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Abstract Thismanuscript presents a theoretical and numer-
ical analysis to achieve compound synchronization of four
non-identical chaotic systems for different multi-switching
states. Multi-switching compound synchronization is achie-
ved for three drive systems and one response system via
active backstepping technique. By using Lyapunov stabil-
ity theory, asymptotically stable synchronization states are
established. To elaborate the considered scheme an example
of Pehlivan system, Liu system, Qi system and Lu system is
discussed. The conclusions drawn from computational and
analytical approaches are in excellent agreement.

Keywords Multi-switching synchronization · Compound
synchronization · Active backstepping Method · Theory of
Lyapunov stability

1 Introduction

Chaotic phenomenon exhibits typical and complex behav-
ior of a dynamical system which evolves with time. Due to
unpredictable behavior of chaotic and hyperchaotic systems,
synchronization has always been an interesting problem for
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researchers. In last few decades, laser [1], neural network
[2], ecology [3], secure communication [4] are some fields
witnessing the utility of synchronization.
Although there are several other fields too where chaos syn-
chronization is being used as a tool. But since last three
decades secure communication has been one of the most
engrossing field for which new synchronization schemes
[5,6] have been studied to make the communication more
reliable. New methodologies [7–10] have been proposed to
attain synchronization. Speedy growth has been seen in the
area of chaos synchronization after 1990, when Pecora and
Carroll [11] accomplished synchronization for chaotic sys-
tems.

After the valuable work of Pecora and Carroll, synchro-
nization has also been achieved for more than one drive
and one response systems like combination, combination-
combination, compound combination synchronization, com-
pound and double compound synchronization [12–17] etc.
Compound synchronization has also been achieved for some
integer order and fractional order systems [18].

Combination synchronization and compound synchro-
nization have been studied by the researchers for secure
communication [19,20]. The security of information trans-
mission can be enhanced by using more than one drive
systems as information signal can be dissevered with dif-
ferent signals of drive systems. Whereas two drive systems
are being used in scheme of combination synchronization
[19] to enhance security, in compound synchronization [20]
a scaling drive system additionally increases grade of secu-
rity.

In recent years, the field of multi-switching synchro-
nization has attracted attention of researchers. After the
outstanding work of Ucar [21], several researches have been
done on multi-switching synchronization. Ucar achieved
multi-switching synchronization for two identical systems
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via active control while Wang and Sun [22] achieved multi-
switching synchronization for two non-identical systems for
fully unknown parameters by using adaptive control method.

Multi-switching synchronization has also been achieved
by Ajayi et al. [23] for identical chaotic systems. Recently,
Vincent et al. [24] has defined a new type of multi-switching
synchronization which provides more degree of freedom
to state variables to create error vector in different man-
ner. Multi-switching combination synchronization has been
investigated by Vincent et al. [24] and Zheng [25] by using
different approaches. Complexity of multi-switching syn-
chronization inolving more than one drive systems has its
own advantage in secure communication [24,25].

In the work mentioned above, multi-switching synchro-
nization has been achieved either between two chaotic
systems or combination of three chaotic systems. Motivated
from aforementioned work, the problem of multi-switching
compound synchronization of four chaotic systems has been
considered in this paper which is still an open problem. In the
proposed scheme three systemshavebeen considered as drive
systems and one system has been considered as response sys-
tem. Multi-switching combination synchronization can be
achieved as a particular case of the proposed synchroniza-
tion scheme. Active backstepping method has been applied
to achieve the desired synchronization. Amongst different
synchronization methods active backstepping technique is
one of the most efficient methods to attain synchronization.
Numerous different type of synchronizations [15,24,26,27]
have been achieved by using this approach.

Although in order to demonstrate the proposed scheme
chaotic systems can be chosen arbitrarily, but this approach is
explored by using four non-identical chaotic systems, where
Pehlivan [28], Liu [29] and Qi [30] systems are considered as
drive systems and Lu system [31] is considered as response
system. A number of multi-switching states are possible by
choosing different combinations of state variables but due to
complexity of calculations only three have been discussed in
this paper.

