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Abstract In this study, a mathematical analysis of a wind
turbine dynamics is presented. The model represented
by control blocks and transfer functions taken from rec-
ognized papers and studies, is translated to a system of
nonlinear differential algebraic equations. For easier com-
putational and numerical study, we prove the existence of
a unique terminal voltage solution, which eliminates the
algebraic constraint. Our study provides rigorous proofs
of boundedness, existence, and uniqueness for the initial
value problem of the system, allowing for the assurance that
convergent numerical solutions converge to a unique solu-
tion for a given initial condition. This allows scholars to
have a free simulator that will aid in dynamical studies of
wind turbines without the need for software and Simulink
limitations. A safe region within grid parameter space (R
and X) is defined, in which existence and uniqueness are
guaranteed. We presented time scale analysis and simula-
tions to show that the system can be studied in smaller
sizes. Lastly, we introduce cases of two and three time
scales.
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Abbreviations

WTG Wind turbine generator
Type-3 Wind turbine with three blades
Cp curves Coefficients of performance
DFAG Doubly-fed asynchronous generator
DFIG Doubly-fed induction generator
GE General electric
pu Per unit

Greek symbols

ρ Air density
Δθm Integrator of the difference between the gen-

erator and turbine speeds (pu)
θ Pitch angle (degrees)
θpll Phase angle of the WTG (PLL angle)
Θ Phase angle of the grid
λ The tip ratio
αi, j Polynomial coefficients in Cp

θqcmd Pitch angle command
θmin Lower control limit of θ

θmax Upper control limit of θ

dθmax Lower control limit of dθ
dt

dθmin Upper control limit of dθ
dt

Δθmmin Lower bound of Δθm
Δθmmax Upper bound of Δθm
φ1,2...11 Notation for the column basis of the matrix

PP used in the time scale analysis
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Other symbols in alphabetical order

A The Jacobian matrix evaluated at the steady
state for the system before time scale analysis

Anew The Jacobian matrix evaluated at the steady
state for the system used in the time scale anal-
ysis

Ar Rotor area (m2)
D Diagonal matrix of the eigenvalues at the

steady state
Dtg Shaft damping constant
DD Matrix with diagonal entries of real eigen-

values and block diagonal entries of real and
imaginary parts of complex eigenvalues

dfdbwi Corrected version of the difference between the
bus frequency and the reference frequency

dpwi Correction of power order due to inertia control
dfdwimin Lower bound of dfdbwi
dfdwimax Upper bound of dfdbwi

d Pmin Lower control limit of dPinp
dt

d Pmax Upper control limit of dPinp
dt

E Infinite bus voltage (pu)
Eq Reactive voltage in the generator (pu)
Eqcmd Reactive voltage command (pu)
f1 Integrator of the difference between the gener-

ator and reference speeds (pu time)
f2 Integrator of the difference between the power

order and the rated power (pu time)
f1min Lower bound of f1
f1max Upper bound of f1
f2min Lower bound of f2
f2max Upper bound of f2
fltdfwi Filtered version of the reference frequency (pu)
fn Number of poles
FF Vector of upper bounds of the sum of absolute

partial derivatives of f (t, y)
H Turbine inertia constant
Hg Generator inertia constant
Id Reactive current in the generator (pu)
Ipcmd Active current command (pu)
Iplv Active current in the generator (pu)

Ipmax Upper control limit of
Iplv
V

Iq Active current in the generator, the same as Iplv
(pu)

Kic Integral gain for the integrator f2
Kip Integral gain for the integrator f1
Kiv Integral gain for the integrator Qwvu

Kitrq Torque control gain
Kpc Pitch compensation proportional
Kpll The gain of PLL
Kpp Pitch control proportional
Kptrq Torque control proportional

Kpv Integral gain for the integrator Qwvl

KQi Reference voltage’s gain
Ktg Shaft stiffness constant
Kvi Reactive voltage command time constant
Kwl Correction of power order due to inertia control

gain
P Matrix consists of the eigenvectors as column

basis at the steady state
P1elec Filtered electrical power (pu)
Pavf Filtered available power in the active power

(pu) control
Pavl Available power in the active power control

(pu)
Pelec Electrical (active) power delivered to the grid

(pu)
Pelecmax Upper bound of Pelec
Pelecmin Lower bound of Pelec
Pinp Power order (pu)
Plim Power subtracted from Pinp before generating

wsho

Pmech Power extracted by the turbine (pu)
Pmechmax Upper bound of Pmech
Pmechmin Lower bound of Pmech
Pmechmax1 Upper bound of ∂Pmech

∂y2

Pmechmax2 Upper bound of ∂Pmech
∂y6

Pmnwi Lower control limit of dpwi
Pmxwi Upper control limit of dpwi
Pnew Matrix consists of the eigenvectors as column

basis at the steady state for the diagonalized
system

Pord Total power order
Pstl Rated power (pu)
Pwmax Upper control limit of Pinp
Pwmin Lower control limit of Pinp
Pwind Wind power in the air streams (pu)
PP Reconstruction of the matrix P with real and

imaginary parts of the eigenvectors to be the
new column basis

PFAref Power factor angle
Qcmd Reactive power command (pu)
Qdrop Q drop function (pu)
Qgen Reactive power delivered to the grid (pu)
Qinpt Input signal to generate Qdrop

Qinptmax Upper bound of Qinpt

Qinptmin Lower bound of Qinpt

Qmax Upper control limit of Qwv and Qcmd

Qmin Lower control limit of Qwv and Qcmd

Qord Reactive power order (pu)
Qwv The sum of the integrators Qwvl and Qwvu

Qwvl Integrator in the lower branch before reaching
the output of reactive power control (pu)
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Qwvu Integrator in the lower branch before reaching
the output of reactive power control (pu)

R Infinite bus (grid) resistance (pu)
S The complex power
Tc Reactive power order time constant
Telec Generator torque
Tlpdq Qinpt time constant
Tlpwi Filtered version of the reference frequency

time constant
Tmech Turbine torque
Tpav Filtered available power (Pavf ) time constant
Tpl Pitch angle command’s time constant
Tpwr Filtered electric power time constant
Tr Supervisory voltage’s time constant
Tshaft Shaft torque
Tv The integrator Qwvl time constant
Tw Wash out power error’s time constant
Twowi The gain Kwl time constant
t f The fast time scale
tm The medium time scale
ts The slow time scale
V Magnitude of the terminal voltage (pu)
V1reg Filtered supervisory voltage (pu)
Vc Complex representation for the terminal volt-

age
Vermn Lower control limit of V1reg + Vr f q − Vqd
Vermx Upper control limit of V1reg + Vr f q − Vqd
Vmax Upper control limit of Vre f
Vmax1 Upper bound of ∂V

∂y21

Vmax2 Upper bound of ∂V
∂y22

Vmin Lower control limit of Vre f
Vmin1 Lower bound of ∂V

∂y21

Vmin2 Lower bound of ∂V
∂y22

Vmnm Lower bound of V
Vmxm Upper bound of V
Vref Reference voltage (pu)
Vreg Supervisory voltage
Vregmax Upper bound of Vreg
Vregmin Lower bound of Vreg
Vrfq Reference voltage directed to the reactive

power control
Vstate Vector of steady state values for V1,2...11
Vqd The effect of Qdrop after a gain
vwind Wind speed (m/s)
w The total generator speed, the sameaswgenerator

(pu)
w0 Initial speed (non dynamical part of the gener-

ator and turbine speeds) in pu
wbase Base angular frequency
wg Dynamical variable to represent generator speed

(pu)

wgenerator The total generator speed in pu (wg + w0) in
pu

wgmax Upper bound of wg

wgmin Lower bound of wg

wref Rotor reference speed (pu)
wrotor The total turbine speed (the same as wturbine)

in pu
wsho Dynamical error measurement (wash out) for

the difference between the output of the active
power control and the power order (pu)

wt Dynamical variable to represent turbine speed
(pu)

wtmax Upper bound of wt

wtmin Lower bound of wt

wturbine The total generator speed (wt + w0) in pu
X Infinite bus (grid) reactance (pu)
Xeq Reactance in the generator
xstate Vector of steady state values for y∗

1,2...11
XlQmax Upper control limit of Eqcmd

XlQmin Lower control limit of Eqcmd

Y Vector of absolute upper bounds of y compo-
nents

y The system’s state variable by order as intro-
duced

y∗ Vector of state variables used in the multi time
scale analysis

1 Introduction

The future of humanity lies with renewable energies. There
are many reasons that indicate the absolute necessity for the
replacement of our energy systems. Someargue this casewith
economic justifications, while others lean on environmental
concerns. Regardless of the reasons behind this need, we
require additional understanding of the generation of renew-
able energies ifwe are tomake this critical change.According
to the United States’ Department of Energy [1], wind energy
is the fastest growing renewable energy resource being uti-
lized. This rapid expansion demands more scientific research
and studies to understand the behavior and dynamics of wind
turbine generators (WTGs) if we are to gain the most from
this valuable resource. Governments and corporations alike
are seeking to understand the challenges and consequences
of integrating WTGs within large cities with/without other
power systems. As a result of the complexities involved in
the implementation of WTGs, research in control systems,
power generation, and energy storage ofWTGs has increased
dramatically over the last decade.

