
International Journal of Dynamics and Control (2018) 6:1023–1046
https://doi.org/10.1007/s40435-017-0375-x

Implementation of numerical approximations in studying vibration
of functionally graded beams

Karan K. Pradhan1 · S. Chakraverty2 · S. K. Panigrahi1

Received: 7 June 2017 / Revised: 18 October 2017 / Accepted: 13 November 2017 / Published online: 29 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
In this investigation, a brief review on three efficient computational techniques viz. Finite Element Method, Differential
Quadrature Method and Rayleigh–Ritz Method along with their mathematical formulation to study free vibration of thin
Functionally Graded (FG) beams subject to various classical boundary supports have been presented. The deformation of
FG beam is based on the framework of classical beam theory. Three different FG beam constituents assumed in this study
are Al/Al2O3, Al/ZrO2 and SUS304/Si3N4, in which the first component is meant for the metal constituent and the second
for ceramic constituent respectively. The material properties of FG beam are assumed to vary continuously along thickness
direction in a power-law form. The objective is to outline exemplary works carried out by various researchers on the concerned
problem and also to find the effect of volume fraction of FG constituents on natural frequencies. The natural frequencies of
different FG beams under four sets of classical edge supports have been evaluated along with two-dimensional mode shapes
after finding the convergence with reference to concerned numerical methods and validation with available literature.
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1 Introduction

Functionally Graded (FG) materials are emerging advanced
composites in recent decade for their thermal resistance prop-
erties, which was first discovered by a group of material
scientists in Japan to withstand a huge temperature fluc-
tuation across a very thin cross-section in a space-plane
project. Major components of FG composites are metal and
ceramic materials, in which the constituent properties vary
spatially along thickness direction in a specific mathemati-
cal pattern. As their microstructure has not yet been revealed,
the mechanics and governing equations related to homoge-
neous case are assumed to be true for elastic FG composites.
Studying dynamics of functionally graded beam is one of
the interesting problems in current era and literature related
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to such problems using various methods have been briefly
mentioned herein.

1.1 Development of FEM

One of the recent trends on solving the titled problems is
based on Finite Element Method (FEM) and its research
development has been reviewed first. The method is first
developed in 1956 for the analysis of aircraft structural prob-
lems. Thereafter, the finite element technique has drawn
enough attention within a decade for solving a wide vari-
ety of problems in applied science and engineering and has
been developed over the years [1]. As regards, Öz [2] have
calculated natural frequencies of an Euler-Bernoulli beam-
mass system using this approach. Two C0 assumed finite
element formulations of Reddy’s higher-order theory were
used by Nayak et al. [3] to obtain the natural frequencies of
composite and sandwich plates. Chakraborty et al. [4] pro-
posed a newbeamfinite element based on thefirst-order shear
deformation theory to study the thermoelastic behavior of
functionally graded beam structures. Ribeiro [5] has applied
the shooting, Newton and p-version, heirarchical finite ele-
mentmethods to investigate geometrically nonlinear periodic
vibrations of elastic and isotropic, beams and plates. Şimşek
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[6] has examined vibration response of a simply-supported
FG beam to a moving mass by using Euler–Bernoulli, Timo-
shenko and the third-order shear deformation beam theories.
Alshorbagy et al. [7] have used finite element method to
detect the free vibration characteristics of a functionally
graded beam. Shahba et al. [8] investigated free vibration and
stability analysis of axially functionally graded Timoshenko
tapered beams using classical and non-classical boundary
conditions through finite element approach. The bending and
flexural vibration behavior of sandwich FG plates have been
provided by Natarajan and Manickam [9] using QUAD-8
shear flexible element developed on higher order structural
theory. Vo et al. [10] have developed a finite element model
for vibration and buckling of FG sandwich beams based on
refined shear deformation theory. Free vibration and stabil-
ity of axially functionally graded tapered Euler–Bernoulli
beams have been investigated using finite element method by
Shahba and Rajasekaran [11]. Vo et al. [12] have presented
static and vibration analysis of FG beams using refined shear
deformation theory by using finite element formulation. A
novel Timoshenko beam element based on the framework of
strain gradient elasticity theory is presented in [13] for the
analysis of the static bending, free vibration and buckling
behaviors of Timoshenko microbeams. Very recently, Hui
et al. [14] have given a family of beam higher-orders finite
elements based on a hierarchical one dimensional unified for-
mulation for a free vibration analysis of three-dimensional
sandwich structures. To name a few out of recent findings,
one may easily find finite element solutions of structural
members in [15,16] and also literature available therein.

1.2 Development of DQM

On the other hand, differential quadrature method (DQM)
is an efficient numerical procedure, which is also taken into
account in present study. The DQ method, equivalent to the
conventional integral quadrature method, approximates the
derivative of a function at any location by a linear combina-
tion of the functional values within a closed domain. The key
procedure the DQM lies in the determination of the weight-
ing coefficientswith respect to specific order derivatives [17].
Initially, the foundation of DQM is proposed mainly by Bell-
man and Casti [18] and implemented in various classes of
partial differential equations by reducing them to ordinary
differential equations and then to finite dimensional systems.
A precise idea on ways to develop DQM in various forms,
numerical solution of different classes of linear and nonlin-
ear partial differential equations, splines and efficiency of this
method can be observed in [19–21]. Following the investi-
gation of Bellman et al. [19], Quan and Chang [22,23] have
providednew insights in solving distributed systemequations
by the method of differential quadrature along with results of
a series of numerical experiments. The analysis of laminated

composite structures has been performed by Bert and Malik
[24] using this method. After a close observation to previous
studies [19,22,23] on DQM, Shu and Du [25] have devel-
opedGeneralizedDifferential Quadrature (GDQ)method for
implementing clamped and simply supported boundary con-
ditions for the free vibration analysis of beams and plates.
In the similar fashion, a few major changes have also been
incorporated in DQM in recent decades by combining with
other numerical methods. As such, a mixed Ritz-DQmethod
has been used in free and forced vibration of functionally
graded beams and isotropic rectangular plates in [26–28]. In
a recent work, Yas et al. [29] have investigated free vibration
of Euler–Bernoulli FG beams resting on elastic foundation
by means of GDQ. A general formulation of the quadrature
elementmethod is presented by Jin andWang [30] to estimate
vibration of FG beams.

1.3 Development of RRM

In addition, it is also worth to organise the investigations
performed by means of Rayleigh–Ritz method. Rayleigh’s
classical book ‘Theory of Sound’ was first published in 1877.
In this book, lots of examples can be found on evaluating fun-
damental natural frequencies of free vibration of continuum
systems by assuming the mode shape and setting the max-
imum values of potential and kinetic energy in a cycle of
motion equal to each other. This procedure is well known as
Rayleigh’sMethod. In 1908, Ritz laid out his famousmethod
for determining frequencies andmode shapes, choosingmul-
tiple admissible displacement functions, and minimizing a
functional involving both potential and kinetic energies. Sub-
sequently, this technique is referred to as Rayleigh–Ritz
method and has taken major attention among researchers till
date. These fact on the origin of Rayleigh and Ritz meth-
ods are clearly addressed in Leissa [31]. By assuming a
modification, Bhat [32] have considered the characteristic
orthogonal polynomials inRayleigh–Ritzmethod to estimate
transverse vibration response of rotating cantilever beam
with a tip mass. The natural frequencies of rectangular plates
using characteristic orthogonal polynomials have also been
computed in [33,34] using Rayleigh–Ritz method. Singh
and Chakraverty [35–37] have solved transverse vibration
of elliptic and circular plates using orthogonal polynomials
in Rayleigh–Ritz method satisfying different boundary con-
ditions viz. completely-free, simply-supported and clamped
respectively. Rayleigh–Ritz method is used by Abrate [38]
to find vibration of some non-uniform rods and beams with
one end completely fixed. Ding [39] has developed a fast
converging series consisting of a set of static beam functions
to study vibration characteristics of thin rectangular plates.
Aydogdu and Taskin [40] have investigated free vibration
of a simply supported FG beam within the framework of
Euler-Bernoulli beam theory, parabolic shear deformation
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theory and exponential shear deformation theory. Analytical
solution is proposed by Ece et al. [41] to study vibration
of isotropic beam with variable cross-section. Sina et al.
[42] have given an analytical solution for free vibration of
functionally graded beams. Refined plate theories have been
implemented by Carrera et al. [43] in finding accurate free
vibration analysis of anisotropic, simply supported plates.
The flapwise and chordwise bending vibration analysis of
rotating pre-twisted Timoshenko beam are examined in [44]
by the use of Rayleigh–Ritz method. Free vibration of the
baffled circular plates with radial side cracks and in contact
with water on one side is studied by Si et al. [45] based on
Rayleigh–Ritz method. Moreover, Chakraverty and Pradhan
[46] have given an excellent monograph on vibration of func-
tionally graded beams and plates with various geometries
(rectangular, elliptic and triangular) along with the effect of
complicating environments.

In the above discussion, a brief idea on implementing
three efficient numerical techniques in handling structural
problems has been presented. To the best of authors’ knowl-
edge, no investigation has covered on implementing efficient
numerical solutions in studying vibration of Euler–Bernoulli
FG beams (estimating six natural frequencies of three
FG beams consisting of various constituents and compar-
ison of their numerical approach) along with their recent
developments. As such, present study is associated with
numerical approach of finite element, differential quadra-
ture and Rayleigh–Ritz methods towards free vibration of
Euler–Bernoulli functionally graded beam. The conven-
tional procedures followed by these methods have been
discussed in detail. The material properties of FG con-

stituents vary continuously along thickness direction in
power-law form. The main objective of this investigation is
to address varieties of related significant works and to ana-
lyze the effect of volume fractions of constituents on natural
frequencies. New results for natural frequencies along with
two-dimensional (2-D) mode shapes are incorporated after
checking test of convergence and validation with previous
literature.