This paper is divided in five sections. In Sect. 2 problem
ofmulti-switching compound synchronization is formulated.
In Sect. 3 different multi-switching states and construction
of controllers are described for the systems considered. In
Sect. 4 computational results are given. In Sect. 5 the results
achieved by this work and further possible developments are
discussed in brief.

2 Problem statement

Suppose first, second and third drive systems are

ẋ1 = g11(x), ẋ2 = g21(x), . . . , ẋn = gn1(x), (1)

ẏ1 = g12(y), ẏ2 = g22(y), . . . , ẏn = gn2(y), (2)

ż1 = g13(z), ż2 = g23(z), . . . , żn = gn3(z), (3)

respectively. The corresponding response system with con-
troller is

ẇ1 = g14(w) + V1,

ẇ2 = g24(w) + V2,

...

ẇn = gn4(w) + Vn,

(4)

where x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , z =
(z1, z2, . . . , zn)T , w = (w1, w2, . . . , wn)

T are real state
vectors of drive and response systems. Vi : R

n →
R, i = 1, 2, . . . , n are nonlinear control functions and
gi1, gi2, gi3, gi4 : R

n → R, i = 1, 2, . . . , n are continu-
ous vector functions.

Let X =diag(x1, x2, . . . , xn),Y = diag(y1, y2, . . . , yn),
Z = diag(z1, z2, . . . , zn),W = diag(w1, w2, . . . , wn) be
n dimensional diagonal matrices, we will define compound
synchronization as follows:

Definition 1 [17] If there exist four constant diagonal matri-
ces P, Q, R, S ∈ R

n × R
n and P �= 0 such that the error

function E fulfills the following condition:

lim
t→∞ ‖E‖ = lim

t→∞ ‖PW − QX (RY + SZ)‖ = 0, (5)

where ‖.‖ is matrix norm, then the drive systems (1),(2),(3)
are realized compound synchronization with the response
system (4).

Remark 1 [17] Theway X,Y, Z ,W are defined, it is obvious
that E = diag(σ1111, σ2222, . . . , σnnnn) is a diagonalmatrix.
For the error matrix E = diag(σ1111, σ2222, . . . , σnnnn) =
PW − QX (RY + SZ), right multiplying both sides by
a vector A = [1, 1, . . . , 1]T n×1, we acquire E∗ =
(σ1111, σ2222, . . . , σnnnn)

T = [PW − QX (RY + SZ)]A.
Remark 2 If P = diag(p1, p2, . . . , pn), Q = diag(q1, q2,
. . . , qn), R= diag(r1, r2, . . . , rn), S= diag(s1, s2, . . . , sn),
then the components of the error vector E∗ are obtained as

σi jkl = piwi − q j x j (rk yk + sl zl) (6)

where indices of the error states are strictly chosen as i =
j = k = l, and (i, j, k, l) ∈ (1, 2, . . . , n).

Definition 2 If the error states in relation to Definition 1 are
redefined such that i = j = k = l, is not satisfied, where
(i, j, k, l) ∈ (1, 2, . . . , n) and

lim
t→∞ ‖E‖ = lim

t→∞ ‖PW − QX (RY + SZ)‖ = 0, (7)

then the drive systems (1),(2),(3) are said to achieve multi-
switching compound synchronization with the response
system (4).
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In order to formulate the problem in an easy way, suppose
(1), (2), (3), (4) are assumed to be three dimensional sys-
tems. Defining an arbitrary multi-switching state for three
dimensional systems as follows:

σ1233 = p1w1 − q2x2(r3y3 + s3z3),

σ2312 = p2w2 − q3x3(r1y1 + s2z2),

σ3121 = p3w3 − q1x1(r2y2 + s1z1).