Within thedevelopment of emerging technologies, applied
mathematics offers the opportunity for increased scientific
understanding and accuracy of the phenomena related to the
new technology. Due to this, mathematical modeling and
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analysis needs to be involved in describing and studying
WTGs. These mathematical studies provide valuable infor-
mation in regards to the dynamics of aWTG. In addition, such
scientific research provides more accurate results regarding
stability, sensitivity, and simulation studies of WTGs.

Type-3 WTGs according to [2] are more efficient in
extracting power from the air streams. Coefficients of Per-
formance (Cp curves) are relatively better for type-3 WTGs.
Even though many studies focused on optimization of (Cp

curves) by developing new designs of WTGs blades such
as [3], type-3 as in the studies [3–5] is able to provide an
extraction efficiency up to 0.4–0.5 of the power available in
the air streams. A detailed study about Cp curves can be
found in [3].

Due to better control characteristics and options, most
agree that Doubly Fed Asynchronous/Induction Generator
(DFAG/DFIG) is the future of WTG technologies. Also, it
is easier and more practical to connect these type of gen-
erators to the grid. A detailed study describing this can be
found in the literature review of [6] with citations to many
sources in the literature that focus mainly on investigating
the applicability of DFAG/DFIG technologies. In separate
research, both General Electric [7,8] and Electric Power
Institute [9] suggest the use of DFAG/DFIG. Therefore,
we consider Type 3 Doubly Fed Asynchronous/Induction
Generator (DFAG/DFIG) in our study. WTGs with DFAG
technology can be grouped in three directions of study. The
first is studies focused on modeling, as in [10–17]. How-
ever [18–20], explain the modeling aspect in greater detail.
The second direction includes studies focused on small sig-
nal stability and faults analysis of practical problems, as
in [21,22]. The third direction of study focuses on the sensi-
tivity, such as [23,24]. In [24], the authors showed how some
of the parameter affected the dynamic behavior of type-3
DFAG.While a larger model with deeper study was analyzed
in [23].

In our study, the main citations referenced while build-
ing the model are [7,8,22,23]. In [8], the block diagrams
cover the basic wind power extraction model and rotor
model. Also, discussion about the reference speed, pitch
control, and reactive power control in both the cases of
power factor and supervisory voltage are provided. In [7],
Cp curves are discussed in more detail and two optional
control blocks are added (active power and inertia controls).
In [22], the model blocks and a simulation for small sig-
nal stability are provided. Also, a Simulink model was built
and eigenvalues were computed in [22]. The paper [25] sum-
marized some of the important results the General Electric
(GE) team presented in [7,8]. The GE team confirmed in
their studies the reliability of using their model to represent
WTG models for other companies that manufacture WTGs.
Moreover, they have compared their simulations to a lot of

scenarios and measured data. Because of the comparability,
validation, citations to them, and the possibility of extend-
ing GE models to other WTGs, we consider them in our
study.

No full time domain analysis or study was found in the
literature for the research provided by GE and similar stud-
ies. This is despite such studies having been cited as some
of the most significant resources towards the building of
WTGs models. This is a problem, as it has triggered a
cycle in which many scholars focus upon validating and
re-validating the model that was based upon engineering
experimentation and judgment, not on scientific mathemat-
ical analysis. Although the authors in [23] did built a part
of the model mathematically for a sensitivity study while
activating the pitch control, questions such as whether or
how numerical solvers are reliable for simulations and math-
ematical studies were not addressed. No rigorous proofs or
mathematical analysis were identified in the literature to con-
firm or deny the necessity of the control limits proposed in
[7,8] and many other sources. Also, without the uniqueness
of solutions to the initial value problem, we can’t heavily
trust simulations using numerical solvers to indicate the full
picture of what is occurring within the wind turbine. This
hasn’t been discussed or proven in any of the papers that
built parts of the model in the form of differential equations,
such as [6,23,24]. Without any available existence, unique-
ness, and boundedness proofs, the mathematical analysis of
these models and any resultant contribution is under doubt
and subject to questioning. This missing element prevents
us from significantly developing an acceptable understand-
ing of the dynamics and stability of WTGs, especially when
we integrate them with other power sources that have been
more fully studied and analyzed mathematically. We need
stronger theoretical analysis to the existent control system
as a whole of WTGs to be able to develop new control the-
ory for this emerging technology, and this is the focus of our
paper.

In this paper, we layout the model in the form of a differ-
ential algebraic system in time domain. We then eliminate
the algebraic constraint, allowing for the model to be in the
form of a nonlinear system of differential equations (Sect. 2).
We then provide a rigorous mathematical analysis by prov-
ing boundedness for the WTGs’ state variables, as well as
their derivatives; important from a mechanical and electrical
point of view. We then prove the existence and uniqueness
for the dynamical system. We define a region in R and X
space (Safe Region), in which existence and uniqueness are
guaranteed (Sect. 3). For a reduced version of the model (low
wind speeds), we perform two and three time scale analysis
with simulations, which haven’t been previously provided
within the literature (Sect. 4). The conclusions of our work
is presented at the end.
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2 Mathematical model of WTGs

By applying Inverse Laplace Transform to the transfer func-
tions in [7,8], a model of differential algebraic equations can
be built. We did this process in a smaller case in [23,26,27]
to study limited situations when the pitch control is activated
and to study the effect of a Q drop function on the reactive
power. Please refer to these references for descriptions about
the blocks and groups we have in this paper. After we have
the system in differential algebraic equations in Sect. 2.1,
then we provide a proof to eliminate the algebraic constraint,
which turns the system to differential equations system in
Sect. 2.2.

2.1 Differential algebraic form of the system

Group 1: Two-mass rotor.

dwg

dt
= 1

2Hg

[
− Pelec

wg + w0
− Dtg(wg − wt ) − KtgΔθm

]
.

(1)
dwt

dt
= 1

2H

[
Pmech

wt + w0
+ Dtg(wg − wt ) + KtgΔθm

]
.

(2)
d(Δθm)

dt
= wbase(wg − wt ). (3)

A one-mass model can be used to simplify the two-mass
model in group 1. This has been discussed in [7]. This
one-mass differential equation was introduced in [24]. The
following equation represents the one mass model:

dw

dt
= 1

Hwbase
[Pmech − Pelec] .

Whether tow-mass model is used (as in this document) or
one-mass model, we have the following relations to be used:

Pmech = 1

2
Cp(λ, θ)ρArv

3
wind

= 1

2

⎛
⎝ 4∑

i=0

4∑
j=0

αi, jθ
iλ j

⎞
⎠ ρArv

3
wind

and,

Pelec = V Iplv.

Group 2: Pitch control.

d f1
dt

= wg + w0 − wre f . (4)

d f2
dt

= Pinp − Pstl . (5)

dθ

dt
= 1

Tp

[
Kpp(wg + w0 − wre f ) + Kip f1

+ Kpc(Pinp − Pstl) + Kic( f2 − θ)
]
. (6)

Group 3: Reference speed.

dwre f

dt
= 1

60

[
−0.75P2

elec + 1.59Pelec + 0.63 − wre f

]
.

(7)

Group 4: Power order.

dPinp
dt

= 1

Tpc

[
(wg + w0)(Kptrq

(
wg + w0 − wre f

)

+ Kitrq f1) − Pinp
]
. (8)

dwsho

dt
= dPinp

dt
− dPstl

dt
− 1

Tw

wsho. (9)

Group 5: Reactive power control (power factor case) and
electrical control.

dP1elec
dt

= 1

Tpwr
[Pelec − P1elec] . (10)

dVre f
dt

= KQi
[
Qcmd − Qgen

]
(11)

where,

Qgen = V (Eq − V )

Xeq
.

Qcmd is a part of group 5 and 6 and is given by

Qcmd =
⎧⎨
⎩

P1elec · tan(PFAref ) Power factor case
Qord Supervisory voltage case
from another model or constant.

Group 6: Reactive power control (supervisory voltage case)
and electrical control.

dQdrop

dt
= 1

Tlpqd

[
Qinpt − Qdrop

]
. (12)

dV1reg
dt

= 1

Tr

[
Vreg − V1reg

]
. (13)

dQwvl

dt
= 1

Tv

[
Kpv(Vre f − V1reg − Vqd) − Qwvl

]
. (14)

dQwvu

dt
= Kiv

(
Vre f − V1reg − Vqd

)
. (15)

dQord

dt
= 1

Tc
(Qwvl + Qwvu − Qord) . (16)

Equation (11) still holds in this group as well.
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Fig. 1 Block diagram of wind
turbine model

Wind Power
Cp(λ, θ)

Pitch Control
(Group 2)

Active Power
& Inertia Control

(Group 7)

Rotor Model
(Groups 1)

Reference
Speed

(Group 3)

Power Order
(Group 4)

Generator
(Group 8)

Electrical
& Reactive Controls

(Groups 5,6,7)

vwind

fbus

Pmech

wt

wg

θ

wref

Pinp

Pstl

dpwi

Pelec

Qgen

V
Connection Bus

Pinp, Pord

Vref Iplv

Group 7: Active power control and inertia control.

dPav f

dt
= 1

Tpav

[
Pavl − Pav f

]
. (17)

d(fltdfwi)

dt
= 1

Tlpwi
[dfdbwi − fltdfwi]. (18)

d(dpwi)

dt
= Kwi

Tlpwi
[dfdbwi − fltdfwi] − dpwi

Twowi
. (19)

Group 8: DFAG generator/converter.

dEqcmd

dt
= Kvi [Vref − V ]. (20)

dEq

dt
= 1

0.02
[Eqcmd − Eq ]. (21)

d Iplv
dt

= 1

0.02

[
Pord
V

− Iplv

]
. (22)

Group 9: The algebraic (network) equation (see [22]):

0 = (V 2)2 −
[
2(Pelec R + Qgen X) + E2

]
V 2

+ (R2 + X2)(P2
elec + Q2

gen). (23)

The dynamics of all control blocks and groups of differen-
tial equations is summarized in the block diagrams of Fig. 1.
The model’s parameter values can be taken from [7,8,22].
A summary for the needed parameter values including Cp

curves’coefficients is provided in Tables 1 and 2.