2 Functionally graded beam

A straight FG beam of length L , width b and thickness h,
having rectangular cross-section with cartesian coordinate
system is considered here. In addition, thematerial properties
of FG beam vary along the thickness direction according to
power-law form as shown in Fig. 1. The power-law variation
used in Sina et al. [42] is considered

P(z) = (Pc − Pm)

(
z

h
+ 1

2

)k
+ Pm (1)

where Pc and Pm denote the values of the material proper-
ties of the ceramic and metal constituents of the FG beam
respectively. k (power-law exponent) is a non-negative vari-
able parameter. According to this distribution, the bottom
surface (z = − h/2) of FG beam is pure metal, whereas
the top surface (z = h/2) is pure ceramic and for different
values of k one can obtain different volume fractions ofmate-
rial beam as mentioned in Aydogdu and Taskin [40]. For our
present formulations, the material properties viz. Young’s

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
50

100

150

200

250

300

350

400

z/h

Y
ou

ng
s 

m
od

ul
us

k = 0.3
k = 0.5
k = 1.0
k = 3.0
k = 5.0

−0.5 0 0.5
2600

2800

3000

3200

3400

3600

3800

z/h

M
as

s 
de

ns
iti

es

k = 0.3
k = 0.5
k = 1.0
k = 3.0
k = 5.0

(a) Variation of Young’s modulus (b) Variation of mass densities

Fig. 1 Power-law variation of material properties of Al/Al2O3 functionally graded beam
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modulus (E) and mass density (ρ) are considered to vary
along thickness direction except Poisson’s ratio (ν) remain-
ing as constant. In Fig. 1, FG constituents own the properties
of Al (metal) and Al2O3 (ceramic) [42]: Em = 70 GPa,
ρm = 2700 kg/m3, Ec = 380 GPa and ρc = 3800 kg/m3.

Here, classical beam theory is assumed to define the
deformation of thin functionally graded beam as referred by
Şimşek andKocaturk [6], Alshorbagy et al. [7], Aydogdu and
Taskin [40], Sina et al. [42] and Şimşek [47]

ux (x, z) = − z
∂w

∂x
uz(x, z) = w(x, t).

(2)

Now,Eq. (3) represent the kinematic relationswith respect
to displacement field of Eq. (2)

εxx = − z
∂2w

∂x2

γxz = 0
(3)

where εxx and γxz are the normal and shear strains respec-
tively. By assuming the material constituents of FG beam to
obey the generalized Hooke’s law, the state of stresses in the
beam can be written as

σxx = Q11εxx

τxz = Q55γxz .
(4)

where σxx and τxz in Eq. (4) are the normal and the shear
stresses respectively and Qi j are the transformed stiffness
constants in the beam co-ordinate system and are defined as
[48]

Q11 = E(z)

1 − ν2
, Q55 = E(z)

2(1 + ν)
.

3 Numerical formulations

First of all, the classical boundary conditions for transverse
displacement (w) at the specified beam end can be introduced
as provided by Öz [2]

Clamped (C): w = 0; ∂w

∂x
= 0

Simply supported (S): w = 0; ∂2w

∂x2
= 0

Free (F):
∂2w

∂x2
= 0; ∂3w

∂x3
= 0.

(5)

Further, numerical procedures of threewell-knownnumer-
ical techniques viz. FEM, GDQ and Rayleigh–Ritz method

have been addressed to obtain the generalized eigenvalue
problem for free vibration of FG beam as given below.

3.1 Finite elementmethod

In general, the transverse displacement and rotation (slope)
describe the deformed shape of the beam and these compo-
nents at each end of the beam are treated as the unknown
degrees of freedom. As there are four nodal displacements at
the beam ends, the cubic displacement model as mentioned
in Rao [1] can be defined as

w(x) = a1 + a2x + a3x
2 + a4x

3 (6)

where a1, a2, a3 and a4 are the unknown coefficients and can
be found by using the edge conditions. The displacement (w)
and rotation (θ ) at x = 0 and L can be substituted in Eq. (6)
and yield

⎧⎪⎪⎨
⎪⎪⎩

w1

θ1
w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

a1
a2
a3
a4

⎫⎪⎪⎬
⎪⎪⎭

(7)

Solving Eq. (7), the shape function [N ] takes the form

[N ] = [N1(x) N2(x) N3(x) N4(x)] (8)

where

N1(x) = 2x3 − 3Lx2 + L3

L3

N2(x) = x3 − 2Lx2 + L2x

L3

N3(x) = 2x3 − 3Lx2

L3

N4(x) = x3 − Lx2

L3

which helps to find the kinetic energy and also the connec-
tivity matrix [B] for elastic strain energy.

[B] = [B1(x) B2(x) B3(x) B4(x)]

=
[
d2N1

dx2
d2N2

dx2
d2N3

dx2
d2N4

dx2

] (9)

From Eq. (8) and (9), one may find respective element inertia
and stiffness matrices as

[Me] = ρ(z)AL

420

⎛
⎜⎜⎝

156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

⎞
⎟⎟⎠ (10)
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and

[Ke] = E(z)I

L3

⎛
⎜⎜⎝

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎞
⎟⎟⎠ (11)

The formulation for local stiffness and mass matrix are
clearly given in Öz [2] in case of isotropic beams. Prior to
the fact that Young’s modulus in stiffness matrix and mass
density in mass matrix are dependent on the thickness, there
occurs a slight modification in the expression of correspond-
ing matrices. If discretization of total length of the FG beam
is considered, discretized element inertia and stiffness matri-
ces will be combined to obtain the global inertia and stiffness
matrix respectively. The equation ofmotion for free vibration
of FG beam can be obtained from

[M] {w′′}+ [K ] {w} = {0} (12)

where [K ] and [M] are the global stiffness andmassmatrices
respectively and {w} is the system displacement vector. Then
substituting the harmonic displacement in the formw(x, t) =
W (x) exp(iωt) with i = √−1 and ω as natural frequency
and W as amplitude of displacement, we can write Eq. (38)
as

[
[K ] − Ω2[M]

]
{W } = {0} (13)

For non-trivial solution of Eq. (13), it is assumed that the
determinant of coefficientmatrixmust be zero and it provides

det([K ] − Ω2[M]) = 0 (14)

and is referred to as the generalized eigenvalue problem.
Consequently, natural frequencies are to be solved by incor-
porating various sets of classical boundary conditions.

3.2 Differential quadrature method

Analog to the governing equation for vibration of isotropic
beams given by Shu and Du [25], free vibration of Euler–
Bernoulli functionally graded beam can be governed by

{∫
A
z2E(z)dA

}
∂4w

∂x4
+
{∫

A
ρ(z)dA

}
∂2w

∂t2
= 0. (15)

The material properties E(z) and ρ(z) are the Young’s
moduli andmass densities of FGmaterial constituents, which
are assumed to vary along thickness direction in power-law
form (as stated in Eq. 1). By considering the non-dimensional
parameters are − 1

2 ≤ ξ = x/L ≤ 1
2 and − 1

2 ≤ z̄ = z/h ≤
1
2 , Eq. (15) yields

Ẽ I

L4

∂4w

∂ξ4
+ ρ̃A

∂2w

∂t2
= 0 (16)

Here, Ẽ = Em
1−ν2

{
1 + 12 (Er − 1)

(
1

k+3 − 1
k+2

+ 1
4(k+1)

)}
and ρ̃ = ρm

{
1 +
(

ρr−1
k+1

)}
. Introducing the

harmonic type displacement as w(ξ, t) = W (ξ) exp(iωt),
where W (x) are the amplitude in displacement component
and ω is the natural frequency. Next Eq. (16) transforms into

E
d4W

dξ4
− Ω2ρW = 0 (17)

where E = 1
1−ν2

{
1 + 12 (Er −1)

(
1

k+3 − 1
k+2 + 1

4(k+1)

)}
;

ρ =
{
1 +
(

ρr−1
k+1

)}
and Ω2 = ω2L4ρm A

Em I .

In present discussion, the power-law variations of E and
ρ are to be controlled by the components Er and ρr respec-
tively. Moreover, k also plays major role in evaluating both
these material properties. In addition while assuming GDQ
procedure, Bellman et al. [19] have assumed a sufficiently
smooth function f (x) over the interval [a, b], so that its first
derivative f (1)

x (x) at any grid point over [a, b] can be approx-
imated by the following approximation

f (1)
x (xi ) ∼=

N∑
j=1

c(1)
i j f (x j ), i = 1, 2, . . . , N (18)

with the coefficient matrix (c(1)
i j ) can be determined in vari-

ous fashions. f (1)
x (xi ) finds the first order derivative of f (x)

with respect to x at xi . Necessarily, the key procedure in
this method is to compute the weighting coefficients c(1)

i j .
By demanding Eq. (18) to be exact for all polynomials of
degree less than or equal to N − 1. Different approaches
towards finding the weighting coefficients are mentioned
below:

1. In first approach by Bellman et al. [19], the test functions
gk(x) = xk−1; k = 1, 2, . . . , N , which gives a set of
linear algebraic equations

N∑
j=1

c(1)
i j x

k
j = kxk−1

i , i = 1, 2, . . . , N ;

k = 0, 1, . . . , N − 1.

As the matrix is of Vandermonde form, this system of
equations has a unique solution. But unfortunately, the
concerned matrix becomes ill-conditioned and its inver-
sion is difficult when N is very large.

2. On the other hand, the second approach by Bell-
man et al. [19] defines the test function as gk(x) =
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LN (x)

(x−xk)L
(1)
N (xk)

; k = 1, 2, . . . , N , where LN (x) is the

N th order Legendre polynomial and L(1)
N (x) is the

first order derivative of LN (x). In this approach, the
necessary condition is that the coordinates of grid
points should be the roots of an N th order Legendre
polynomial.

3. To overcome such ambiguities of DQM, the general-
ized differential quadrature (GDQ) approach has been
developed by Shu and Du [25] for the determination of
weighting coefficients.