(8)

The error dynamics is

σ̇1233 = p1ẇ1 − q2 ẋ2(r3y3 + s3z3) − q2x2(r3 ẏ3 + s3 ż3),

σ̇2312 = p2ẇ2 − q3 ẋ3(r1y1 + s2z2) − q3x3(r1 ẏ1 + s2 ż2),

σ̇3121 = p3ẇ3 − q1 ẋ1(r2y2 + s1z1) − q1x1(r2 ẏ2 + s1 ż1).

(9)

On using (1), (2), (3), (4) in previous equation, we get

σ̇1233 = p1g14(w) − q2g21(x)(r3y3 + s3z3)

− q2x2(r3g32(y) + s3g33(z)) + p1V1,

σ̇2312 = p2g24(w) − q3g31(x)(r1y1 + s2z2)

− q3x3(r1g12(y) + s2g23(z)) + p2V2,

σ̇3121 = p3g34(w) − q1g11(x)(r2y2 + s1z1)

− q1x1(r2g22(y) + s1g13(z)) + p3V3.

(10)

By active backstepping method this system will be trans-
formed into a new system for which (0, 0, 0) equilibrium
point will be asymptotically stable. Suppose l1 = σ1233 and
σ2312 = ζ(l1) is assumed as a virtual controller. Then, dif-
ferentiating l1 yields:

l̇1 = G1(l1, h1, V1), (11)

where h1 is a nonlinear function containing the terms of drive
and response systems.

Suppose K1 = l21 is the Lyapunov function for l1 sub-
system (11). Then virtual controller ζ(l1)will be designed in
such a way that K̇1 will be negative definite and l1 subsystem
will be asymptotically stabilized.

Define the error betweenσ2312 and ζ(l1) asσ2312−ζ(l1) =
l2.Now, σ3121 will be considered as a virtual controller. Then
(l1, l2) subsystem will be

l̇1 = G1(l1, h1, V1),

l̇2 = G2(l1, l2, σ3121, h2, V2),
(12)

where h2 is a nonlinear function containing the terms of drive
and response systems. The same process will be repeated to
stabilize the (l1, l2) subsystem, until an asymptotically stable
(l1, l2, l3) system will be achieved. At each step a positive

definite Lyapunov function with negative definite derivative
will ensure the asymptotical stability of each subsystem.

3 Multi-switching compound synchronization of
four non-identical systems

Pehlivan system [28] is considered as first drive system (scal-
ing system). Dynamics of Pehlivan system is given below

ẋ1 = x2 − x1,

ẋ2 = λ1x2 − x1x3,

ẋ3 = x1x2 − μ1.

(13)

Pehlivan systemexhibits chaotic behavior forλ1 = 0.5, μ1 =
0.5. Liu system [29] is considered as second drive system.
Dynamics of Liu system is given by

ẏ1 = λ2(y2 − y1),

ẏ2 = μ2y1 − y1y3,

ẏ3 = −ρ2y3 + δ2y1
2.

(14)

Liu system exhibits chaotic behavior for λ2 = 10, μ2 =
40, ρ2 = 2.5, δ2 = 4. Qi system [30] is considered as third
drive system given by

ż1 = λ3(z2 − z1) + θ3z2z3,

ż2 = ρ3z1 + δ3z2 − z1z3,

ż3 = z1z2 − μ3z3.

(15)

Qi system exhibits chaotic behavior for λ3 = 14, μ3 =
43, ρ3 = −1, δ3 = 16, θ3 = 4. Lu system [31] is consid-
ered as response system. Lu system with controller is

ẇ1 = λ4(w2 − w1) + V1,

ẇ2 = ρ4w2 − w1w3 + V2,

ẇ3 = w1w2 − μ4w3 + V3,

(16)

where V1, V2, V3 are the controllers which are designed to
achieve the multi-switching compound synchronization. Lu
system exhibits chaotic behavior for λ4 = 36, μ4 = 3, ρ4 =
20. The following threemulti-switching states are considered
during the discussion:
Switch One

σ1211 = p1w1 − q2x2(r1y1 + s1z1),

σ2331 = p2w2 − q3x3(r3y3 + s1z1),

σ3121 = p3w3 − q1x1(r2y2 + s1z1),

(17)
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Switch Two

σ1122 = p1w1 − q1x1(r2y2 + s2z2),

σ2111 = p2w2 − q1x1(r1y1 + s1z1),

σ3133 = p3w3 − q1x1(r3y3 + s3z3),

(18)

Switch Three

σ1213 = p1w1 − q2x2(r1y1 + s3z3),

σ2313 = p2w2 − q3x3(r1y1 + s3z3),

σ3322 = p3w3 − q3x3(r2y2 + s2z2).

