈2

−
(
1

2
m2l

2
2 sin(2φ2)φ̇1

)
Θ
(
φ1, φ2, φ̇2

)− m2gl2 sin φ2 = 0

(27)

��
In this fashion, Theorem 3 is proven completely for (27) in
the frame of (21).

5.1 Asymptotic stability

The zero dynamics in (21) can be framed as

φ̈ + M−1N φ̇ + M−1P = M−1Q (28)

The sliding coefficients in (22) are obtained through the LQR
technique. The obtained parameters satisfy K1 < K3 and
K2 < K4. So that, the equilibrium of the zero dynamics
is found to be stabilized asymptotically in (28) along with
calculated gains.

Proof Let a Lyapunov function

V = e−ϕ(t)S
(
φ, φ̇

)
(29)

where the function ϕ(t) is continuous and exists for t → ∞
with the condition ϕ(t) � Q(t). Consider S(φ, φ̇) = (1 +
M−1N φ̇ + M−1P) that satisfies the boundary Υ (||φ||) �
V � Ψ (||φ||) for specified span of φ, in which Υ (||φ||) and
Ψ (||φ||) are the continuous functions, respectively. Now,

V̇ = −ϕ(t)e−ϕ(t)S + Ṡe−ϕ(t)

= − e−ϕ(t)
[
ϕ(t)S − M−1N − Ṁ−1N φ̇ − M−1 Ṅ φ̇

− Ṁ−1P − M−1 Ṗ
]

(30)

With the condition ϕ(t) � Q(t), (30) turns

V̇ � −e−ϕ(t)
[
ϕ(t)

(
1 + M−1N φ̇ + M−1P

)

− M−1N − MṄ + N Ṁ

M2 φ̇ − M Ṗ + PṀ

M2

]

� −e−ϕ(t) S̄(φ, φ̇) (31)

where the continuous function e−ϕ(t) S̄(φ, φ̇) is positive def-
inite. The function S̄(φ, φ̇) is positive with the necessary
conditions K3 > K1 and K4 > K2. Hence, it is observed
from (29) and (31) that S(φ, φ̇) is bounded by φ1 in hori-
zontal half-sector and φ2 over upper half-region. It explains
that the control law in (17) is enough to stabilize the zero
dynamics of the RP system inside specified zone of φ. Fur-
thermore, an asymptotic stability of the zero dynamics in (28)
is constructed using the fact that Q(t) reaches towards 0 as
t → ∞. ��

6 Results and discussions

The rotational pendulum is a benchmark control problem
which is investigated using the SMC based NDO in (17) with
large parametric uncertainty and any bounded time-varying
external disturbance in the input channels. The block diagram
of closed loop control system for the RP via the NDO based
SMC is shown in Fig. 2. The simulation is carried out in the
environment of Matlab/Simulink with two different initial
conditions (IC), such as IC-(1) ([φ1, φ̇1, φ2, φ̇2] = [1.1, 0,
0.5, 0]) and IC-(2) ([φ1, φ̇1, φ2, φ̇2] = [π , 0, 1.1, 0]).

The linearized model of the RP in (4) is given as

A =

⎡
⎢⎢⎣
0 1 0 0
0 0 − 4.8733 0
0 0 0 1
0 0 74.5197 0

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

0
55.3820

0
− 81.7971

⎤
⎥⎥⎦ (32)

TheRP system is open-loop unstable since the eigenvalues
of matrix A are locating at λeigen = 0, 0, 8.6325,− 8.6325.
The parameters of the RP are given in [2]. The controller
gains [K1, K2, K3, K4] = [− 0.078,− 0.075,− 3.102,
− 0.181] are obtained through the LQR method using of
system matrix A, input matrix B, state weighted matrix
Q = 10−2 ∗ [10, 0, 0, 0; 0, 0.1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 0.5],
and control weighted matrix R = 12. The constants for the
controller design are chosen as c1 = 15, c2 = 10, and γ =
0.5. The time-varying external disturbances dc1 = sin(0.3t)
and dc2 = 0.5 sin(π

2 +0.3t) enter via the control input chan-
nels into the model, respectively. Furthermore, the parameter
variations of 50%, 10%, 10%, 5%, and 5% in m2, l1, l2,
J1, and J2, respectively are added in the model as numer-
ical values. The nonlinear disturbance observer in (5)–(6)
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Fig. 2 The building blocks of
NDO based SMC for the
rotational pendulum system

Fig. 3 IC-(1) (φ1(0) = 1.1 rad,
φ̇1(0) = 0 rad/sec,
φ2(0) = 0.5 rad,
φ̇2(0) = 0 rad/sec): a arm angle,
b pendulum angle, c control
signal (N/m), and d sliding
surface in presence of large
parametric uncertainty and
external disturbance
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is applied to estimate highly nonlinear terms present in the
model accurately. For this, the observer gains are selected as
p1 = 600, p2 = 28, 000, p3 = 50, and p4 = 1500. The
SMC based NDO scheme in (17) is applied to the coupled
nonlinear model in (4).