3.2.1 Weighting coefficients of first order derivative [25]

In view of the above, Shu and Du [25] has taken the benefit
of two approaches of Bellman et al. [19] and approach of
Quang and Cheng [22,23] to derive the test functions in GDQ
and kept no restrictions in deciding the grid points over the
domain. For generality, GDQ chooses the base polynomials
(or test functions) gk(x) to be the Lagrange interpolating
polynomial

gk(x) = M(x)

(x − xk)M (1)(xk)
(19)

where M(x) = ∏N
j=1(x − x j ); M (1)(x) = ∏N

j=1, j �=k(xk −
x j )with x1, x2, . . . , xN are the coordinates of the grid points
and may be chosen arbitrarily. For simplicity, it is considered
that

M(x) = N (x, xk)(x − xk), k = 1, 2, . . . , N

with N (xi , x j ) = M (1)(xi )δi j , where δi j is the Kronecker
operator. With these assumptions, Eq. (19) converts to

gk(x) = N (x, xk)

M (1)(xk)
(20)

By substituting Eq. (20) into Eq. (18), we obtain

c(1)
i j = N (1)(xi , x j )

M (1)(x j )
(21)

Wecan easily findM (1)(x j )byusing its concerned expres-
sion. To evaluate N (1)(xi , x j ), let us differentiate M(x)
successively with respect to x and we obtain the following
recurrence formulation

M (m)(x) = N (m)(x, xk)(x − xk) + mN (m−1)(x, xk) (22)

where k = 1, 2, . . . , N ; m = 1, 2, . . . , N − 1; M (m)(x)
and N (m)(x, xk) are the mth order derivatives of M(x) and
N (x, xk) respectively. The expression of N (1)(xi , x j ) can be

obtained fromEq. (22) as N (1)(xi , x j ) =
{

M(1)(xi )
xi−x j

; i �= j
M(2)(xi )

2 ; i = j
.

Substituting this expression in Eq. (21), we get

c(1)
i j =

⎧⎪⎨
⎪⎩

M(1)(xi )
(xi−x j )M(1)(x j )

; i �= j

M(2)(xi )

2M(1)(xi )
; i = j

(23)

Equation (23) is a simple expression for the computation
of c(1)

i j without the restriction of choosing grid points xi .

Rather than evaluating M (2)(xi ), it is worth to mention that
one set of base polynomials can be derived uniquely by linear
combination of another set of base polynomials in a vec-
tor space. Moreover, c(1)

i j satisfies the relation;
∑N

j=1 c
(1)
i j =

0 which may be obtained by the base polynomials xk−1

when k = 1. Here, c(1)
i i can easily be determined from

c(1)
i j , i �= j .

3.2.2 Weighting coefficients of second and higher order
derivatives [25]

The second and higher order derivatives of the smooth
function f (x) may be written with the linear constrained
relationships as follows:

f (m)
x (xi ) ∼=

N∑
j=1

c(m)
i j f (x j ), i = 1, 2, . . . , N (24)

Then, the (m − 1)th order derivatives can be expressed as

f (m−1)
x (xi ) ∼=

N∑
j=1

c(m−1)
i j f (x j ), i = 1, 2, . . . , N (25)

Now let us substitute Eq. (20) into Eqs. (24) and (25) and
using Eqs. (22) and (23), a recurrence relationmay bewritten
as below:

c(m)
i j =

⎧⎪⎪⎨
⎪⎪⎩
m

(
c(1)
i j c

(m−1)
i i − c(m−1)

i j
xi−x j

)
; i �= j

M(m+1)(xi )
(m+1)M(1)(xi )

; i = j

for i, j = 1, 2, . . . , N ;m = 2, 3, . . . , N − 1 (26)

In N−dimensional vector space, the system of equations
for c(m)

i j derived from Lagrange interpolating polynomials
should also be equivalent to that derived from the base
polynomials xk−1, k = 1, 2, . . . , N . As discussed for the
weighting coefficients of first order derivatives, the weight-
ing coefficients of higher order derivatives also follow the
equation

∑N
j=1 c

(m)
i j = 0 obtained from the base polynomi-

als xk−1 when k = 1, i.e. c(m)
i i =∑N

j=1,i �= j c
(m)
i j .
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3.2.3 Discretization of governing equation

The non-homogeneous grid points in case of DQM are to
be considered as Chebyshev–Gauss–Lobatto points in axial
direction [25]. The governing equation (Eq. 17) for free
vibration of FG beam can be transformed into the follow-
ing expression by substituting the weighting coefficients of
required derivatives,

E
N∑
j=1

c(4)
i j W (ξ j ) − Ω2ρW (ξi ) = 0; i = 1, 2, . . . , N (27)

Moreover, the classical boundary supports given in Eq. (5)
may be defined as

Clamped (C): wζ = 0;
N∑
j=1

c(1)
ζ, jW (ξ j ) = 0

Simply supported (S): wζ = 0;
N∑
j=1

c(2)
ζ, jW (ξ j ) = 0

Free (F):
N∑
j=1

c(2)
ζ, jW (ξ j ) = 0;

N∑
j=1

c(3)
ζ, jW (ξ j ) = 0

(28)

with ζ = 1 or N (the edges of FGbeam). Now, the discretized
governing equation of Eq. (27) may be modified to by using
the method of modification of involved weighting coefficient
matrices. We have given a simple illustration of modifying
weighting coefficient matrix for clamped edge at ξ = 0 as
mentioned below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
′
1

w
′
2

...

w
′
N−1

w
′
N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1)
1,1 c(1)

1,2 . . . c(1)
1,N−1 c(1)

1,N

c(1)
2,1 c(1)

2,2 . . . c(1)
2,N−1 c(1)

2,N

...
...

...
...

...

c(1)
N−1,1 c(1)

N−1,2 . . . c(1)
N−1,N−1 c(1)

N−1,N

c(1)
N ,1 c(1)

N ,2 . . . c(1)
N ,N−1 c(1)

N ,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2

...

wN−1

wN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [C (1)] {w j
}

(29)

Themodification of weighting coefficient matrix involved
in Eq. (29) occurs by considering w1 = 0 and w

′
1 = 0 at

ξ = 0 and takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
′
1

w
′
2
...

w
′
N−1

w
′
N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

0 c(1)
2,2 . . . c(1)

2,N−1 c(1)
2,N

...
...

...
...

...

0 c(1)
N−1,2 . . . c(1)

N−1,N−1 c(1)
N−1,N

0 c(1)
N ,2 . . . c(1)

N ,N−1 c(1)
N ,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2

...

wN−1

wN

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= [C̃ (1)] {w j
}

(30)

In Eq. (30), [C̃ (1)] is the modified weighting coefficient
matrix for FG beam with clamped edge at ξ = 0. With the
usual DQ analog, the higher (N th) order weighting coeffi-
cientmatrix can be developed from [C̃ (N )] = [C̃ (N−1)][C (1)]
by incorporating different sets of edge conditions. Further,
the modified matrices are to be substituted in Eq. (27) to get
the natural frequencies and mode shapes for free vibration of
functionally graded beam.

3.3 Rayleigh–Ritz method

Finally, Rayleigh–Ritz method has also been implemented in
present investigation. Using the constitutive relation of Eq.
(4), the strain energy S and the kinetic energy T of the beam
at any instant in cartesian co-ordinates may be written as

S = 1

2

∫ L

0

∫
A
(σxxεxx + τxzγxz) dA dx (31)

T = 1

2

∫ L

0

∫
A
ρ(z)

(
∂w

∂t

)2
dA dx (32)

where A and ρ are the area of cross-section and the mass
density of the beam respectively. In Euler–Bernoulli beam
theory, Eqs. (31) and (32) become

S = 1

2

∫ L

0
Dzw

2
,xx dx (33)

T = 1

2

∫ L

0
Iz

(
∂w

∂t

)2
dx (34)

The stiffness and inertial coefficients appearing in Eqs.
(33) and (34) are defined as

Dz =
∫ h/2

−h/2
Q11z

2 dz

Iz =
∫ h/2

−h/2
ρ(z) dz

(35)
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Assuming harmonic type transverse deflection w(x, t) =
W (x) sinωt with W (x) and ω as respective amplitude and
natural frequency of the beam. Incorporating harmonic dis-
placement and the non-dimensionalized length parameter
0 ≤ ξ = x/L ≤ 1 in Eqs. (33) and (34) yield the maxi-
mum strain energy (Smax ) and the maximum kinetic energy
(Tmax ) as

Smax = DzEm

2L4

∫ 1

0
DzW

2
,xx dξ (36)

Tmax = ω2

2

∫ 1

0
IzW

2 dξ (37)

Next the amplitude of vibration are expanded in terms of
algebraic polynomial functions by the following series

W =
n∑

i=1

ciφi

where ci are the unknown constant coefficients to be deter-
mined andφi are the admissible functions,whichmust satisfy
the essential boundary conditions and can be represented as
[49]

φi = f xi−1, i = 1, 2, . . . , n.

Here, n is the number of polynomials involved in the admis-
sible functions and f = x p (x − 1)q where p, q = 0, 1 or 2
may be expressed as per different sets of classical boundary
conditions (BCs). The parameter p = 0, 1 or 2 accord-
ing as the side x = 0 is free (F), simply supported (S)
or clamped (C). Similar interpretation can be given to the
parameter q corresponding to the sides x = 1. Furthermore,
RayleighQuotient (ω2) can be obtained by equating Smax and
Tmax . Taking partial derivative of the Rayleigh Quotient with
respect to the constant coefficients involved in the admissible
functions as follows

∂ω2

∂ci
= 0; i = 1, 2, . . . , n

which results in the governing equation for the free vibration
of FG beam in the form of generalized eigenvalue problem
as mentioned below
(
K − Ω2M

)
{�} = 0 (38)

whereK andM are the stiffness and inertia matrices respec-
tively and {�} is the column vector of unknown coefficients.
The eigenvalues (Ω) for the above eigenvalue problem (Eq.
38) are non-dimensional frequencies for the concerned vibra-
tion problem. The non-dimensional frequency (Ω) evaluated
in all above mentioned methods takes the expression Ω =

ωL2
√

ρm A
Em I . In subsequent sections, present study involves

the evaluation of these frequencies after the test of conver-
gence and validation with existing results.