2.2 The unique terminal voltage solution

In this section we prove that there exists a unique solution
of Eq. (23), such that we have a system that satisfies the

Table 1 Parameters values in the model

Parameter Value

w0 1 (any choice bigger than 0)

Dtg 1.5 (60Hz) or 2.3 (50Hz)

Ktg 1.11 (60Hz, 1.5MW)

Ktg 1.39 (50Hz, 1.5MW)
1
2ρAr , Kb 0.00159 and 56.6 respectively

wbase 125.66 (60Hz) or 157.08 (50Hz)

H(two mass) 4.33

H(one mass) 4.94 (60Hz), 5.29 (50Hz)

Hg 0.62 (60Hz), 0.96 (50Hz)

Kpp, Kip 150, 25 respectively

Kpc, Kic 3, 30 respectively

Tp, pstl 0.3, 1 respectively

Tpc, Kptrq 0.05, 3 respectively

Kitrq , Tw 0.6, 1 respectively

Tpwr , KQi 0.05, 0.1 respectively

Tlpqd , Tr 5, 0.02 respectively

Tv, Kpv 0.05, 18 respectively

Kiv, Tc 5, 0.15 respectively

Tpav, Tlpwi 0.15, 1 respectively

Kwi , Twowi 10, 5.5 respectively

Kvi , Xeq 40, 0.8 respectively

R, E 0.02, 1.0164 respectively

X = Xl + Xtr Xl = 0.0243, Xtr = 0.00557 respectively

steady states within the control limits mentioned in [7] and
later summarized in Table 3. From an electrical engineering
point of view, what the system normally seeks is current
and power flow from the WTG to the grid, which requires
V > E (V > 1.0164), see the value of E in Table 1. In case
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Table 2 Cp coefficients αi, j

i j αi, j i j αi, j

4 4 4.9686e−10 4 3 −7.1535e−8

4 2 1.6167e−6 4 1 −9.4839e−6

4 0 1.4787e−5 3 4 −8.9194e−8

3 3 5.9924e−6 3 2 −1.0479e−4

3 1 5.7051e−4 3 0 −8.6018e−4

2 4 2.7937e−6 2 3 −1.4855e−4

2 2 2.1495e−3 2 1 −1.0996e−2

2 0 1.5727e−2 – – –

1 4 −2.3895e−5 1 3 1.0683e−3

1 2 −1.3934e−2 1 1 6.0405e−2

1 0 −6.7606e−2 0 4 1.1524e−5

0 3 −1.3365e−4 0 2 −1.2406e−2

0 1 2.1808e−1 0 0 −4.1909e−1

Table 3 Control limits to be applied as in [7]

Variable Lower bound Upper bound

V1reg + Vrfq − Vqd Vermn = −0.1 Vermx = 0.1

Qwv Qmin = −0.436 Qmax = 0.436

Qcmd Qmin = −0.436 Qmax = 0.436

Vref Vmin = 0.9 Vmax = 1.1

Eqcmd XlQmin = 0.5 XlQmax = 1.45
Pord
V Ipmin > 0 Ipmax = 1.1

θ θmin > 0 θmax = 27

Pinp Pwmin = 0.04 Pwmax = 1.12

Pavl Pwmin = 0.04 1

dpwi Pmnwi = 0 Pmxwi = 0.1
dPinp
dt d Pmin = −0.45 dPmax = 0.45

dθ
dt dθmax = −10 dθmin = 10

of disturbances, the faster the system enters this range the
better. Asmentioned in the control limits by [7] (summarized
later in Table 3), there are minimum and maximum allowed
values for Eqcmd and Pord

V such that 0.5 ≤ Eqcmd ≤ 1.45

and Pord
V ≤ 1.1. In the steady state, Eqs. (20) and (22) show

that Eq = Eqcmd and Iplv = Pord
V . Therefore, in the steady

state 0.5 ≤ Eq = Eqcmd ≤ 1.45 and Iplv = Pord
V ≤ 1.1.

The following Lemma is to show and identify the unique
solution of the terminal voltage that will yield those limits
while having V > 1.0164.

Lemma 2.0 In the steady state, if 0.5 ≤ Eq = Eqcmd ≤
1.45 and Iplv = Pord

V ≤ 1.1, then there exists a unique
solution of (23) such that V > 1.0164.

Proof By setting Qgen = V (Eq−V )

Xeq
[see Eq. (11)] and

Pelec = IplvV [see Eq. (3)], Eq. (23) becomes,

0 = V 4 − 2(IplvV )RV2 − 2 · V (Eq − V )

Xeq
· XV 2 − E2V 2

+ (R2 + X2)I 2plvV
2 + (R2 + X2) · V

2(Eq − V )2

Xeq
.

(24)

Dividing by V 2 and algebraic re-arrangement gives

0 = V 2
[
1 + 2X

Xeq
+ R2 + X2

Xeq

]

− V

[
2IplvR + 2XEq

Xeq
+ 2(R2 + X2) · Eq

Xeq

]

+
[
R2 + X2

Xeq
+ (R2 + X2) · I 2plv − E2

]
. (25)

With A = 1 + 2X
Xeq

+ R2+X2

Xeq
, B = −

[
2IplvR +

2XEq
Xeq

+ 2(R2+X2)Eq
Xeq

]
andC = R2+X2

Xeq
+(R2+X2)I 2plv−E2,

solutions of Eq. (25) are,

V = −B ± √
B2 − 4AC

2A
. (26)

With R, X, Xeq > 0, we have A > 0. If we use the parameter
values of R, X , and Xeq given in Table 1 and the upper
bounds given in Lemma 2.0 (Eq < 1.45 and Iplv < 1.1), we
get:

−B

2A
=

2IplvR + 2XEq
Xeq

+ 2(R2+X2).Eq
Xeq

2
(
1 + 2X

Xeq
+ R2+X2

Xeq

) < 0.99. (27)

This implies that there exists a unique solution for V such
that V > 1.0164 and that solution is:

V = f (Iplv, Eq; X; R; E) = −B + √
B2 − 4AC

2A
(28)

with A, B, and C from Eq. (25). ��

3 Boundedness, existence, and uniqueness proofs

In this section, we start by proving boundedness for the solu-
tion of the system of differential equations in Eqs. (1)–(22)
with V as in Eq. (28). After that, we prove the right hand
sides of the differential equations are uniformly Lipschitz
continuous and then existence and uniqueness of initial value
problem solutions follows.We then extend our study for exis-
tence and uniqueness in the parameter space of X and R.
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3.1 Boundedness of the system state variables and their
derivatives under control limits

We define the control limits introduced in [7] to be the lower
and upper bounds as in Table 3.

Remark 3.0 Boundedness of θ, Pinp, Vre f , Qwvl , Qwvu,

dpwi, Eqcmd ,
dPinp
dt , and dθ

dt follow from Table 3.

The effect of the system’s controls impose other bound-
edness conditions. One such condition is the non-wind up
control limit. This control is to make sure the integrators are
not divergent. This is also reasonable from hardware point
of view as the integrators can’t accumulate infinite data. As
a result of that, all integrators such as f1, f2, and Δθm are
bounded by non-wind up control limit. Other physical con-
sequences that follow from the controls are the boundedness
of variables such as Vreg and Qinpt . Those variables are sig-
nals that are generated by the operator controls (machine or
human). The operator (machine or human) will not generate
an infinite physical quantity such as voltage in the case ofVreg
or power in the case of Qinpt . The boundedness of

dPinp
dt (see

Table 3) gives the boundedness of wg since
dPinp
dt = f (wg),

and f (wg) is polynomial [see Eq. (8)]. Physically, Pmech as
the power extracted from the air streams can’t exceed theBetz
limit (approximately 0.59, see section 1.1 for discussion and
references) of the available power in the air streams. The fact
that the power in the air streams is afinite quantity implies that
Pmech is bounded. Since Pmech = f (θ, wt , vwind) is a poly-
nomial of θ and wt (see the detail of Pmech after Eq. 3), then
wt is bounded as θ is bounded fromTable 3 and vwind is phys-
ically finite. Pelec has upper and lower thresholds (see page
4.17 in [7]), which impose Pelec boundedness and support
the boundedness assumption for wg . In the inertia control,
dfdbwi is bounded since it is an output of bounded function.

Conclusion to the previous paragraph: Non wind up
controls, operator and threshold controls, and physical con-
sequences of the controls give boundedness for the vari-
ables f1, f2, Δθm, Vreg, Qinpt, wg, wt , Pmech, Pelec, and
d f dbwi . Those boundedness conditions lead to the follow-
ing conditions.