For comparison purpose, the coupled sliding mode con-
troller is simulated for the same RP system with same initial

conditionsmentioned in above. The coupled SMC law in [23]
is of the given form:

utotal = ueq1 + usw2

where ueq1 = (λgpu
eq1
p + gcu

eq1
c )/(λgp + gc), usw2 =

(− ksgn(σsmc))/(λgp +gc), gp = d22/(d11d22 −d212), gc =
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Fig. 4 IC-(2) (φ1(0) = π rad,
φ̇1(0) = 0 rad/sec,
φ2(0) = 1.1 rad,
φ̇2(0) = 0 rad/sec): a arm angle,
b pendulum angle, c control
signal (N/m), and d sliding
surface along with huge
perturbations and external
disturbance
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Fig. 5 States and their
estimations: a, b for IC-(1): [φ1,
φ̇1, φ2, φ̇2] = [1.1, 0, 0.5, 0]; c, d
for IC-(2): [φ1, φ̇1, φ2, φ̇2] = [π ,
0, 1.1, 0]
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−d12/(d11d22 − d212), u
eq1
p = g−1

p (− f p − cpq̇1), u
eq1
c =

g−1
c (− fc−ccq̇2), f p = −(c12d22q̇2−d12g2)/(d11d22−d212),
fc = (c12d12q̇2 − d11g2)/(d11d22 − d212), σsmc = λσp + σc,
σp = q̇1 + cpq1, σc = q̇2 + ccq2, cp = 0.3, cc = 3.1077,
λ = 0.1, and k = 20.

The comparison results of the designed NDO based SMC
strategy and the coupled SMC method [23] are shown in
Figs. 3, 4, 5 and 6. The proposed controller can withstand
large parameter deviations and any bounded external distur-
bance in the input channels without producing considerable
variations in the output variables. As a result, the stability
region of an arm (in horizontal half-zone) and a pendulum

(over upper half-zone) both are expanded for large initial
conditions. Whereas, due to the extreme nonlinearities exist-
ing in the model, the coupled SMC is not able to handle
even large deviations in parameters along with external dis-
turbance. Therefore, stability zone using the coupled SMC
is restricted.

In Fig. 3, two methods, the proposed one and the com-
pared one are analyzedwith their results for given IC-(1). The
developed controller gives states regulation against severe
nonlinearities in the model, large parametric uncertainty and
external disturbance, whereas the coupled SMC fails to do
that. Again, chattering occurred in the control signal via the

123



Sliding mode control for underactuated mechanical systems via nonlinear disturbance observer… 1671

Fig. 6 Phase portraits: a, b
IC-(1): [φ1, φ̇1, φ2, φ̇2] = [1.1, 0,
0.5, 0]; c, d IC-(2): [φ1, φ̇1, φ2,
φ̇2] = [π , 0, 1.1, 0]
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Table 1 Quantitative
measurements of arm and
pendulum angles

Controllers Performance indices

φ1 φ2

IAE ITAE ISE ITSE IAE ITAE ISE ITSE

NDO based SMC

IC-(1) 5.999 14.94 9.618 10.92 0.538 4.023 0.04043 0.1109

IC-(2) 23.22 44.06 163.5 200 1.474 5.033 1.06 0.6644

Coupled SMC

IC-(1) 102.8 809.9 716.6 4327 0.6171 3.939 0.06258 0.1102

coupledSMCis prominent,while theSMCbasedNDOoffers
chatter free control with optimum control energy. Figure 4
reveals that the proposed control is able to produce the satis-
factory results with given IC-(2) against extremely nonlinear
terms existing in the model, huge deviations in the model
parameters including external disturbance, while the com-
paredone stops simulationdue to the singularity occurred.An
addressed one exhibits excellent disturbance rejection capa-
bilities while controlling the RP. Also, the estimated states
exactly track to the actual states from an initial time shown
in Fig. 5 for both IC-(1) and IC-(2) using of proposed law.
It ensures that the estimation errors in disturbances converge
to zero. The phase portrait represents the direction of vec-
tor fields as shown in Fig. 6a–d. This phase plane analysis
defines that the trajectories achieve equilibrium by using the
proposed NDO based SMC.

Lastly, the developed control law is compared to the exist-
ing law on the basis of quantitative analysis, such as I AE ,
I T AE , I SE , and I T SE given in Table 1. It can be observed
that the proposed controller shows better quantitative per-
formance compared to the existing method. In addition, an
addressed method enlarges the stability region in presence

of large nonlinearities in the model including huge parame-
ter deviations and matched disturbance which is externally
applied.

7 Conclusion

In this paper, the design of NDO based SMC for highly
nonlinear coupled uncertain rotational pendulum system is
presented. The developed method is then exploited of stabi-
lizing theRP system. The nonlinearities existing in themodel
are accurately estimated via an NDO. Then, the controller is
designed using linear model of the RP and disturbance esti-
mation, and is applied to the nonlinear model in presence
of severe nonlinearities in the model, huge parameter devi-
ations and matched disturbance. An asymptotic stability of
the zero dynamics can guarantee in the form of sliding mode
dynamics through sliding coefficients obtained by the LQR
method. The controller is capable of nullifying the chattering
problem frequent in the control input. Furthermore, this con-
trol strategy expands stability zone of an arm and a pendulum
both for significantly large initial conditions. The numerical
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simulations obtained with a developed controller are com-
pared with an existing SMC and efficiency in performance
is experienced.
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