(19)

Now, the controllers will be constructed for switch one.

Theorem 1 If the control functions are defined as follows:

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1

− p2
p1 p3

l1q1x1(r2y2 + s1z1) + h2

}
,

V3 = − 1

p3

{
(1 − μ4)l3 +

(
p3

p1 p2
− p2

p1 p3

)
l1l2

+ p3
p1 p2

{l1q3x3(r3y3 + s1z1)} +
(

p3
p1 p2

− p2
p1 p3

)

{l2q2x2(r1y1 + s1z1)} + h3} ,

(20)

where

h1 = p1
p2

λ4q3x3(r3y3 + s1z1) − λ4q2x2(r1y1 + s1z1)

− q2(λ1x2 − x1x3)(r1y1 + s1z1) − q2x2(r1λ2(y2 − y1)

+ s1(λ3(z2 − z1) + θ3z2z3)),

h2 = ρ4q3x3(r3y3 + s1z1) − p2
p1 p3

q1q2x1x2(r1y1 + s1z1)

(r2y2 + s1z1) − q3(x1x2 − μ1)(r3y3 + s1z1)

− q3x3(r3(−ρ2y3 + δ2(y1)
2))

+ s1(λ3(z2 − z1) + θ3z2z3)),

h3 = p3
p1 p2

q2q3x2x3(r1y1 + s1z1)(r3y3 + s1z1)

− λ4q1x1(r2y2 + s1z1) − q1(x2 − x1)(r2y2 + s1z1)

− q1x1(r2(μ2y1 − y1y3) + s1(λ3(z2 − z1) + θ3z2z3)),

(21)

and l1 = σ1211, l2 = σ2331, l3 = σ3121, then response sys-
tem (16) will be in the state of multi-switching compound
synchronization with drive systems (13), (14) and (15).

Proof From Eq. (17), we have

σ̇1211 = p1ẇ1 − q2 ẋ2(r1y1 + s1z1) − q2x2(r1 ẏ1 + s1 ż1),

σ̇2331 = p2ẇ2 − q3 ẋ3(r3y3 + s1z1) − q3x3(r3 ẏ3 + s1 ż1),

σ̇3121 = p3ẇ3 − q1 ẋ1(r2y2 + s1z1) − q1x1(r2 ẏ2 + s1 ż1).

(22)

By using Eq. (13),(14),(15) and (16) in (22), we get

σ̇1211 = p1
p2

λ4σ2331 − λ4σ1211 + h1 + p1V1,

σ̇2331 = ρ4σ2331 − p2
p1 p3

σ1211σ3121

− p2
p1 p3

σ1211q1x1(r2y2 + s1z1)

− p2
p1 p3

σ3121q2x2(r1y1 + s1z1) + h2 + p2V2,

σ̇3121 = p3
p1 p2

σ1211σ2331 + p3
p1 p2

σ1211q3x3(r3y3 + s1z1)

+ p3
p1 p2

σ2331q2x2(r1y1 + s1z1)

− μ4σ3121 + h3 + p3V3.