Conditions 3.0 f1, f2, Δθm, Vreg, Qinpt, wg, wt ,

Pmech, Pelec, and d f dbwi have real lower and upper bounds
such that the following inequalities hold:

f1min ≤ f1 ≤ f1max , (29)

f2min ≤ f2 ≤ f2max , (30)

Δθmmin ≤ Δθm ≤ Δθmmax , (31)

Vregmin ≤ Vreg ≤ Vregmax , (32)

Qinptmin ≤ Qinpt ≤ Qinptmax, (33)

wgmin ≤ wg ≤ wgmax , (34)

wtmin ≤ wt ≤ wtmax , (35)

Pmechmin ≤ Pmech ≤ Pmechmax , (36)

Pelecmin ≤ Pelec ≤ Pelecmax , (37)

d f dbwimin ≤ dfdbwi ≤ dfdbwimax . (38)

Now, we start our proof for the system’s boundedness for
both state variables and their derivatives.

Lemma 3.0 Suppose wre f and
dwre f
dt are continuous in t ∈

[0,∞), then wre f (t) is bounded as well as its derivative.

Proof Since Pelec is bounded [condition (37)], then by the
extreme value theorem we let:

wre f min = min

[
−0.75P2

elec + 1.59Pelec + 0.63

60

]

and,

wre f max = max

[
−0.75P2

elec + 1.59Pelec + 0.63

60

]
.

Then from Eq. (7), we get,

wre f min − wre f

60
≤ dwre f

dt
≤ wre f max − wre f

60
(39)

and then,

wre f min ≤ dwre f

dt
+ wre f

60
≤ wre f max . (40)

Multiplying by e
t
60 (the integrator factor), then,

wre f min · e t
60 ≤

d
[
wre f · e t

60

]
dt

≤ wre f max · e t
60 . (41)

Since wre f and
dwre f
dt are continuous in t , then the they are

Riemann integrable. By applying
∫ t
t0
( )dt to the estimate (41),

we get:

60 · wre f min

(
e

t
60 − e

t0
60

)
≤ wre f e

t
60

−wre f (t0)e
t0
60 ≤ 60 · wre f max

(
e

t
60 − e

t0
60

)
. (42)

By re-arranging the estimate (42), we get:

60 · wre f min + e
t0
60 (wre f (t0) − 60 · Wref min)e

−t
60 ≤ wre f

≤ 60 · wre f max + e
t0
60
(
wre f (t0) − 60 · wre f max

)
e

−t
60 .

(43)

123



Mathematical analysis of wind turbines dynamics under control limits: boundedness, existence… 937

Then as t → ∞, wre f is bounded such that:

60 · wre f min ≤ wre f ≤ 60 · wre f max . (44)

The boundedness for wre f can be shown independent on t
by taking the absolute of estimate (43) such that:

∣∣wre f
∣∣ ≤

∣∣∣∣60 · wre f max + e
t0
60 (wre f (t0) − 60 · wre f max )e

−t
60

∣∣∣∣
≤ ∣∣60 · wre f max

∣∣+
∣∣∣∣e

t0
60 (wre f (t0) − 60 · wre f max )

∣∣∣∣
(45)

for all t .
From the estimate (40),

dwre f
dt can be shown independent on

t as well. After re-arrangement and taking the absolute of the
estimate (40), we get:

∣∣∣∣dwre f

dt

∣∣∣∣ ≤
∣∣∣wre f max − wre f

60

∣∣∣ ≤ ∣∣wre f max
∣∣+ ∣∣∣wre f

60

∣∣∣
≤ ∣∣wre f max

∣∣
+
∣∣∣∣∣
60.wre f max | + |e t0

60 (wre f (t0) − 60.wre f max )

60

∣∣∣∣∣
(46)

for all t .
This proves Lemma 3.0. ��

For the many of the remaining differential equations, sim-
ilar proof steps could be conducted. We find upper bounds
and lower bounds from the control limits (Table 3) and/or the
Condition 3.0, so we can turn the equations to estimates and
then we multiply them by the appropriate integrating factors.
After that, boundedness can be shown for the state variables
and their derivatives. A summary of these proof results is
given below.

Results 3.0 Suppose the state variables wsho, P1elec,
Qinpt, Qord , Pavl , f ltd f wi, Eqcmd , and Iplv as well as
their derivatives are continuous in t ∈ [0,∞), then those
state variables are bounded as well as their derivatives, and
the following estimates hold for all t .

|wsho| ≤ |TwdPmax | +
∣∣∣e t0

Tw (wsho(t0) − TwdPmax )

∣∣∣ , (47)∣∣∣∣dwsho

dt

∣∣∣∣ ≤ |dPmax |

+
∣∣∣∣∣∣
[TwdPmax + e

t0
Tw (wsho(t0) − TwdPmax )]

Tw

∣∣∣∣∣∣ , (48)

|P1elec| ≤ |Pelecmax | +
∣∣∣∣e

t0
Tpwr (P1elec(t0) − dPmax )

∣∣∣∣ , (49)

∣∣∣∣dP1elecdt

∣∣∣∣ ≤
∣∣∣∣ Pelecmax

Tpwr

∣∣∣∣

+
∣∣∣∣∣∣
[Pelecmax + e

t0
Tpwr (P1elec(t0) − dPmax )]

Tpwr

∣∣∣∣∣∣ , (50)

∣∣Qdrop
∣∣ ≤ ∣∣Qinptmax

∣∣+
∣∣∣∣e

t0
Tlpdq (Qdrop(t0) − Qinptmax)

∣∣∣∣ , (51)
∣∣∣∣dQdrop

dt

∣∣∣∣ ≤
∣∣∣∣Qinptmax

Tlpdq

∣∣∣∣

+
∣∣∣∣∣∣
[Qinptmax + e

t0
Tlpdq (Qdrop(t0) − Qinptmax)]

Tlpdq

∣∣∣∣∣∣ , (52)

∣∣V1reg∣∣ ≤ ∣∣Vregmax
∣∣+ ∣∣∣e t0

Tr (V1reg(t0) − Vregmax )

∣∣∣ , (53)

∣∣∣∣dV1regdt

∣∣∣∣ ≤
∣∣∣∣Vregmax

Tr

∣∣∣∣+
∣∣∣∣∣∣
[Vregmax + e

t0
Tr (V1reg(t0) − Vregmax )]

Tr

∣∣∣∣∣∣ ,
(54)

|Qord | ≤ |Qmax | +
∣∣∣e t0

Tc (Qord (t0) − Qmax )

∣∣∣ , (55)

∣∣∣∣dQord

dt

∣∣∣∣ ≤
∣∣∣∣Qmax

Tc

∣∣∣∣+
∣∣∣∣∣∣
[Qmax + e

t0
Tc (Qord (t0) − Qmax )]

Tc

∣∣∣∣∣∣ , (56)

∣∣Pav f
∣∣ ≤ 1 +

∣∣∣∣e
t0

Tpav (Pav f (t0) − 1)

∣∣∣∣ , (57)

∣∣∣∣dPav f

dt

∣∣∣∣ ≤ 1

Tpav

+
∣∣∣∣∣∣
[1 + e

t0
Tpvl (Pav f (t0) − 1)]

Tpv f

∣∣∣∣∣∣ , (58)

| f ltd f wi | ≤ |d f dwimax | +
∣∣∣∣e

t0
Tlpwi ( f ltd f wi(t0) − d f dwimax )

∣∣∣∣ ,
(59)∣∣∣∣d( f ltd f wi)

dt

∣∣∣∣ ≤
∣∣∣∣d f dwimax

Tlpwi

∣∣∣∣

+
∣∣∣∣∣∣
[d f dwimax + e

t0
Tlpwi ( f ltd f wi(t0) − d f dwimax )]

Tlpwi

∣∣∣∣∣∣ , (60)

∣∣Eq
∣∣ ≤ ∣∣XlQmax

∣∣+ ∣∣∣e t0
0.02 (Eq (t0) − XlQmax )

∣∣∣ , (61)
∣∣∣∣dEq

dt

∣∣∣∣ ≤
∣∣∣∣ XlQmax

0.02

∣∣∣∣+
∣∣∣∣∣
[XlQmax + e

t0
0.02 (Eq (t0) − XlQmax )]
0 . . . 02

∣∣∣∣∣ , (62)

and,

∣∣Iplv∣∣ ≤ ∣∣Ipmax
∣∣+ ∣∣∣e t0

0.02 (Iplv(t0) − Ipmax )

∣∣∣ , (63)

∣∣∣∣d Iplvdt

∣∣∣∣ ≤
∣∣∣∣ Ipmax

0.02

∣∣∣∣+
∣∣∣∣∣
[Ipmax + e

t0
0.02 (Iplv(t0) − Ipmax )]
0 . . . 02

∣∣∣∣∣ .
(64)

Some of the state variables are bounded but we still need
to show the boundedness of their derivatives. The follow-
ing lemma is to show that. Boundedness of Pelec [estimate
(37)] and Iplv [estimate (63)] imply the boundedness of V
(Pelec = VI plv). Qgen [see Eq. (11)] boundedness follows
from the boundedness of V and Eq [estimate (61)]. Looking
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at Sect. 2.1, after Eq. (11) we find that the two cases of Qcmd

are bounded based on the bounds in the estimates (10) and
(16).