4 Convergence and validation studies

This section involves the test of convergence of natural
frequencies in Tables 1, 2, 3, 4, 5 and 6 along with compar-
ison with previously obtained results. The significant facts
associated with convergence and validation studies may be
summarized as given below:

• The convergence of six lowest natural frequencies of
isotropic (k is taken as nullity) and FG beams are carried
out in Tables 1, 2, 3, 4, 5 and 6 by means of the above
discussed numerical techniques with reference to their
corresponding parameters. The methods of finite ele-
ment and differential quadrature assume such parameter
to be the number of discretized elements (discretization
of domain),whereasRayleigh–Ritzmethodwill certainly
take the number of polynomials involved in transverse
displacement respectively.

• The FEM is implemented in Tables 1 and 4, whereas
DQM is considered in Tables 2 and 5 and RRM in
Tables 3 and 6 respectively. Moreover, discretization
of element domain in FEM and DQM are the non-
homogeneous grids based onGauss–Chebyshev–Lobatto
points as assumed by Shu and Du [25].

• Assuming the isotropic beam (Er = ρr = 1), first six
non-dimensional frequencies are evaluated in Tables 1, 2

and 3 using the formulation
(
Ω = ωL2

√
ρm A
Em I

)
and are

validated with Öz [2], Shu and Du [25], Abrate [38] and
Ece et al. [41]. It can be observed that present results are
in excellent agreement with existing literature.

• In a similar fashion, first six eigenfrequencies of FGbeam

with the formulationΩ2
(
= ωL2

√
ρm A
Em I

)
have been com-

puted in Tables 4, 5 and 6 with Er =0.5, 2.0 and k =
0, 0.1, 2.0 and constant mass density and compared with
Şimşek and Kocaturk [6] and Alshorbagy et al. [7]. One
can easily see a good agreement also in these computa-
tions.

• The effect of slenderness (length-to-thickness) ratio is
redundant in case of Euler–Bernoulli beam as it doesn’t
even occur in the formulation. As such, three lowest nat-
ural frequencies of S-S FG beammentioned in [6,7] have
been validated in Tables 4, 5 and 6 corresponding to the
largest slenderness ratio (L/h = 100 or very thin FG
beam).

• It is interesting to note that the results found using all
three numerical techniques are nearly same, but the con-
vergence is faster in RRM with desired accuracies.

123



Implementation of numerical approximations in studying vibration of functionally graded beams 1031

Table 1 Convergence and comparison of six lowest natural frequencies of isotropic beam (Er = ρr = 1) using finite element method

BCs No. of elements Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C 6 22.4335 62.2158 130.4372 211.6678 348.4148 497.9560

8 22.3892 61.9058 122.7981 201.4761 330.3318 466.7648

10 22.3792 61.7640 121.5043 201.8458 310.4589 421.6543

15 22.3743 61.6890 121.0110 200.3150 299.9984 420.8040

18 22.3738 61.6803 120.9536 200.0738 299.2426 418.7980

20 22.3736 61.6776 120.9358 199.9981 299.0020 418.1718

Öz [2] 22.3733 61.6729 120.9039 199.8616 298.5627 –

Shu and Du [25] 22.3733 61.6728 120.9021 199.9365 299.3886 –

Abrate [38] 22.3732854 61.672823 120.903392 – – –

Ece et al. [41] 22.37327 61.67281 120.90338 199.85945 298.55552 –

C-S 6 15.4363 50.3112 109.2249 186.8891 314.4239 468.6745

8 15.4231 50.0853 105.3144 180.5077 294.2674 420.5870

10 15.4200 50.0110 104.6211 179.8376 279.4785 391.8562

15 15.4185 49.9730 104.3149 178.5895 273.1206 388.5222

18 15.4184 49.9686 104.2790 178.4199 272.5481 386.9595

20 15.4183 49.9673 104.2679 178.3668 272.3667 386.4633

Öz [2] 15.2752 45.5766 79.3377 133.4684 217.8558 –

Shu and Du [25] 15.4182 49.9648 104.2471 178.4642 273.1126 –

Abrate [38] 15.4182 49.9649 104.248 178.270 272.032 385.533

S-S 6 9.8743 39.6323 92.1283 160.4390 283.3474 432.8413

8 9.8709 39.5323 89.4581 159.2565 266.6035 375.8417

10 9.8701 39.4990 89.0481 159.0056 252.4690 357.7353

15 9.8697 39.4820 88.8663 158.1318 247.5481 357.6446

18 9.8696 39.4801 88.8450 158.0160 247.1226 356.4209

20 9.8696 39.4795 88.8384 157.9798 246.9882 356.0326

Öz [2] 9.8695 39.4784 88.8267 157.9147 246.7413 –

Shu and Du [25] 9.8696 39.4784 88.8249 158.0619 248.4716 –

Ece et al. [41] 9.86960 39.47841 88.82643 157.91367 246.74011 –

C-F 6 3.5161 22.0780 62.1149 129.7833 210.4847 348.1611

8 3.5160 22.0459 61.8978 122.6933 201.2669 329.6807

10 3.5160 22.0388 61.7763 121.4640 201.7579 310.2725

15 3.5160 22.0352 61.7113 121.0028 200.2997 299.9689

18 3.5160 22.0348 61.7037 120.9490 200.0668 299.2290

20 3.5160 22.0347 61.7014 120.9323 199.9936 298.9933

Ece et al. [41] 3.51602 22.03449 61.69721 120.90191 199.85953 –

• It is also evident that natural frequencies in case of FG
beam are increasing with increase in k for Er < 1 and
follow descending pattern with increase in k while con-
sidering Er > 1.

5 Numerical results

In view of the test of convergence and validation, it is worth
evaluating the first six non-dimensional frequencies of FG
beams having different constituents. The three different FG

beam constituents (Al/Al2O3, Al/ZrO2 and SUS304/Si3N4)
have been considered in Tables 7, 8, 9, 10, 11 and 12 to find
their corresponding results and their material properties are
reported as follows.

Al/Al2O3: Em = 70GPa, ρm = 2702 kg/m3, Ec = 380GPa,
ρc = 3960 kg/m3 and νm = νc = 0.3.

Al/ZrO2: Em = 70 GPa, ρm = 2700 kg/m3, Ec = 200 GPa,
ρc = 5700 kg/m3 and νm = νc = 0.3.

SUS304/Si3N4: Em = 208 GPa, ρm = 8166 kg/m3, Ec =
322 GPa, ρc = 2370 kg/m3 and νm = νc = 0.3.
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Table 2 Convergence and comparison of six lowest natural frequencies of isotropic beam (Er = ρr = 1) using differential quadrature method

BCs No. of elements Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C 10 22.3723 61.5963 123.5385 236.0434 255.7144 293.5479

15 22.3733 61.6728 120.9021 199.9365 299.3886 412.3276

18 22.3733 61.6728 120.9034 199.8600 298.5299 416.7246

19 22.3733 61.6728 120.9034 199.8597 298.5597 416.8916

20 22.3733 61.6728 120.9034 199.8594 298.5572 417.0123

Öz [2] 22.3733 61.6729 120.9039 199.8616 298.5627 –

Shu and Du [25] 22.3733 61.6728 120.9021 199.9365 299.3886 –

Abrate [38] 22.3732854 61.672823 120.903392 – – –

Ece et al. [41] 22.37327 61.67281 120.90338 199.85945 298.55552 –

C-S 10 15.4170 49.9216 109.2703 193.8286 193.8286 284.0631

15 15.4182 49.9648 104.2471 178.4642 273.1126 371.5845

18 15.4182 49.9649 104.2477 178.2701 271.9534 385.1638

19 15.4182 49.9649 104.2477 178.2704 272.0350 385.2065

20 15.4182 49.9649 104.2477 178.2697 272.0364 385.5589

Öz [2] 15.2752 45.5766 79.3377 133.4684 217.8558 –

Shu and Du [25] 15.4182 49.9648 104.2471 178.4642 273.1126 –

Abrate [38] 15.4182 49.9649 104.248 178.270 272.032 385.533

S-S 10 9.8693 39.4174 92.8422 180.1025 180.1025 197.3083

15 9.8696 39.4784 88.8249 158.0619 248.4716 342.9591

18 9.8696 39.4784 88.8265 157.9146 246.6789 354.6659

19 9.8696 39.4784 88.8264 157.9141 246.7488 355.0287

20 9.8696 39.4784 88.8264 157.9136 246.7441 355.3596

Öz [2] 9.8695 39.4784 88.8267 157.9147 246.7413 –

Shu and Du [25] 9.8696 39.4784 88.8249 158.0619 248.4716 –

Ece et al. [41] 9.86960 39.47841 88.82643 157.91367 246.74011 –

C-F 10 3.5160 22.0346 61.7101 120.1944 174.8618 284.8300

15 3.5160 22.0345 61.6972 120.9021 199.8443 298.2386

18 3.5160 22.0345 61.6972 120.9019 199.8594 298.5604

19 3.5160 22.0345 61.6972 120.9019 199.8595 298.5547

20 3.5160 22.0345 61.6972 120.9019 199.8595 298.5553

Ece et al. [41] 3.51602 22.03449 61.69721 120.90191 199.85953 –

The mathematical expression for the natural frequency in

these computation is Ω = ωL2

h

√
ρm
Em

. In Tables 7, 8, 9, 10,

11 and 12, the effect of power-law indices (k) on first six
natural frequencies of different FG beams under four sets
of classical edge supports have been found using all three
numerical techniques. Looking into these tabulations, one
may easily summarize the following facts:

• In terms of beam constituents, Al/Al2O3 FG beam is con-
sidered in Tables 7 and 8, Al/ZrO2 constituents in Tables
9 and 10 and SUS304/Si3N4 is assumed in Tables 11 and
12 respectively. Prior to boundary conditions, Tables 7,
9 and 11 considers C-C and C-S edge support based FG
beams,whereas Tables 8, 10 and 12 assumes the FGbeam
under cantilever and S-S edge conditions respectively.