(23)

Let l1 = σ1211. Then, from Eq. (23)

l̇1 = p1
p2

λ4σ2331 − λ4l1 + h1 + p1V1, (24)

where σ2331 = ζ(l1) is regarded as the virtual controller.
Active backstepping is a recursive feedback procedure, there-
fore to stabilize the l1 subsystem we will design the virtual
controller ζ(l1). Suppose Lyapunov function for l1 subsys-
tem is defined as

K1 = 0.5l21 . (25)

Then derivative of K1 will be

K̇1 = l1l̇1 = l1

{
λ4

(
p1
p2

ζ(l1) − l1

)
+ h1 + p1V1

}
. (26)

Suppose ζ(l1) = 0. Then by using value of V1 from (20), we
get K̇1 = −l21 which is negative definite. Hence l1 subsys-
temwill be asymptotically stable. Suppose the error between
σ2331and ζ(l1) is l2 = σ2331 − ζ(l1). Then (l1, l2) subsystem
will be

l̇1 = p1
p2

λ4l2 − l1,

l̇2 = ρ4l2 − p2
p1 p3

l1σ3121 − p2
p1 p3

l1q1x1(r2y2 + s1z1)

− p2
p1 p3

σ3121q2x2(r1y1 + s1z1) + h2 + p2V2,

(27)
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where σ3121 = ζ(l1, l2) is assumed as a virtual controller.
In order to stabilize (l1, l2) subsystem Lyapunov function is
defined as

K2 = K1 + 0.5l22 . (28)

Then, derivative of K2 will be

K̇2 = K̇1 + l2l̇2

= −l1
2 + l2

{
ρ4l2 − p2

p1 p3
l1ζ(l1, l2)

− p2
p1 p3

l1q1x1(r2y2 + s1z1)

− p2
p1 p3

ζ(l1, l2)q2x2(r1y1 + s1z1) + p1
p2

λ4l1

+h2 + p2V2} .

(29)

By using the value of V2 from Eq. (20), derivative of K2 with
respect to t will be

K̇2 = −l1
2 − l2

2, (30)

which is negative definite which ensures asymptotic stabil-
ity of (l1, l2) subsystem. Suppose error between σ3121 and
ζ(l1, l2) is defined as l3 = σ3121 − ζ(l1, l2). Then

l̇3 = p3
p1 p2

l1l2 + p3
p1 p2

l1q3x3(r3y3 + s1z1)

+ p3
p1 p2

l2q2x2(r1y1 + s1z1) − μ4l3 + h3 + p3V3.

(31)

In order to stabilize the full dimensional (l1, l2, l3) system
consider the following Lyapunov function:

K3 = K2 + 0.5l23 . (32)

Then derivative of K3 will be

K̇3 = K̇2 + l3l̇3

= − l1
2 − l2

2 + l3

{
(

p3
p1 p2

− p2
p1 p3

)l1l2

+ p3
p1 p2

l1q3x3(r3y3 + s1z1)

+
(

p3
p1 p2

− p2
p1 p3

)
l2q2x2(r1y1 + s1z1)

−μ4l3 + h3 + p3V3)} .

(33)

Using the value of V3 from Eqs. (20), (33) reduces to

K̇3 = − l1
2 − l2

2 − l3
2, (34)

which is negative definite. Hence the equilibrium point
(0, 0, 0) of system (l1, l2, l3) given by

l̇1 = − l1 + p1
p2

λ4l2,

l̇2=− l2 − p2
p1 p3

l1l3− p2
p1 p3

l3q2x2(r1y1 + s1z1)− p1
p2

λ4l1,

l̇3 = p2
p1 p3

l1l2 − l3 + p2
p1 p3

l2q2x2(r1y1 + s1z1).

(35)

will be asymptotically stable . Thus, asymptotically stable
synchronization state is attained by response system and
drive systems. �	
Corollary 1 If x1 = x2 = x3 = α ,then the problem is
reduced to multi-switching combination synchronization of
systems (14), (15) and (16). The corresponding controllers
are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1

− p2
p1 p3

l1q1α(r2y2 + s1z1) + h2

}
,

V3 = − 1

p3

{
(1 − μ4)l3 +

(
p3

p1 p2
− p2

p1 p3

)
l1l2

+ p3
p1 p2

{l1q3α(r3y3 + s1z1)}

+
(

p3
p1 p2

− p2
p1 p3

)
{l2q2α(r1y1 + s1z1)} + h3

}
.