Conditions 3.1 V, Qgen , and Qcmd have lower and upper
bounds such that the following inequalities hold:

Vmnm ≤ V ≤ Vmxm (65)

Qmnm ≤ Qgen ≤ Qmxm (66)

Qcmdmax ≤ Qcmd ≤ Qcmdmin (67)

Lemma 3.1 In addition to the continuity conditions stated in
Lemma 3.0 and Results 3.0, we suppose wg, wt , Δθm, f1,
f2, Vre f , Qwvl , Qwvu, dpwi , and Eqcmd are continuous in

t ∈ [0,∞), then
dwg
dt , dwt

dt , dΔθm
dt ,

d f1
dt ,

d f2
dt ,

dVre f
dt ,

dQwvl
dt ,

dQwvu
dt ,

d(dpwi)
dt , and

dEqcmd
dt are bounded.

Proof We multiply Eq. (1) by 2Hg , Eq. (2) by 2H , and then
by adding them,

2Hg
dwg

dt
+ 2H

dwt

dt
= −Pelec

wg + w0
+ Pmech

wt + w0
(68)

∣∣∣∣2Hg
dwg

dt
+ 2H

dwt

dt

∣∣∣∣ =
∣∣∣∣ −Pelec
wg + w0

+ Pmech

wt + w0

∣∣∣∣
≤
∣∣∣∣ −Pelec
wg + w0

∣∣∣∣+
∣∣∣∣ Pmech

wt + w0

∣∣∣∣
≤
∣∣∣∣ Pelecmax

wtmin + w0

∣∣∣∣+
∣∣∣∣ Pmechmax

wgmin + w0

∣∣∣∣ .
(69)

By taking the absolute value of Eqs. (3)–(4) with the condi-
tions (34)–(35) we get:

∣∣∣∣dΔθm

dt

∣∣∣∣ ≤ wbase
∣∣wgmax

∣∣+ wbase |wtmax | (70)

and with |wre f | from the estimate (45) we have,

∣∣∣∣d f1dt

∣∣∣∣ ≤ ∣∣wgmax
∣∣+ w0 + ∣∣60 · wre f max

∣∣
+
∣∣∣e t0

60
(
wre f (t0) − 60 · wre f max

)∣∣∣ . (71)

By taking the absolute value of Eq. (5) and the bounds in
Table 3 we get:

∣∣∣∣d f2dt

∣∣∣∣ ≤ ∣∣Pinpmax
∣∣+ Pstl . (72)

By taking the absolute value of Eq. (20) and from condition
(65) and the bounds in Table 3 we get:

∣∣∣∣dEqcmd

dt

∣∣∣∣ ≤
∣∣∣∣Vmin

Kvi

∣∣∣∣+
∣∣∣∣Vmxm

Kvi

∣∣∣∣ . (73)

By taking the absolute value of Eq. (20) and from conditions
(66)–(67) we get:

∣∣∣∣dVre fdt

∣∣∣∣ ≤ ∣∣KQi Qcmdmax
∣∣+ ∣∣KQi Qmxm

∣∣ (74)

By taking the absolute value of Eqs. (14)–(15) and the bounds
in Table 3 we get:

∣∣∣∣dQwvl

dt

∣∣∣∣ ≤
∣∣∣∣Kpv

Tv

Vermx

∣∣∣∣+
∣∣∣∣Kpv

Tv

Qmax

∣∣∣∣ (75)

and,

∣∣∣∣dQwvu

dt

∣∣∣∣ ≤ |KivVermx | . (76)

By taking the absolute value of Eq. (19) and with the bounds
in Table 3 and condition (38) we get:

∣∣∣∣d(dpwi)

dt

∣∣∣∣ ≤
∣∣∣∣ Kwi

Tlpwi
d f dbwimax

∣∣∣∣+
∣∣∣∣ Kwi

Tlpwi
f ltd f wi

∣∣∣∣
+
∣∣∣∣ Pmaxwi

Twowi

∣∣∣∣ (77)

and by using the bound pf |fltdfwi| from the estimate (18),
we rewrite the estimate (77) to be,

∣∣∣∣d(dpwi)

dt

∣∣∣∣ ≤ 2

∣∣∣∣ Kwi

Tlpwi
dfdbwimax

∣∣∣∣
+
∣∣∣∣ Kwi

Tlpwi
e

t0
Tlpwi (fltdfwi(t0) − dfdwimax )

∣∣∣∣
+
∣∣∣∣ Pmaxwi

Twowi

∣∣∣∣ . (78)

This proves Lemma 3.1. ��
Theorem 3.0 Under the control limits in Table 3 and Con-
ditions 3.0 and 3.1, the differential equations system in
Eqs. (1)–(22) with V as in Eq. (28) have bounded state vari-
ables and derivatives independent on time t.

The proof of Theorem 3.0 follows from Lemma 3.0 and 3.1
and Conditions 3.0 and 3.1.

3.2 Existence and uniqueness under control limits

Westart our analysis by proving the existence and uniqueness
of the solution under the control limits. After that we discuss
some conditions in which existence and uniqueness can still
be proven.

Throughout this section we use the following notations:

– Let i be an index such that i ∈ {1, 2, . . . , 22}.
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– Let y ∈ R
22 represent the state variables by order of the

system in Eqs. (1)–(22) defined for t ∈ [0,∞). Then yi
represents the i th component of y. For every i we have:

yi : t 
→ R. (79)

– Let f (t, y) represents the right hand sides of the deriva-
tives in Eqs. (1)–(22). Then fi represents the i th compo-
nent of f (t, y). For every i we have:

fi :R+ × R
22 
→ R. (80)

– Let Y ∈ R
22 be the vector of the upper bounds of y (see

Theorem 4.0 for boundedness proofs of y) such that for
all i, |yi | ≤ Yi .

– Let ||·|| be the 
1 norm.

Beforewe proceed to existence and uniqueness proofs, we
study first the terminal voltage solution in Eq. (28). As men-
tioned in condition (65), V ∈ R and bounded for the given
parameters in Table 1. The problem is that the parameters R
and X are out of the system’s control as they are parame-
ters of the grid and we want to understand their effect on V .
FromEq. (28), we see that there exist no real solutions for the
steady states or for the system if B2 − 4AC < 0. Therefore,
we study the behavior of B2 − 4AC , and where it can have
negative values and therefore, we have no real solution for
the system. The following Lemma shows that the function
B2 − 4AC has no local minimum or maximum in the given
rectangular domain.

Lemma 3.2 With min(y21) > 0, min(y22) > 0, and
R, X, E, Xeq > 0, the function g(y21, y22) = B2 − 4AC
has no local minimum or maximum in the interior of
[min(y21),max(y21)] × [min(y22),max(y22)].
Proof The proof is by contradiction. ��
Suppose there exists a point (y∗

21, y
∗
22) in the interior of

[min(y21),max(y21)] × [min(y22),max(y22)] that is a local
maximum or minimum, then

∂g(y21, y22)

∂y21

∣∣∣∣
(y∗

21,y
∗
22)

= 0

This implies that,

0 = 2

[
2y∗

22R + 2Xy∗
21

Xeq
+ 2R2y∗

21 + 2X2y∗
21

Xeq

]

[
2X + 2R2 + 2X2

Xeq

]

= 2y∗
22R + 2Xy∗

21

Xeq
+ 2R2y∗

21 + 2X2y∗
21

Xeq

> 2min(y22)R + 2X min(y21)

Xeq

+ 2R2 min(y21) + 2X2 min(y21)

Xeq

> 0. (81)

Thus, there cannot be a local minimum or maximum.

Corollary 3.2 For the given parameter values in Table 1,
control limits in Table 3, and Conditions 4.0 and 4.1, there
exists a positive minimum of g(y21, y22) = B2 − 4AC for
the given rectangular domain in Lemma 4.2. We let gmin =
min(g(y21, y22)).

Lemma 3.3 For all fi a vector component of f (t, y), we
have ||∇ fi || is bounded.
Proof We apply the partial derivatives for all fi , the right
hand side of Eqs. (1)–(22) and find the bound for ||∇ fi || =∑22

j=1

∣∣∣ ∂ fi
∂y j

∣∣∣ for any given t and y. We start by partial deriva-

tives for V = f (y21, y22) in Eq. (28):

∂V

∂y21
= 2X + 2R2 + 2X2

2AXeq

+
−2
[
2y22R + 2Xy21+2R2y21+2X2 y21

Xeq

] (
2X+2R2+2X2

Xeq

)

4A
√
B2 − 4AC

,

(82)∣∣∣∣ ∂V

∂y21

∣∣∣∣ ≤ 2X + 2R2 + 2X2

2AXeq

+
(
4X + 4R2 + 4X2

2AXeq

) ∣∣∣∣∣∣
Y22R + Y21(2X+2R2+2X2)

Xeq√
gmin

∣∣∣∣∣∣ .
(83)

Similarly it can be shown that,

∣∣∣∣ ∂V

∂y22

∣∣∣∣ ≤ X + R2 + X2

AXeq
+ R

∣∣∣∣∣∣
Y22R + Y21(2X+2R2+2X2)

Xeq

2A
√
gmin

∣∣∣∣∣∣
+
∣∣∣∣2(R

2 + X2)Y22√
gmin

∣∣∣∣ . (84)

Since
∣∣∣ ∂V
∂y21

∣∣∣ and ∣∣∣ ∂V
∂y22

∣∣∣ are bounded as in the estimates (83)–

(84), then there are lower and upper bounds for them such
that:

Vmin1 ≤
∣∣∣∣ ∂V

∂y21

∣∣∣∣ ≤ Vmax1, (85)