• It may be observed that present results follow descending
pattern with increase in power-law indices (k) in case
of Al/Al2O3 and SUS304/Si3N4 beams, whereas a few
ambiguities can be seen in Al/ZrO2 FG beam.

• Among all the classical edge conditions, natural frequen-
cies in all modes of C-C FG beams are always the highest
and the least in case of cantilever FG beams.

• In FEM and DQM, 20 element discretizations of domain
is being taken for evaluations. On the other hand, 15 num-
ber of polynomials involved in transverse displacement
have been assumed in RRM. One may easily say that
RRM is more efficient than FEM and DQM in terms of
convergence criterion, but the computed results at each
mode are approximately close to each other.
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Table 3 Convergence and comparison of six lowest natural frequencies of isotropic beam (Er = ρr = 1) using RRM

BCs No. of polynomials Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C 6 22.3733 61.6729 121.1306 201.1261 353.4329 531.8278

8 22.3733 61.6728 120.9055 199.8853 303.2272 430.1219

10 22.3733 61.6728 120.9034 199.8597 298.7300 417.7781

13 22.3733 61.6728 120.9034 199.8594 298.5556 417.0128

15 22.3733 61.6728 120.9034 199.8594 298.5555 416.9911

Öz [2] 22.3733 61.6729 120.9039 199.8616 298.5627 –

Shu and Du [25] 22.3733 61.6728 120.9021 199.9365 299.3886 –

Abrate [38] 22.3732854 61.672823 120.903392 – – –

Ece et al. [41] 22.37327 61.67281 120.90338 199.85945 298.55552 –

C-S 6 15.4182 49.9686 104.4047 189.1063 313.1092 1058.5304

8 15.4182 49.9649 104.2491 178.7427 275.4075 451.4249

10 15.4182 49.9649 104.2477 178.2770 272.1555 392.1102

13 15.4182 49.9649 104.2477 178.2697 272.0318 385.5473

15 15.4182 49.9649 104.2477 178.2697 272.0310 385.5316

Öz [2] 15.2752 45.5766 79.3377 133.4684 217.8558 –

Shu and Du [25] 15.4182 49.9648 104.2471 178.4642 273.1126 –

Abrate [38] 15.4182 49.9649 104.248 178.270 272.032 385.533

S-S 6 9.8696 39.4791 90.3370 164.5755 508.4307 859.2301

8 9.8696 39.4784 88.8482 158.1252 266.8736 403.5573

10 9.8696 39.4784 88.8265 157.9162 247.8587 359.3483

13 9.8696 39.4784 88.8264 157.9137 246.7404 355.4661

15 9.8696 39.4784 88.8264 157.9137 246.7401 355.3087

Öz [2] 9.8695 39.4784 88.8267 157.9147 246.7413 –

Shu and Du [25] 9.8696 39.4784 88.8249 158.0619 248.4716 –

Ece et al. [41] 9.86960 39.47841 88.82643 157.91367 246.74011 –

C-F 6 3.5160 22.0348 61.7163 128.3893 223.5514 1006.0133

8 3.5160 22.0345 61.6973 121.1167 201.0946 355.9771

10 3.5160 22.0345 61.6972 120.9041 199.8858 303.1623

13 3.5160 22.0345 61.6972 120.9019 199.8598 298.5585

15 3.5160 22.0345 61.6972 120.9019 199.8595 298.5556

Ece et al. [41] 3.51602 22.03449 61.69721 120.90191 199.85953 –

In particular, the eigenvectors corresponding to the nat-
ural frequencies of FG beam depicts the mode shapes of
the continuous beam domain. In this part, first six two-
dimensional (2-D) mode shapes associated with six lowest
natural frequencies of SUS304/Si3N4 FG beam (k = 10)
under different boundary conditions have been demonstrated
inFigs. 2, 3, 4 and5.Moreover, Fig. 2 considers forC-Cbased
FG beam. Similarly, Figs. 3, 4 and 5 are meant for the beam
under C-S, cantilever and S-S edge conditions respectively.
In view of these, one can easily depict six mode shapes for
any given volume fraction of FG constituents.

6 Concluding remarks

The present investigation is associated with free vibra-
tion of Euler–Bernoulli functionally graded beams based

on finite element, differential quadrature and Rayleigh–
Ritz methods. A brief review on related investigations on
these methods in handling FG structural problems have
also been discussed in detail. Afterwards, a detailed for-
mulations of the given methods to solve the titled prob-
lem are clearly organized. Three different FG materials
viz. Al/Al2O3, Al/ZrO2 and SUS304/Si3N4 are consid-
ered to denote the beam constituents. Based on the esti-
mated results, following significant facts may be summa-
rized.

• Effect of slenderness (length-to-thickness) ratio is redun-
dant in case of Euler–Bernoulli beam as it doesn’t even
occur in the formulation.

• It is interesting to note that natural frequencies follow
ascending pattern with increase in k in case of Er <
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Table 4 Convergence and comparison of six lowest natural frequencies of S-S FG beam using finite element method

Er k No. of elements Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.5 0 6 2.6424 5.2938 8.0712 10.6512 14.1547 17.4947

8 2.6419 5.2871 7.9534 10.6119 13.7302 16.3022

10 2.6418 5.2849 7.9351 10.6035 13.3612 15.9046

15 2.6418 5.2838 7.9270 10.5743 13.2304 15.9026

18 2.6418 5.2836 7.9261 10.5704 13.2190 15.8754

20 2.6418 5.2836 7.9258 10.5692 13.2154 15.8667

Şimşek and Kocaturk [6] 2.6416 5.2830 7.9237 – – –

Alshorbagy et al. [7] 2.6417 5.2831 7.9238 – – –

0.1 6 2.7159 5.4411 8.2958 10.9476 14.5486 17.9816

8 2.7154 5.4342 8.1747 10.9072 14.1122 16.7558

10 2.7153 5.4320 8.1560 10.8986 13.7330 16.3472

15 2.7153 5.4308 8.1476 10.8686 13.5986 16.3451

18 2.7153 5.4307 8.1467 10.8646 13.5869 16.3172

20 2.7153 5.4306 8.1464 10.8633 13.5832 16.3083

Şimşek and Kocaturk [6] 2.7117 5.4232 8.1339 – – –

Alshorbagy et al. [7] 2.7121 5.4238 8.1349 – – –

2.0 6 2.9718 5.9538 9.0776 11.9792 15.9196 19.6760

8 2.9713 5.9463 8.9450 11.9350 15.4421 18.3348

10 2.9712 5.9438 8.9245 11.9256 15.0271 17.8877

15 2.9711 5.9425 8.9154 11.8927 14.8800 17.8854

18 2.9711 5.9424 8.9143 11.8884 14.8672 17.8548

20 2.9711 5.9424 8.9140 11.8870 14.8631 17.8450

Şimşek and Kocaturk [6] 2.9475 5.8947 8.8411 – – –

Alshorbagy et al. [7] 2.9476 5.8948 8.8413 – – –

2.0 0 6 3.7369 7.4866 11.4144 15.0630 20.0178 24.7413

8 3.7362 7.4771 11.2478 15.0074 19.4174 23.0547

10 3.7361 7.4740 11.2220 14.9956 18.8956 22.4925

15 3.7360 7.4724 11.2105 14.9543 18.7106 22.4897

18 3.7360 7.4722 11.2092 14.9489 18.6945 22.4512

20 3.7360 7.4721 11.2088 14.9471 18.6894 22.4389

Şimşek and Kocaturk [6] 3.7359 7.4713 11.2059 – – –

Alshorbagy et al. [7] 3.7359 7.4714 11.206 – – –

0.1 6 3.6815 7.3755 11.2451 14.8396 19.7209 24.3743

8 3.6808 7.3662 11.0810 14.7848 19.1294 22.7128

10 3.6807 7.3631 11.0555 14.7732 18.6154 22.1589

15 3.6806 7.3615 11.0442 14.7325 18.4331 22.1561

18 3.6806 7.3613 11.0429 14.7271 18.4172 22.1182

20 3.6806 7.3613 11.0425 14.7254 18.4122 22.1061

Şimşek and Kocaturk [6] 3.6793 7.3582 11.0362 – – –

Alshorbagy et al. [7] 3.6791 7.3577 11.035 – – –

2.0 6 3.4181 6.8479 10.4407 13.7780 18.3101 22.6306

8 3.4175 6.8392 10.2883 13.7272 17.7609 21.0880

10 3.4174 6.8364 10.2647 13.7163 17.2837 20.5737

15 3.4173 6.8349 10.2542 13.6786 17.1144 20.5711

18 3.4173 6.8347 10.2529 13.6736 17.0997 20.5359

20 3.4173 6.8347 10.2526 13.6720 17.0950 20.5247

Şimşek and Kocaturk [6] 3.3784 6.7563 10.1333 – – –

Alshorbagy et al. [7] 3.3784 6.7564 10.134 – – –
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Table 5 Convergence and comparison of six lowest natural frequencies of S-S FG beam using differential quadrature method

Er k No. of discretizations Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.5 0 10 2.6417 5.2794 8.1024 11.3823 11.3823 11.8118