(36)

Corollary 2 If x1 = x2 = x3 = α and r1 = r2 = r3 =
0, then the problem is reduced to multi-switching hybrid
projective synchronization of systems (15) and (16). The cor-
responding controllers are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1

− p2
p1 p3

l1q1αs1z1 + h2

}
,

V3 = − 1

p3

{
−(1 − μ4)l3 +

(
p3

p1 p2
− p2

p1 p3

)
l1l2

+ p3
p1 p2

{l1q3αs1z1} +
(

p3
p1 p2

− p2
p1 p3

)

{l2q2αs1z1} + h3} .

(37)
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Corollary 3 If x1 = x2 = x3 = α and s1 = s2 = s3 =
0, then the problem is reduced to multi-switching hybrid
projective synchronization of systems (14) and (16). The cor-
responding controllers are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1 − p2

p1 p3
l1q1αr2y2

+ h2} ,

V3 = − 1

p3

{
−(1 − μ4)l3 + (

p3
p1 p2

− p2
p1 p3

)l1l2

+ p3
p1 p2

{l1q3αr3y3} +
(

p3
p1 p2

− p2
p1 p3

)

{l2q2αr1y1} + h3} .

(38)

Corollary 4 If q1 = q2 = q3 = 0 or r1 = r2 = r3 = s1 =
s2 = s3 = 0, then the problem of compound synchronization
is reduced to the problem of controlling the system (16). The
controllers are as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1 + h2

}
,

V3 = − 1

p3

{
−(1 − μ4)l3 + (

p3
p1 p2

− p2
p1 p3

)l1l2 + h3

}
,

(39)

for which equilibrium point (0, 0, 0) will be asymptotically
stable.

Theorem 2 Response system (16)will attain a state ofmulti-
switching compound synchronization with drive system (13),
(14), (15) for errors defined by (18), if the controllers are
designed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1

− p2
p1 p3

l1q1x1(r3y3 + s3z3) + h2

}
,

V3 = − 1

p3

{
(1 − μ4)l3 +

(
p3

p1 p2
− p2

p1 p3

)
l1l2

+ p3
p1 p2

{l1q1x1(r1y1 + s1z1)}

+
(

p3
p1 p2

− p2
p1 p3

)
{l2q1x1(r2y2 + s2z2)} + h3

}
,

(40)
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Fig. 1 a Synchronization for w1 and x2(y1 + z1) b synchronization
for w2 and x3(y3 + z1) in switch one

where l1 = σ1122, l2 = σ2111, l3 = σ3133.

Theorem 3 Response system (16)will attain a state ofmulti-
switching compound synchronization with drive system (13),
(14), (15) for errors defined by (19), if the controllers are
designed as follows:

123



1132 A. Khan et al.

0 2 4 6 8 10
−100

−50

0

50

100

150

Time (t)

(a)

w3
x1(y2 + z1)

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

Time (t)

(b)

σ1211
σ2331
σ3121

Fig. 2 a Synchronization forw3 and x1(y2+z1) in switch one b errors
σ1211, σ2331, σ3121 converging to zero in switch one

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = − 1

p1
{(1 − λ4)l1 + h1} ,

V2 = − 1

p2

{
(1 + ρ4)l2 + p1

p2
λ4l1

− p2
p1 p3

l1q3x3(r2y2 + s2z2) + h2

}
,

V3 = − 1

p3

{
(1 − μ4)l3 +

(
p3

p1 p2
− p2

p1 p3

)
l1l2

+ p3
p1 p2

{l1q3x3(r1y1 + s3z3)} +
(

p3
p1 p2

− p2
p1 p3

)
{l2q2x2(r1y1 + s3z3)} + h3

}
,

(41)
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Fig. 3 a Anti-synchronization for w1 and x1(y2 + z2) b anti-
synchronization for w2 and x1(y1 + z1) in switch two

where l1 = σ1213, l2 = σ2313, l3 = σ3322.

Samecorollaries canbeobtained forTheorems2 and3, but
not given here as these can be obtained similarly. Theorems
2 and 3 can also be proved in same manner.