Vmin2 ≤
∣∣∣∣ ∂V

∂y22

∣∣∣∣ ≤ Vmax2. (86)
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From the conditions (85)–(86), and (65) we get:

||∇ f1|| ≤
∣∣∣∣ Pelecmax

2Hg(wgmin + w0)2

∣∣∣∣+ Dtg + Ktg

2Hg

+
∣∣∣∣ (Vmax1 + Vmax2)Y22 + Vmxm

2Hg(wgmin + x0)

∣∣∣∣ . (87)

Beforeworkingon ||∇ f2||,wewill find the boundof
∣∣∣ ∂Pmech

∂y2

∣∣∣.
We find that:

∣∣∣∣∂Pmech

∂y2

∣∣∣∣ =
∣∣∣∣∣∣
1

2

∂Cp

(
y2+w0
vwind

, y6
)

∂y2
ρArv

3
wind

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
1

2
ρArv

3
wind

∂
∑4

i=0
∑4

j=0 αi, j yi6

(
y2+w0
vwind

) j

∂y2

∣∣∣∣∣∣∣

=
∣∣∣∣∣∣
1

2
ρArv

3
wind

4∑
i=0

4∑
j=1

αi, j y
i
6(

y2 + w0

vwind
) j−1 j

vwind

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
1

2
ρArv

2
wind

4∑
i=0

4∑
j=1

jαi, j Y
i
6

(
Y2 + w0

vwind

) j−1
∣∣∣∣∣∣ .
(88)

Similarly, we can find an upper bound for
∣∣∣ ∂Pmech

∂y6

∣∣∣. There are
upper bounds for

∣∣∣ ∂Pmech
∂y2

∣∣∣ and ∣∣∣ ∂Pmech
∂y6

∣∣∣ such that:
∣∣∣∣∂Pmech

∂y2

∣∣∣∣ ≤ Pmechmax1, (89)
∣∣∣∣∂Pmech

∂y6

∣∣∣∣ ≤ Pmechmax2. (90)

From conditions (89)–(90), (36), and (35) we get:

||∇ f2|| ≤
∣∣∣∣ Pmechmax1

2H(wtmin + w0)

∣∣∣∣+
∣∣∣∣ Pmechmax

2H(wtmin + w0)2

∣∣∣∣
+
∣∣∣∣Dtg + Ktg

2H

∣∣∣∣
+
∣∣∣∣ Pmechmax2

2H(wtmin + w0)

∣∣∣∣ . (91)

For ||∇ f3|| , ||∇ f4|| , ||∇ f5||, and ||∇ f6|| the bounds are as
following:

||∇ f3|| ≤ |2wwbase| , (92)

||∇ f4|| ≤ 2, (93)

||∇ f5|| ≤ 1. (94)

The bound for ||∇ f6|| is given by

||∇ f6|| ≤
∣∣∣∣2Kpp + Kip + Kpc + Kic + 1

Tp

∣∣∣∣ . (95)

From conditions (65), (85) and (90) the bound of ||∇ f6|| is
given by

||∇ f7||

≤
∣∣∣∣∣
1.5V 2

mxmY22 + 1.5VmxmVmax2Y 2
22 + 1.59Vmxm + 1.59Vmax2Y22
60

∣∣∣∣∣
+
∣∣∣∣∣
1.5VmxmVmax1Y 2

22 + 1.59Vmax1Y22
60

∣∣∣∣∣+
1

60
. (96)

The bound of ||∇ f6|| is given by

||∇ f8|| ≤
∣∣∣∣3Kptrq(Y1 + w0)

T pc

∣∣∣∣+
∣∣∣∣Kptrq(Y1 + w0 + Y7)

T pc

∣∣∣∣
+
∣∣∣∣Kitrq(Y4 + 1) + 1

T pc

∣∣∣∣ . (97)

The bounds of ||∇ f9|| comes from the bound in the estimate
Eq. (97) [see Eq. (9)]. Then the bound of ||∇ f9|| is given by

||∇ f9|| ≤ ||∇ f8|| + 1

Tw

. (98)

Then the bound of ||∇ f10|| is given by

||∇ f10|| ≤
∣∣∣∣Vmxm + Vmax2Y22 + Vmax1Y21

T pwr

∣∣∣∣+
∣∣∣∣ 1

Tpwr

∣∣∣∣ .
(99)

In caseQcmd = y10 tan(PFAref ), then
∂Qcmd
∂y10

= tan(PFAre f ).

In case Qcmd = y16, then
∂Qcmd
∂y16

= 1. With conditions (65),
(85) and (90), Then the bound of ||∇ f11|| is given by

||∇ f11|| ≤ KQi · max{tan(PFAref ), 1} + KQi

∣∣∣∣2VmxmY21
Xeq

∣∣∣∣
+ KQi

∣∣∣∣Vmxm + Vmax1Y21
Xeq

∣∣∣∣+ KQi

∣∣∣∣2VmxmVmax2

Xeq

∣∣∣∣ .
(100)

Then the bound of ||∇ f12|| is given by

||∇ f12|| ≤
∣∣∣∣ 1

Tlpqd

∣∣∣∣ . (101)

With Vqd = Kqd Qdrop, the bounds of ||∇ f13|| . . . ||∇ f19||
are given by

||∇ f13|| ≤
∣∣∣∣ 1Tr

∣∣∣∣ , (102)

||∇ f14|| ≤
∣∣∣∣Kpv(2 + Kqd) + 1

Tv

∣∣∣∣ , (103)

||∇ f15|| ≤ ∣∣Kiv(2 + Kqd)
∣∣ , (104)
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||∇ f16|| ≤
∣∣∣∣ 3Tc

∣∣∣∣ , (105)

||∇ f17|| ≤
∣∣∣∣ 1

Tpav

∣∣∣∣ , (106)

||∇ f18|| ≤
∣∣∣∣ 1

Tlpwi

∣∣∣∣ , (107)

||∇ f19|| ≤
∣∣∣∣ Kwi

Tlpwi
+ 1

Twowi

∣∣∣∣ . (108)

From conditions (89)–(90), the bound of ||∇ f20|| is given by,

||∇ f20|| ≤ |Kvi + Kvi Vmax1 + Kvi Vmax2| . (109)

The bound of ||∇ f21|| is given by,

||∇ f21|| ≤ 100. (110)

From conditions (65), (85) and (90) the bound of ||∇ f22|| is
given by,

||∇ f22|| ≤
∣∣∣∣ 1

0.02Vmnm

∣∣∣∣+
∣∣∣∣ Y8
0.02Vmin1

∣∣∣∣
+
∣∣∣∣ Y8
0.02Vmin2

∣∣∣∣+ 50. (111)

Estimates (87)–(111) establishes our result and prove
Lemma 3.3. ��
Lemma 3.4 The function f (t, y) is uniformly Lipschitz con-
tinuous in y.

Proof Based on the proof of Lemma 4.3, we let FF be a
vector in R22, such that for all i , we have ||∇ fi || ≤ FFi and
we let the largest component of FF be FFmax . Since t is a
defined parameter such that the map (80) holds true. Then,
by the mean value theorem of several variables, for any given
y j , yk and j, k ∈ {1, 2 . . . 22}, we have:
∣∣∣∣ fi (t, y j ) − fi (t, yk)

∣∣∣∣ ≤ FFi
∣∣∣∣y j − yk

∣∣∣∣ . (112)

Now, we can show that:

∣∣∣∣ f (t, y j ) − f (t, yk)
∣∣∣∣ ≤

22∑
i=1

∣∣∣∣ fi (t, y j ) − fi (t, yk)
∣∣∣∣

≤
22∑
i=1

FFi
∣∣∣∣y j − yk

∣∣∣∣
≤ 22 · FFmax

∣∣∣∣y j − yk
∣∣∣∣ . (113)

Since 22 · FFmax is independent on t , then f (t, y) is uni-
formly Lipschitz continuous in y and this shows the proof
for Lemma 3.4. ��

Theorem 3.1 For the initial value problem dy
dt = f (t, y),

y(t0) = y0, there exists ε > 0 such that there is a unique
solution for the given initial value problem on [t0−ε, t0+ε].

Remark 3.2 Proof of Theorem 3.1 follows from Picard–
Lindelof Theorem as in chapter 13, sections 1 and 2 of the
analysis reference [28], supported by the continuity assump-
tion of f (t, y) in t , and both Theorem 3.0 and Lemma 3.4.

3.3 General study of existence and uniqueness versus
grid parameters

The results of existence and uniqueness proofs depend on the
behavioral analysis of the function g(y21, y22) = B2 − 4AC
that we have in Lemma 4.2, as we showed that this func-
tion has a minimum only on the borders of a given rectangle
domain. By checking the borders of the rectangle domain
with fixed R, X in Table 1, we have g(y21, y22) > 0, which
enables us to prove the existence and uniqueness of real solu-
tions. Since R, X represent the impedance of the grid, it is
reasonable to assume that a change or drop can happen in
their values. This raises the question of whether we can still
prove existence and uniqueness with different R, X and have
a safe region in the space of R, X , such that, existence and
uniqueness are still guaranteed.