15 2.6418 5.2835 7.9252 10.5720 13.2550 15.5727

18 2.6418 5.2835 7.9253 10.5670 13.2071 15.8362

19 2.6418 5.2835 7.9253 10.5670 13.2090 15.8443

20 2.6418 5.2835 7.9253 10.5670 13.2089 15.8517

Şimşek and Kocaturk [6] 2.6416 5.2830 7.9237 – – –

Alshorbagy et al. [7] 2.6417 5.2831 7.9238 – – –

0.1 10 2.7152 5.4263 8.3279 11.6990 11.6990 12.1405

15 2.7153 5.4305 8.1457 10.8662 13.6239 16.0060

18 2.7153 5.4305 8.1458 10.8611 13.5747 16.2769

19 2.7153 5.4305 8.1458 10.8611 13.5766 16.2853

20 2.7153 5.4305 8.1458 10.8611 13.5765 16.2928

Şimşek and Kocaturk [6] 2.7117 5.4232 8.1339 – – –

Alshorbagy et al. [7] 2.7121 5.4238 8.1349 – – –

2.0 10 2.9711 5.9377 9.1127 12.8014 12.8014 13.2845

15 2.9711 5.9423 8.9133 11.8901 14.9077 17.5143

18 2.9711 5.9423 8.9134 11.8846 14.8538 17.8108

19 2.9711 5.9423 8.9134 11.8846 14.8559 17.8199

20 2.9711 5.9423 8.9134 11.8845 14.8558 17.8282

Şimşek and Kocaturk [6] 2.9475 5.8947 8.8411 – – –

Alshorbagy et al. [7] 2.9476 5.8948 8.8413 – – –

2.0 0 10 3.7359 7.4662 11.4586 16.0969 16.0969 16.7044

15 3.7360 7.4720 11.2079 14.9510 18.7454 22.0231

18 3.7360 7.4720 11.2080 14.9441 18.6777 22.3958

19 3.7360 7.4720 11.2080 14.9440 18.6804 22.4073

20 3.7360 7.4720 11.2080 14.9440 18.6802 22.4177

Şimşek and Kocaturk [6] 3.7359 7.4713 11.2059 – – –

Alshorbagy et al. [7] 3.7359 7.4714 11.206 – – –

0.1 10 3.6805 7.3555 11.2886 15.8582 15.8582 16.4566

15 3.6806 7.3612 11.0417 14.7293 18.4674 21.6965

18 3.6806 7.3612 11.0418 14.7224 18.4007 22.0636

19 3.6806 7.3612 11.0418 14.7224 18.4033 22.0749

20 3.6806 7.3612 11.0418 14.7224 18.4031 22.0852

Şimşek and Kocaturk [6] 3.6793 7.3582 11.0362 – – –

Alshorbagy et al. [7] 3.6791 7.3577 11.035 – – –

2.0 10 3.4172 6.8293 10.4810 14.7237 14.7237 15.2793

15 3.4173 6.8346 10.2518 13.6756 17.1463 20.1443

18 3.4173 6.8346 10.2519 13.6692 17.0843 20.4853

19 3.4173 6.8346 10.2519 13.6692 17.0868 20.4957

20 3.4173 6.8346 10.2519 13.6692 17.0866 20.5053

Şimşek and Kocaturk [6] 3.3784 6.7563 10.1333 – – –

Alshorbagy et al. [7] 3.3784 6.7564 10.134 – – –
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Table 6 Convergence and comparison of six lowest natural frequencies of S-S FG beam using RRM

Er k No. of polynomials Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.5 0 6 2.6418 5.2836 7.9924 10.7876 18.9609 24.6489

8 2.6418 5.2835 7.9262 10.5741 13.7371 16.8925

10 2.6418 5.2835 7.9253 10.5671 13.2387 15.9404

13 2.6418 5.2835 7.9253 10.5670 13.2088 15.8541

15 2.6418 5.2835 7.9253 10.5670 13.2088 15.8506

Şimşek and Kocaturk [6] 2.6416 5.2830 7.9237 – – –

Alshorbagy et al. [7] 2.6417 5.2831 7.9238 – – –

0.1 6 2.7153 5.4306 8.2148 11.0878 19.4885 25.3348

8 2.7153 5.4305 8.1468 10.8683 14.1194 17.3626

10 2.7153 5.4305 8.1458 10.8612 13.6071 16.3840

13 2.7153 5.4305 8.1458 10.8611 13.5764 16.2953

15 2.7153 5.4305 8.1458 10.8611 13.5763 16.2917

Şimşek and Kocaturk [6] 2.7117 5.4232 8.1339 – – –

Alshorbagy et al. [7] 2.7121 5.4238 8.1349 – – –

2.0 6 2.9711 5.9423 8.9889 12.1326 21.3250 27.7222

8 2.9711 5.9423 8.9145 11.8925 15.4499 18.9988

10 2.9711 5.9423 8.9134 11.8846 14.8893 17.9279

13 2.9711 5.9423 8.9134 11.8845 14.8557 17.8308

15 2.9711 5.9423 8.9134 11.8845 14.8557 17.8269

Şimşek and Kocaturk [6] 2.9475 5.8947 8.8411 – – –

Alshorbagy et al. [7] 2.9476 5.8948 8.8413 – – –

2.0 0 6 3.7360 7.4721 11.3029 15.2560 26.8147 34.8588

8 3.7360 7.4720 11.2094 14.9540 19.4272 23.8897

10 3.7360 7.4720 11.2080 14.9441 18.7223 22.5432

13 3.7360 7.4720 11.2080 14.9440 18.6800 22.4211

15 3.7360 7.4720 11.2080 14.9440 18.6800 22.4161

Şimşek and Kocaturk [6] 3.7359 7.4713 11.2059 – – –

Alshorbagy et al. [7] 3.7359 7.4714 11.206 – – –

0.1 6 3.6806 7.3612 11.1353 15.0297 26.4170 34.3417

8 3.6806 7.3612 11.0431 14.7322 19.1391 23.5353

10 3.6806 7.3612 11.0418 14.7225 18.4446 22.2088

13 3.6806 7.3612 11.0418 14.7224 18.4030 22.0885

15 3.6806 7.3612 11.0418 14.7224 18.4030 22.0836

Şimşek and Kocaturk [6] 3.6793 7.3582 11.0362 – – –

Alshorbagy et al. [7] 3.6791 7.3577 11.035 – – –

2.0 6 3.4173 6.8346 10.3387 13.9545 24.5272 31.8850

8 3.4173 6.8346 10.2531 13.6783 17.7699 21.8517

10 3.4173 6.8346 10.2519 13.6693 17.1251 20.6201

13 3.4173 6.8346 10.2519 13.6692 17.0865 20.5084

15 3.4173 6.8346 10.2519 13.6692 17.0865 20.5038

Şimşek and Kocaturk [6] 3.3784 6.7563 10.1333 – – –

Alshorbagy et al. [7] 3.3784 6.7564 10.134 – – –
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Table 7 Effect of power-law exponents (k) on Al/Al2O3 FG beam under C-C and C-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C FEM 0 13.0305 35.9215 70.4338 116.4803 174.1409 243.5462

0.1 12.5814 34.6834 68.0062 112.4656 168.1388 235.1519

0.2 12.2217 33.6918 66.0620 109.2503 163.3318 228.4291

1 10.9326 30.1380 59.0937 97.7265 146.1034 204.3342

2 10.4869 28.9095 56.6850 93.7430 140.1481 196.0053

5 9.8166 27.0615 53.0614 87.7506 131.1892 183.4758

10 9.0617 24.9806 48.9812 81.0029 121.1013 169.3672

DQM 0 13.0304 35.9187 70.4150 116.3995 173.8818 242.8708

0.1 12.5812 34.6807 67.9880 112.3876 167.8887 234.4999

0.2 12.2216 33.6892 66.0443 109.1745 163.0888 227.7957

1 10.9324 30.1356 59.0779 97.6587 145.8861 203.7676

2 10.4868 28.9073 56.6698 93.6780 139.9396 195.4618

5 9.8164 27.0594 53.0472 87.6897 130.9940 182.9670

10 9.0616 24.9786 48.9681 80.9467 120.9211 168.8976

RRM 0 13.0304 35.9187 70.4150 116.3995 173.8808 242.8585

0.1 12.5812 34.6807 67.9880 112.3876 167.8877 234.4880

0.2 12.2216 33.6892 66.0443 109.1745 163.0879 227.7841

1 10.9324 30.1356 59.0779 97.6587 145.8853 203.7572

2 10.4868 28.9073 56.6698 93.6780 139.9388 195.4519

5 9.8164 27.0594 53.0472 87.6897 130.9933 182.9577

10 9.0616 24.9786 48.9681 80.9467 120.9204 168.8890

C-S FEM 0 8.9797 29.1013 60.7263 103.8821 158.6282 225.0789

0.1 8.6702 28.0983 58.6333 100.3016 153.1609 217.3212

0.2 8.4223 27.2950 56.9570 97.4340 148.7821 211.1081

1 7.5340 24.4159 50.9491 87.1566 133.0884 188.8403

2 7.2269 23.4206 48.8724 83.6040 127.6636 181.1429

5 6.7649 21.9235 45.7483 78.2597 119.5028 169.5635

10 6.2447 20.2377 42.2304 72.2418 110.3135 156.5247

DQM 0 8.9797 29.0999 60.7146 103.8255 158.4359 224.5522

0.1 8.6702 28.0969 58.6220 100.2470 152.9751 216.8126

0.2 8.4223 27.2936 56.9460 97.3810 148.6016 210.6141

1 7.5339 24.4147 50.9393 87.1092 132.9270 188.3983

2 7.2268 23.4195 48.8629 83.5585 127.5088 180.7190

5 6.7648 21.9224 45.7394 78.2171 119.3578 169.1666

10 6.2447 20.2367 42.2222 72.2025 110.1797 156.1584

RRM 0 8.9797 29.0999 60.7146 103.8255 158.4327 224.5363

0.1 8.6702 28.0969 58.6220 100.2470 152.9721 216.7973

0.2 8.4223 27.2936 56.9460 97.3810 148.5987 210.5992

1 7.5339 24.4147 50.9393 87.1092 132.9244 188.3850

2 7.2268 23.4195 48.8629 83.5585 127.5063 180.7062

5 6.7648 21.9224 45.7394 78.2171 119.3555 169.1547

10 6.2447 20.2367 42.2222 72.2025 110.1775 156.1474
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Table 8 Effect of power-law exponents (k) on Al/Al2O3 FG beam under cantilever and S-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-F FEM 0 2.0478 12.8332 35.9353 70.4318 116.4777 174.1358