4 Graphical results

Numerical simulations are shown for three switches. Param-
eters for Pehlivan, Liu and Qi systems are taken as λ1 =
0.5, μ1 = 0.5, λ2 = 10, μ2 = 40, ρ2 = 2.5, δ2 = 4, λ3 =
10, μ3 = 43, ρ3 = −1, δ3 = 16, θ3 = 4, for which respec-
tive systems are chaotic.

Parameters for Lu system are taken as λ4 = 36, μ4 =
3, ρ4 = 20. Initial conditions are chosen in the manner of
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Fig. 4 a Anti-synchronization for w3 and x1(y3 + z3) in switch two b
errors σ1122, σ2111, σ3133 converging to zero in switch two

ensuring the chaotic behavior of drive and response sys-
tems. Initial conditions are kept fixed for all four systems
throughout the simulations. The initial conditions of the
drive and the response systems are arbitrarily chosen as
(0.5, 0.5, 0.5), (2, 2, 2), (4, 1,−2) and (20, 20, 20) respec-
tively.
Switch one

In first switch, p1 = p2 = p3 = 1, q1 = q2 =
q3 = 1, r1 = r2 = r3 = 1, s1 = s2 = s3 = 1 are
taken. Hence initial conditions for error dynamical system
are (17, 17, 17). Synchronization between the state variables
w1, x2(y1 + z1) and w2, x3(y3 + z1) are shown in Figs. 1a,
b. Figure 2a, b exhibits synchronization between the state
variablesw3, x1(y2+z1) and errors (σ1211, σ2331, σ3121) con-
verging to zero.

0 1 2 3 4 5 6 7 8
−400

−200
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200

400

Time (t)

(a)
w1

3x2(y1 + 2z3)

0 1 2 3 4 5 6 7 8
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−200

−100

0

100

200

300

Time (t)

(b)

w2 3x3(y1 + 2z3)

Fig. 5 a Synchronization for w1 and 3x2(y1 + 2z3) b synchronization
for w2 and 3x3(y1 + 2z3) in switch three

Switch Two
For second switch, p1 = p2 = p3 = 1, q1 = q2 =

q3 = −1, r1 = r2 = r3 = 1, s1 = s2 = s3 = 1 are taken
which lead to anti-synchronization. Hence initial conditions
for error dynamical system are (21.5, 23, 20). Anti-syn-
chronization between the state variables w1, x1(y2 + z2) and
w2, x1(y1+z1) are shown in Fig. 3 a, b. Anti-synchronization
between the state variables w3, x1(y3 + z3) and errors
(σ1122, σ2111, σ3133) converging to zero are shown in Fig.
4a, b.
Switch Three

For third switch, p1 = p2 = p3 = 1, q1 = q2 =
q3 = 3, r1 = r2 = r3 = 1, s1 = s2 = s3 = 2 are
taken. Thus, initial conditions for error dynamical system
are (23, 23, 14). Synchronization between the state vari-
ables w1, 3x2(y1 + 2z3) and w2, 3x3(y1 + 2z3) are shown
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Fig. 6 a Synchronization for w3 and 3x3(y2 + 2z2) in switch three b
errors σ1213, σ2313, σ3322 converging to zero in switch three

in Fig. 5a, b. Synchronization between the state variables
w3, 3x3(y2 + 2z2) and errors (σ1213, σ2313, σ3322) converg-
ing to zero are shown in Fig. 6a, b.

5 Conclusion

Multi-switching compound synchronization has been achie-
ved for three drive and one response systems by using active
backstepping technique. The feasibility of a recursivemethod
is demonstrated in this manuscript. The method is easy to
implement and therefore the approach can be applied on
higher dimensional systems too. The effectiveness of the
approach is exhibited by numerical simulations. The rigor-
ous analysis and computational approach provide the same

results. Further possibility of improvements are still there as
the same problem can be considered in case of unknown
parameters or for higher dimensional systems which is a
problem of further study. The method is efficient for security
of communication as its complexity is the main factor which
increases grade of security.
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