We want to have V = −B+√
B2−4AC
2A with 0 ≤ B2 −4AC

as in Eq. (28). This will lead us to find a region within R, X
space such that the following estimate holds,

0 ≤
[
2y22R + 2Xy21

Xeq
+ 2(R2 + X2)y21

Xeq

]2

− 4

(
1 + 2X

Xeq
+ R2 + X2

Xeq

)
(
R2 + X2

Xeq
+ (R2 + X2)y222 − E2

)
. (114)

We found that if we compute the number Y22, then we can
find a region 0 ≤ − R2+X2

Xeq
− (R2 + X2)Y 2

22 + E2 in the
first quadrant of R, X in which the estimate (114) holds,
and therefore existence and uniqueness for the initial value
problem for any give R, X in that area. The followingLemma
is to show that.

Lemma 3.5 With R, X ≥ 0, Xeq and E as in Table 1, 0 <

y22 ≤ Y22, and 0 < y21, then if

0 ≤ − R2 + X2

Xeq
− (R2 + X2) · Y 2

22 + E2, (115)

the inequality (114) holds.
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Fig. 2 Safe region in which

0 ≤ − R2+X2

Xeq
− (R2 + X2)

Y 2
22 + E2

Proof The following estimate follows from the given condi-
tion y22 ≤ Y22,

(
R2 + X2

Xeq
+ (R2 + X2)y222 − E2

)

≤
(
R2 + X2

Xeq
+ (R2 + X2)Y 2

22 − E2
)

. (116)

We multiply the inequality (116) by the negative quantity

−4
(
1 + 2X

Xeq
+ R2+X2

Xeq

)
, then we get:

−4

(
1 + 2X

Xeq
+ R2 + X2

Xeq

)

(
R2 + X2

Xeq
+ (R2 + X2).y222 − E2

)
≥

− 4

(
1 + 2X

Xeq
+ R2 + X2

Xeq

)

(
R2 + X2

Xeq
+ (R2 + X2).Y 2

22 − E2
)

. (117)

Then, if 0 ≤ − R2+X2

Xeq
− (R2 + X2)Y 2

22 + E2, we have:

0 ≤ −4

(
1 + 2X

Xeq
+ R2 + X2

Xeq

)

(
R2 + X2

Xeq
+ (R2 + X2).Y 2

22 − E2
)

≤
[
2y22R + 2Xy21

Xeq
+ 2(R2 + X2).y21

Xeq

]2

− 4

(
1 + 2X

Xeq
+ R2 + X2

Xeq

)

(
R2 + X2

Xeq
+ (R2 + X2).y222 − E2

)
. (118)

This proves Lemma 3.5. ��
One can now clearly see that we can find a value for

Y22, followed by a safe region in which the estimate (118)
holds. From our boundedness analysis previously discussed,
as shown in estimate (63), we see that,

0 ≤ y22 = Iplv ≤ Ipmax

+ e
t0
0.02 (Iplv(t0) − Ipmax )e

−t
0.02 = Y22 (119)

Looking at Eq. 22
(
d Iplv
dt = 1

0.02

[
Pord
V − Iplv

]
with y22 =

Iplv
)
, we see that in the steady state y22 = Pord

V . From the

control limits (Table 3), we see that Pord
V is bounded above

by Ipmax . If we assume that y22(0) ≤ Ipmax we then can
find a number for Y22 and therefore a graphical result for
Lemma 4.5.

Proposition 3.5 If Iplv(t0) ≤ Ipmax then we have Y22 =
Ipmax = 1.1.

Proof If Iplv(t0) ≤ Ipmax , then from the estimate (119), we
have:

y22 = Iplv ≤ Ipmax = Y22. (120)

Now we can define our safe region and find it graphically. ��
Definition 3.5 With y22(0) ≤ 1.1 and Y22 = 1.1, the safe
region is the region in R, X space boundedby R = 0, X = 0,
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and R2+X2

Xeq
− (R2 + X2)Y 2

22 + E2 = 0 such that the
solution for the initial value problem exists bounded and
unique for all R, X . The safe region is graphically found in
Fig. 2.

4 Time scale analysis with simulations

In [26, section 2.C], there is a discussion and explanation
about the model’s activated and deactivated controls based
on the range of wind speed. The same discussion shows that
for low wind speeds, in specific the range 3 < vwind < 8.2
(see figure 8 in [26]), the pitch control is set to zero to
maximize the power extraction. As a result, Eqs. (5)–(6)
are eliminated in this range. In [27, section 2], we see in
the block description, that the reactive power control can
be either in the power factor case [Group 5, Eqs. (10)–

(11)] or supervisory voltage case [Group 6, Eqs. (12)–(16)
in addition to (11)]. Therefore, if we consider the system for
lower wind speeds (3 < vwind < 8.2) and in power fac-
tor case, then as explained above, as in [26,27], the system
reduces to Eqs. (1)–(4), (7)–(8), (10)–(11), and (20)–(22).
Multi time scale analysis is often possible when there are
some variables that act fast in comparison to some other
variables. We see that, at least locally, variables correspond
to eigenvalues [diagonal components of the matrix D in
Eq. (121)] with significant differences in magnitude. As
noticed λ1−4 are significantly larger in magnitude than the
other eigenvalues. Also, the opposite holds true for λ11, as it
is significantly smaller in magnitude compared to the other
eigenvalues.

Another factor that encourages a multi time scale study, is
that, for the given range of wind speeds, eigenvalues are not
sensitive to wind speed as mentioned in [23]. So locally we

can linearize around the steady state and diagonalize in such a
way that we have eleven variables that correspond one to one
with the eigenvalues. Locally then, we can divide the system
into smaller systems within different time scales. After that,
we can test how far from the steady state the new systems can
approximate the main system, and therefore approximate the
nonlinear dynamics.

We start with fixing vwind = 5 m/s and the parameters as
in Table 1.We compute the Jacobianmatrix (A), at the steady
state for the differential equations system that we have now,
which is consistent of 11 nonlinear differential equations.We
eliminate the algebraic equation using Eq. (28), and compute
the matrices P, P−1 and D such that,

P−1AP = D , A = PDP−1 (121)

where,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−51.61 0 0 0 0 0 0 0 0 0 0

0 −48.66 0 0 0 0 0 0 0 0 0

0 0 −20 0 0 0 0 0 0 0 0

0 0 0 −16.47 0 0 0 0 0 0 0

0 0 0 0 −1.42 + 12.03i 0 0 0 0 0 0

0 0 0 0 0 −1.42 − 12.03i 0 0 0 0 0

0 0 0 0 0 0 −0.68 + 2.13i 0 0 0 0

0 0 0 0 0 0 0 −0.68 − 2.13i 0 0 0

0 0 0 0 0 0 0 0 −0.19 − 0.19i 0 0

0 0 0 0 0 0 0 0 0 −0.19 − 0.19i 0

0 0 0 0 0 0 0 0 0 0 −0.014

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, let i, j be indices for the rows and columns of the
matrix P respectively.
we construct a matrix

PP = [
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11

]

such that φk = Pi=1...11, j=k for k = 1, 2, 3, 4, 11. Those
columns are the eigenvectors associated with the real eigen-
values λ1,2,3,4,11. However, φ5 = Real[Pi=1...11, j=5], φ6 =
Imag[Pi=1...11, j=5], φ7 = Real[Pi=1...11, j=7],
φ8 = Imag[Pi=1...11, j=7], φ9 = Real[Pi=1...11, j=9], and
φ10 = Imag[Pi=1...11, j=9].

We can see now that

PP−1 · A · PP = DD , A = PP · DD · PP−1 (122)
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where

DD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−51.61 0 0 0 0 0 0 0 0 0 0

0 −48.66 0 0 0 0 0 0 0 0 0

0 0 −20 0 0 0 0 0 0 0 0

0 0 0 −16.47 0 0 0 0 0 0 0

0 0 0 0 −1.42 12.03 0 0 0 0 0

0 0 0 0 −12.03 −1.42 0 0 0 0 0

0 0 0 0 0 0 −0.68 2.13 0 0 0

0 0 0 0 0 0 −2.13 −0.68 0 0 0

0 0 0 0 0 0 0 0 −0.19 0.19 0

0 0 0 0 0 0 0 0 −0.19 −0.19 0

0 0 0 0 0 0 0 0 0 0 −0.014

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The target for us now, is to diagonalize and have a set of
new variables that have full one to one correspondence to the
eigenvalues and the eigenvectors respectively.
Let the new variables be Vi , i = 1 . . . 11 such that,

V = [V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11]T = PP−1y∗

= PP−1[wre f f1 wg wt Δθm Pinp P1elec Vre f

Eqcmd Eq Iplv]T . (123)

The transformation between the new set of variables and the
old ones is given by,

V = PP−1 · y∗ , y∗ = PP · V. (124)

We already have the system dy∗
dt = f (y∗) and we want to

construct dV
dt = f (V). We start with the terminal voltage

in Eq. (28). We let the terminal voltage in terms of the new
variables be Vnew and derived as following,

V = V ∗ (Eq = y∗
10, Iplv = y∗

11

)
= V ∗ (PPi=10, j=1...11 · V,PPi=11, j=1...11 · V)
= Vnew(V). (125)

Since we have
dy∗

k
dt = d

dt

[
PPi=k, j=1...11 · V], for all k=

1 . . . 11, then
dy∗

k
dt can be rewritten,

dy∗
k

dt
=

n=11∑
n=1

PPi=k, j=n
dVn
dt

for all k = 1 . . . 11. (126)

For the vector function f (y∗), every vector component
fk(y∗) = fk(PP · V). Simply, in the right hand side of
the differential equations, we substitute,

y∗
k = PPi=k, j=1...11

·V =
n=11∑
n=1

PPi=k, j=nVn for all k = 1 . . . 11. (127)

Now we combine Eqs. (125)–(127), then we get:

n=11∑
n=1

PPi=k, j=n
dVn
dt

= fk(PP · V) for all k = 1 . . . 11.