0.1 1.9772 12.3909 34.6968 68.0043 112.4631 168.1339

0.2 1.9206 12.0366 33.7048 66.0601 109.2478 163.3270

1 1.7181 10.7670 30.1496 59.0920 97.7243 146.0992

2 1.6480 10.3281 28.9207 56.6833 93.7409 140.1440

5 1.5427 9.6679 27.0719 53.0599 87.7486 131.1854

10 1.4241 8.9245 24.9902 48.9798 81.0011 121.0977

DQM 0 2.0478 12.8330 35.9329 70.4141 116.3996 173.8807

0.1 1.9772 12.3907 34.6944 67.9872 112.3877 167.8876

0.2 1.9206 12.0365 33.7025 66.0435 109.1746 163.0877

1 1.7181 10.7669 30.1475 59.0771 97.6587 145.8851

2 1.6480 10.3280 28.9187 56.6691 93.6781 139.9387

5 1.5427 9.6678 27.0701 53.0466 87.6898 130.9932

10 1.4241 8.9244 24.9885 48.9675 80.9468 120.9203

RRM 0 2.0478 12.8330 35.9329 70.4141 116.3996 173.8808

0.1 1.9772 12.3907 34.6944 67.9872 112.3877 167.8877

0.2 1.9206 12.0365 33.7025 66.0435 109.1746 163.0879

1 1.7181 10.7669 30.1475 59.0771 97.6587 145.8853

2 1.6480 10.3280 28.9187 56.6691 93.6781 139.9388

5 1.5427 9.6678 27.0701 53.0466 87.6898 130.9933

10 1.4241 8.9244 24.9885 48.9675 80.9468 120.9205

S-S FEM 0 5.7481 22.9931 51.7401 92.0085 143.8476 207.3558

0.1 5.5500 22.2006 49.9568 88.8373 138.8897 200.2090

0.2 5.3913 21.5659 48.5285 86.2975 134.9189 194.4851

1 4.8227 19.2911 43.4097 77.1947 120.6875 173.9707

2 4.6261 18.5048 41.6403 74.0482 115.7682 166.8795

5 4.3304 17.3219 38.9785 69.3147 108.3678 156.2118

10 3.9974 15.9899 35.9812 63.9847 100.0347 144.1997

DQM 0 5.7481 22.9925 51.7331 91.9700 143.7055 206.9639

0.1 5.5500 22.2000 49.9501 88.8001 138.7524 199.8306

0.2 5.3913 21.5653 48.5220 86.2614 134.7855 194.1175

1 4.8227 19.2906 43.4039 77.1624 120.5683 173.6418

2 4.6261 18.5043 41.6347 74.0172 115.6538 166.5640

5 4.3304 17.3214 38.9732 69.2857 108.2607 155.9165

10 3.9974 15.9895 35.9763 63.9579 99.9359 143.9271

RRM 0 5.7481 22.9925 51.7331 91.9700 143.7032 206.9342

0.1 5.5500 22.2000 49.9501 88.8001 138.7502 199.8019

0.2 5.3913 21.5653 48.5220 86.2614 134.7834 194.0897

1 4.8227 19.2906 43.4039 77.1624 120.5663 173.6169

2 4.6261 18.5043 41.6347 74.0172 115.6519 166.5401

5 4.3304 17.3214 38.9732 69.2857 108.2589 155.8941

10 3.9974 15.9895 35.9763 63.9579 99.9343 143.9065
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Table 9 Effect of power-law exponents (k) on Al/ZrO2 FG beam under C-C and C-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C FEM 0 7.8765 21.7134 42.5749 70.4085 105.2624 147.2156

0.1 7.7616 21.3965 41.9537 69.3812 103.7265 145.0676

0.2 7.6788 21.1682 41.5060 68.6407 102.6195 143.5194

1 7.5388 20.7822 40.7492 67.3891 100.7483 140.9024

2 7.6355 21.0488 41.2720 68.2538 102.0410 142.7103

5 7.6942 21.2107 41.5894 68.7787 102.8258 143.8080

10 7.5349 20.7716 40.7284 67.3548 100.6970 140.8306

DQM 0 7.8764 21.7117 42.5635 70.3597 105.1058 146.8074

0.1 7.7615 21.3949 41.9425 69.3331 103.5722 144.6654

0.2 7.6787 21.1665 41.4949 68.5931 102.4668 143.1214

1 7.5386 20.7806 40.7382 67.3424 100.5985 140.5117

2 7.6354 21.0472 41.2609 68.2064 101.8892 142.3146

5 7.6941 21.2091 41.5783 68.7310 102.6729 143.4092

10 7.5348 20.7700 40.7175 67.3080 100.5472 140.4401

RRM 0 7.8764 21.7117 42.5635 70.3597 105.1052 146.7999

0.1 7.7615 21.3949 41.9425 69.3331 103.5716 144.6580

0.2 7.6787 21.1665 41.4949 68.5931 102.4663 143.1142

1 7.5386 20.7806 40.7382 67.3424 100.5979 140.5046

2 7.6354 21.0472 41.2609 68.2064 101.8886 142.3074

5 7.6941 21.2091 41.5783 68.7310 102.6723 143.4019

10 7.5348 20.7700 40.7175 67.3080 100.5466 140.4330

C-S FEM 0 5.4279 17.5908 36.7071 62.7933 95.8855 136.0528

0.1 5.3487 17.3341 36.1715 61.8771 94.4865 134.0677

0.2 5.2917 17.1491 35.7854 61.2167 93.4781 132.6368

1 5.1952 16.8364 35.1329 60.1005 91.7736 130.2183

2 5.2618 17.0524 35.5837 60.8716 92.9511 131.8891

5 5.3023 17.1836 35.8574 61.3398 93.6660 132.9035

10 5.1925 16.8278 35.1150 60.0698 91.7268 130.1519

DQM 0 5.4279 17.5899 36.7000 62.7591 95.7693 135.7344

0.1 5.3487 17.3333 36.1645 61.8434 94.3719 133.7539

0.2 5.2916 17.1483 35.7785 61.1834 93.3647 132.3264

1 5.1951 16.8356 35.1261 60.0678 91.6623 129.9136

2 5.2618 17.0516 35.5768 60.8385 92.8384 131.5804

5 5.3023 17.1828 35.8505 61.3064 93.5524 132.5925

10 5.1925 16.8270 35.1082 60.0371 91.6156 129.8473

RRM 0 5.4279 17.5899 36.7000 62.7591 95.7674 135.7248

0.1 5.3487 17.3333 36.1645 61.8434 94.3700 133.7445

0.2 5.2916 17.1483 35.7785 61.1834 93.3629 132.3171

1 5.1951 16.8356 35.1261 60.0678 91.6605 129.9044

2 5.2618 17.0516 35.5768 60.8385 92.8365 131.5711

5 5.3023 17.1828 35.8505 61.3064 93.5506 132.5831

10 5.1925 16.8270 35.1082 60.0371 91.6138 129.8382

123



1040 K. K. Pradhan et al.

Table 10 Effect of power-law exponents (k) on Al/ZrO2 FG beam under cantilever and S-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-F FEM 0 1.2378 7.7572 21.7217 42.5737 70.4069 105.2593