(128)

For every given k, we have an equation out of Eq. (128). After
solving this system of 11 equations, we get,

dVk
dt

=
n=11∑
n=1

Cai=k, j=nVn + Cai=k, j=12 +
∑n=11

n=1 Cli=k, j=nVn + Cli=k, j=12

Vnew

+
(
n=11∑
n=1

Cbi=k, j=nVn + Cci=k, j=12

)(
n=11∑
n=1

Cci=k, j=nVn + Cci=k, j=12

)
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+ Vnew

(
n=11∑
n=1

Cdi=k, j=nVn + Cdi=k, j=12 +
∑n=11

n=1 Cei=k, j=nVn + Cei=k, j=12∑n=11
n=1 C fi=k, j=nVn + C fi=k, j=12

)

+

[∑n=11
n=1 Cgi=k, j=nVn + Cgi=k, j=12 +

(∑n=11
n=1 Chi=k, j=nVn + Chi=k, j=12

)2]
∑n=11

n=1 Cki=k, j=nVn + Cki=k, j=12

+

[(∑n=11
n=1 Cii=k, j=nVn + Cii=k, j=12

)3 +
(∑n=11

n=1 C ji=k, j=nVn + C ji=k, j=12

)4]
∑n=11

n=1 Cki=k, j=nVn + Cki=k, j=12

+ V 2
new

(
n=11∑
n=1

Cmi=k, j=nVn + Cmi=k, j=12

)2

for all k = 1 . . . 11. (129)

As noticed, we stored the resulting values of the computa-
tions in the arrays Ca, Cb, Cc, Cd, Ce, C f, Cg, Ci, C j,
Ck, Cl, and Cm where they have a size of 11 rows and 12
columns. The row k corresponds to the coefficients of V1...11
and the constant term respectively on the right hand side of
the differential equation dVk

dt in the system. The vector of
the steady state, of the original system xstates , relates to the
vector of the steady state of the new system Vstate as follows,

Vstate = PP−1 · xstate, xstate = PP · Vstate. (130)

The same holds for the vectors of initial conditions in the
original and new systems respectively xini tial and Vini tial ,

Vini tial = PP−1 · xini tial , xini tial = PP · Vini tial . (131)

For vwind = 5 and parameters in Table 1, we derived the
new system as in Eq. (129). We computed Vstate both by
the transformation in Eq. (130) and numerical solving of the
system by setting the derivatives to zero. As a first validation,
we found them matching. Table 4 shows the result.

A second validation, will be by linearizing the new system
and then substituting the variables by the new steady state
in the Jacobian matrix. The eigenvalues are typical to the
original system and Eq. (121) holds for D Such that,

P−1
new · Anew · Pnew = D, Anew = Pnew · D · P−1

new (132)

where

Pnew =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −0.7071 −0.7071 0 0 0 0 0
0 0 0 0 −0.7071i 0.7071i 0 0 0 0 0
0 0 0 0 0 0 −0.7071i 0.7071i 0 0 0
0 0 0 0 0 0 0.7071 0.7071 0 0 0
0 0 0 0 0 0 0 0 −0.7071i 0.7071i 0
0 0 0 0 0 0 0 0 0.7071 0.7071 0
0 0 0 0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and Anew = DD [see Eq. (122)].

4.1 Two time scales for any wind speed

We ran a simulation for the 11 by 11 system in Eq. (129).
Then, we constructed two time scale systems to approximate
the solutions of the full system. Since locally V1...4 corre-
spond to very large negative eigenvalues λ1...4 respectively,
then we treat them as fast variables. Conversely, V5...11 corre-
spond to λ5...11 which are slow variables.While the dynamics
of the fast variables V1...4 are taking place in the fast time
scale, the derivatives of the slow variables, with respect to
the fast time scale, are approximately zero, which means
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Table 4 Steady state in both original and new systems at vwind = 5

xstate 0.7855 0.2181 − 0.2144 − 0.2144 − 0.1179 0.1028 0.1028 1.0188 1.0316 1.0316 0.1008

Vstate 1.5818 0.4480 − 22.1727 24.6789 1.1625 1.8988 0.5029 29.0176 0.3902 − 7.2672 1.0960

Fig. 3 Capture of V2 solution.
Full system (solid), fast solution
(dashed), and slow solution
(doted)

that they stay constant as their initial conditions in the fast
time scale. After the fast variables reach their steady state in
the fast time scale, the slow variables start their dynamics in
the slow time scale and the derivatives of the fast variables
become algebraic equations coupled with the slow system.

From the physical system, we have the initial conditions
xini tial and we calculate the corresponding Vini tial from
Eq. (131). We let t f and ts represent the fast and slow time
scales respectively, then we have the following two systems
which approximate the behavior of the system in Eq. (129):

dVk
dt f

= f (t f , V1...4) for all k = 1 . . . 4 (system of 4 DEs)

Vk = f (t f ) = constant

= initial condition for all k = 5 . . . 11 (133)

and,

dVk
dts

= 0 = f (ts, V1...11) for all k = 1 . . . 4

dVk
dts

= f (t f , V5...11) for all k = 5 . . . 11

(system of 7 DEs and 4 algabraic equations).

(134)

We ran simulations when the initial conditions are very
close to the steady states and, as expected, the results are
as expected. That wasn’t surprising, as the approximation is
more accurate the closer the initial conditions are to the steady

state. However, we wanted to test the nonlinear dynamics, as
the initial conditions are far enough from the steady state.We
ran a simulation for xini tial = xstate + 0.5 and captured the
results. Those initial conditions represent some of the most
nonlinear dynamics that can happen, as xstate + 0.5 exceed
the control limits for most of the state variables. The simula-
tions gave promising results. As a sample for the Two time
scale simulations, Figs. 3, 4 and 5 show V2 full simulation
with and without two time scale approximation. We found
the approximation is good even for these extreme initial con-
ditions, which exceeded the control limits for some of the
state variables.

4.2 Three time scales for any wind speed

By looking at the magnitudes of the eigenvalues, we notice
that we can group them not only in two scales, but in three
as well. The order of λ11 is, by far, the smallest and still sig-
nificantly smaller than λ5...10. As a result, we ran another
simulation for the system by approximating the solution
behavior by three time scales smaller systems. t f is still the
fast time scale, in which V1...4 (the fast variables) dynamics
take place, while tm is a medium time scale in which V5...10
are themedium variables for which their dynamics take place
in tm . ts represents the slow time scale inwhich V11 dynamics
take place in this time scale. We tested the system for initial
conditions that are close enough to the steady state and the
resultswere as expected, however,weprefer to present results
of nonlinear behavior. We ran the simulation with the same
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Fig. 4 Focused figure for the
transient slow solution of V2.
Full system (solid), fast solution
(dashed), and slow solution
(doted)

Fig. 5 Focused figure for the
fast solution of V2. Full system
(solid) and fast solution (dashed)

Fig. 6 V8 in full system (solid),
fast is not apparent, medium
(dashed), and slow (underneath
the both the fast and medium)

initial conditions as in the previous subsection. Figures 6 and
7b show V8 full simulation with and without three time scale
approximation.

dVk
dt f

= f (t f , V1...4) for all k = 1 . . . 4 (system of 4 DEs)

Vk = f (t f ) = constant

= initial condition for all k = 5 . . . 11 (135)
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Fig. 7 Focused figures for the
V8 solution behavior to capture
the slow solution (solid). The
fast is dashed. a Focused figure
for the transient slow solution.
Full system (solid) and medium
(dashed), b focused figure for
the fast solution

and,

dVk
dt f

= 0 = f (ts, V1...11) for all k = 1 . . . 4

dVk
dtm

= f (tm, V5...10) for all k = 5 . . . 10

Vk = f (tm) = constant = initial condition for k = 11

(system of 6 DEs and 4 algabraic equations) (136)

and,

dVk
dts

= 0 = f (ts, V1...11) for all k = 1 . . . 10

dVk
dts

= f (t f , V5...11) for k = 11

(one DE and 10 algabraic equations). (137)

5 Conclusions

The mathematical model suggested by recognized papers
and studies to represent wind turbines dynamics has now
been translated to a system of nonlinear algebraic equations.
Proof of the uniqueness to the terminal voltage has been rep-
resented, which generates a system of nonlinear differential
equations. Under control limits, the system’s state variables
and derivatives have been rigorously proven to be bounded.
Under a defined ‘Safe Region’ in R and X space, we proved
the existence and uniqueness for a given initial value prob-
lem. These proofs add assurances to implement the systemby
numerical solvers, guaranteeing that convergence of numer-
ical solvers and simulators is a convergence to the unique
solution of the given initial value problem. For a reduced ver-
sion of the system, we have shown and performed two and
three time scale analysis. This should open a whole new door
for the dynamical study ofwind turbines nonlinear dynamics.
Since the literature had not previously provided any of the
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proposed mathematical analysis or time scale simulations,
we assert that this paper is a base theoretical study for this
emerging nonlinear dynamical system.
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