0.1 1.2197 7.6440 21.4048 41.9525 69.3796 103.7235

0.2 1.2067 7.5625 21.1763 41.5048 68.6392 102.6165

1 1.1847 7.4246 20.7902 40.7480 67.3876 100.7454

2 1.1999 7.5198 21.0570 41.2708 68.2522 102.0380

5 1.2091 7.5777 21.2189 41.5882 68.7772 102.8228

10 1.1841 7.4208 20.7796 40.7272 67.3532 100.6940

DQM 0 1.2378 7.7571 21.7202 42.5630 70.3597 105.1051

0.1 1.2197 7.6440 21.4033 41.9420 69.3331 103.5715

0.2 1.2067 7.5624 21.1749 41.4944 68.5931 102.4662

1 1.1847 7.4245 20.7888 40.7377 67.3424 100.5978

2 1.1999 7.5198 21.0555 41.2604 68.2065 101.8885

5 1.2091 7.5776 21.2175 41.5778 68.7311 102.6722

10 1.1841 7.4207 20.7782 40.7170 67.3081 100.5465

RRM 0 1.2378 7.7571 21.7202 42.5630 70.3597 105.1052

0.1 1.2197 7.6440 21.4033 41.9420 69.3331 103.5717

0.2 1.2067 7.5624 21.1749 41.4944 68.5931 102.4663

1 1.1847 7.4245 20.7888 40.7377 67.3424 100.5979

2 1.1999 7.5198 21.0555 41.2604 68.2065 101.8886

5 1.2091 7.5776 21.2175 41.5778 68.7311 102.6723

10 1.1841 7.4207 20.7782 40.7170 67.3081 100.5466

S-S FEM 0 3.4746 13.8986 31.2752 55.6161 86.9511 125.3398

0.1 3.4239 13.6958 30.8188 54.8046 85.6825 123.5110

0.2 3.3873 13.5496 30.4899 54.2197 84.7680 122.1928

1 3.3256 13.3026 29.9340 53.2311 83.2223 119.9647

2 3.3682 13.4732 30.3180 53.9141 84.2901 121.5039

5 3.3941 13.5769 30.5512 54.3287 84.9385 122.4385

10 3.3239 13.2958 29.9187 53.2039 83.1799 119.9036

DQM 0 3.4746 13.8982 31.2710 55.5928 86.8652 125.1028

0.1 3.4239 13.6954 30.8147 54.7817 85.5978 123.2775

0.2 3.3873 13.5493 30.4858 54.1970 84.6842 121.9618

1 3.3256 13.3022 29.9300 53.2088 83.1401 119.7380

2 3.3682 13.4729 30.3140 53.8915 84.2068 121.2743

5 3.3941 13.5765 30.5471 54.3060 84.8545 122.2070

10 3.3239 13.2954 29.9147 53.1817 83.0977 119.6769

RRM 0 3.4746 13.8982 31.2710 55.5928 86.8638 125.0849

0.1 3.4239 13.6954 30.8147 54.7817 85.5964 123.2598

0.2 3.3873 13.5493 30.4858 54.1970 84.6829 121.9443

1 3.3256 13.3022 29.9300 53.2088 83.1388 119.7208

2 3.3682 13.4729 30.3140 53.8915 84.2055 121.2569

5 3.3941 13.5765 30.5471 54.3060 84.8531 122.1895

10 3.3239 13.2954 29.9147 53.1817 83.0964 119.6598
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Table 11 Effect of power-law exponents (k) on SUS304/Si3N4 FG beam under C-C and C-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-C FEM 0 15.3276 42.2538 82.8501 137.0138 204.8389 286.4791

0.1 13.5760 37.4251 73.3821 121.3560 181.4301 253.7406

0.2 12.4426 34.3007 67.2559 111.2248 166.2838 232.5576

1 9.3265 25.7106 50.4126 83.3701 124.6404 174.3168

2 8.3871 23.1208 45.3347 74.9724 112.0856 156.7583

5 7.6011 20.9541 41.0861 67.9464 101.5814 142.0676

10 7.2205 19.9048 39.0289 64.5442 96.4951 134.9540

DQM 0 15.3274 42.2505 82.8279 136.9187 204.5341 285.6847

0.1 13.5758 37.4222 73.3624 121.2718 181.1602 253.0370

0.2 12.4424 34.2981 67.2379 111.1477 166.0364 231.9128

1 9.3264 25.7086 50.3991 83.3123 124.4549 173.8334

2 8.3870 23.1190 45.3225 74.9204 111.9189 156.3236

5 7.6010 20.9524 41.0751 67.8992 101.4303 141.6736

10 7.2204 19.9033 39.0184 64.4994 96.3515 134.5798

RRM 0 15.3274 42.2505 82.8279 136.9188 204.5330 285.6703

0.1 13.5758 37.4222 73.3624 121.2718 181.1592 253.0241

0.2 12.4424 34.2981 67.2379 111.1477 166.0355 231.9010

1 9.3264 25.7086 50.3991 83.3123 124.4542 173.8246

2 8.3870 23.1190 45.3225 74.9205 111.9182 156.3157

5 7.6010 20.9524 41.0751 67.8992 101.4298 141.6665

10 7.2204 19.9033 39.0184 64.4994 96.3510 134.5730

C-S FEM 0 10.5627 34.2314 71.4313 122.1947 186.5917 264.7564

0.1 9.3556 30.3194 63.2682 108.2304 165.2681 234.5003

0.2 8.5746 27.7883 57.9864 99.1950 151.4711 214.9236

1 6.4272 20.8291 43.4645 74.3530 113.5373 161.0990

2 5.7798 18.7310 39.0865 66.8636 102.1009 144.8718

5 5.2381 16.9756 35.4235 60.5974 92.5325 131.2951

10 4.9759 16.1256 33.6497 57.5632 87.8992 124.7209

DQM 0 10.5626 34.2297 71.4175 122.1282 186.3654 264.1368

0.1 9.3555 30.3180 63.2560 108.1715 165.0677 233.9516

0.2 8.5745 27.7869 57.9752 99.1410 151.2874 214.4206

1 6.4271 20.8281 43.4561 74.3125 113.3996 160.7220

2 5.7798 18.7301 39.0789 66.8272 101.9771 144.5328

5 5.2381 16.9748 35.4166 60.5645 92.4203 130.9878

10 4.9758 16.1249 33.6432 57.5319 87.7926 124.4291

RRM 0 10.5626 34.2297 71.4175 122.1282 186.3617 264.1182

0.1 9.3555 30.3180 63.2560 108.1715 165.0644 233.9350

0.2 8.5745 27.7869 57.9752 99.1410 151.2844 214.4055

1 6.4271 20.8281 43.4561 74.3125 113.3973 160.7106

2 5.7798 18.7301 39.0789 66.8272 101.9751 144.5226

5 5.2381 16.9748 35.4166 60.5645 92.4184 130.9786

10 4.9758 16.1249 33.6432 57.5319 87.7909 124.4203
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Table 12 Effect of power-law exponents (k) on SUS304/Si3N4 FG beam under cantilever and S-S edge supports using all the assumed methods

BCs Method k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

C-F FEM 0 2.4087 15.0954 42.2701 82.8477 137.0107 204.8329

0.1 2.1335 13.3703 37.4395 73.3800 121.3532 181.4248

0.2 1.9554 12.2542 34.3140 67.2540 111.2223 166.2790

1 1.4657 9.1853 25.7205 50.4112 83.3683 124.6367

2 1.3180 8.2601 23.1297 45.3334 74.9708 112.0823

5 1.1945 7.4860 20.9621 41.0849 67.9448 101.5785

10 1.1347 7.1111 19.9125 39.0277 64.5427 96.4923

DQM 0 2.4087 15.0953 42.2672 82.8269 136.9188 204.5328

0.1 2.1335 13.3702 37.4370 73.3615 121.2719 181.1590

0.2 1.9554 12.2540 34.3116 67.2371 111.1478 166.0354

1 1.4657 9.1852 25.7188 50.3985 83.3124 124.4541

2 1.3180 8.2600 23.1282 45.3220 74.9205 111.9181

5 1.1945 7.4859 20.9607 41.0746 67.8993 101.4297

10 1.1347 7.1111 19.9112 39.0179 64.4994 96.3509

RRM 0 2.4087 15.0953 42.2672 82.8269 136.9188 204.5330

0.1 2.1335 13.3702 37.4370 73.3615 121.2719 181.1592

0.2 1.9554 12.2540 34.3116 67.2371 111.1478 166.0355

1 1.4657 9.1852 25.7188 50.3985 83.3124 124.4542

2 1.3180 8.2600 23.1282 45.3220 74.9205 111.9182

5 1.1945 7.4859 20.9607 41.0746 67.8993 101.4298

10 1.1347 7.1111 19.9112 39.0179 64.4994 96.3510

S-S FEM 0 6.7614 27.0464 60.8610 108.2280 169.2055 243.9091

0.1 5.9887 23.9556 53.9058 95.8598 149.8688 216.0354

0.2 5.4888 21.9557 49.4056 87.8572 137.3574 198.0002

1 4.1142 16.4572 37.0327 65.8546 102.9581 148.4138

2 3.6998 14.7995 33.3025 59.2212 92.5874 133.4644

5 3.3531 13.4126 30.1815 53.6712 83.9105 120.9567

10 3.1852 12.7410 28.6703 50.9838 79.7090 114.9002

DQM 0 6.7614 27.0457 60.8528 108.1827 169.0382 243.4481

0.1 5.9887 23.9549 53.8986 95.8197 149.7207 215.6271

0.2 5.4888 21.9551 49.3990 87.8204 137.2216 197.6259

1 4.1142 16.4568 37.0277 65.8270 102.8564 148.1333

2 3.6998 14.7991 33.2980 59.1964 92.4959 133.2121

5 3.3530 13.4122 30.1774 53.6488 83.8276 120.7281

10 3.1852 12.7406 28.6664 50.9625 79.6302 114.6830

RRM 0 6.7614 27.0457 60.8528 108.1827 169.0355 243.4131

0.1 5.9887 23.9549 53.8986 95.8197 149.7183 215.5961

0.2 5.4888 21.9551 49.3990 87.8204 137.2194 197.5976

1 4.1142 16.4568 37.0277 65.8270 102.8547 148.1120

2 3.6998 14.7991 33.2980 59.1964 92.4944 133.1930

5 3.3530 13.4122 30.1774 53.6488 83.8262 120.7108

10 3.1852 12.7406 28.6664 50.9625 79.6289 114.6666
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Fig. 2 First six 2-D mode shapes of SUS304/Si3N4 C-C FG beam with k = 10
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Fig. 3 First six 2-D mode shapes of SUS304/Si3N4 C-S FG beam with k = 10
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Fig. 4 First six 2-D mode shapes of SUS304/Si3N4 cantilever FG beam with k = 10
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Fig. 5 First six 2-D mode shapes of SUS304/Si3N4 S-S FG beam with k = 10
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1, whereas these may follow descending manner with
increase in k while considering Er > 1.

• One may observe that present results follow descending
pattern with increase in power-law indices (k) in case
of Al/Al2O3 and SUS304/Si3N4 beams, whereas a few
ambiguities can be seen in Al/ZrO2 FG beam.

• Among all the classical edge conditions, natural frequen-
cies in all modes of C-C FG beams are always the highest
and the least in case of cantilever FG beams irrespective
of the FG constituents considered.

• The convergence of natural frequencies is dependent on
various factors with reference to the numerical method
assumed. In FEM and DQM, the factor is discretization
of beam domain, whereas it is number of polynomials
involved in transverse displacement in case of RRM. On
contrary, RRM is basically implemented in linear dynam-
ical systems, whereas FEM and DQM can handle both
linear and non-linear problems with efficiency. It may be
observed that the computed results using three numerical
techniques are nearly same, but the convergence is faster
in RRM with desired accuracies.
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