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Abstract In this study, a mathematical analysis of a wind
turbine dynamics is presented. The model represented
by control blocks and transfer functions taken from rec-
ognized papers and studies, is translated to a system of
nonlinear differential algebraic equations. For easier com-
putational and numerical study, we prove the existence of
a unique terminal voltage solution, which eliminates the
algebraic constraint. Our study provides rigorous proofs
of boundedness, existence, and uniqueness for the initial
value problem of the system, allowing for the assurance that
convergent numerical solutions converge to a unique solu-
tion for a given initial condition. This allows scholars to
have a free simulator that will aid in dynamical studies of
wind turbines without the need for software and Simulink
limitations. A safe region within grid parameter space (R
and X) is defined, in which existence and uniqueness are
guaranteed. We presented time scale analysis and simula-
tions to show that the system can be studied in smaller
sizes. Lastly, we introduce cases of two and three time
scales.
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Abbreviations
WTG Wind turbine generator
Type-3 Wind turbine with three blades
C, curves Coefficients of performance
DFAG Doubly-fed asynchronous generator
DFIG Doubly-fed induction generator
GE General electric
pu Per unit
Greek symbols
0 Air density
Abyy, Integrator of the difference between the gen-
erator and turbine speeds (pu)
0 Pitch angle (degrees)
Opii Phase angle of the WTG (PLL angle)
O Phase angle of the grid
A The tip ratio
Q| Polynomial coefficients in C),
Bgemd Pitch angle command
Omin Lower control limit of 6
Omax Upper control limit of 6
dOmax Lower control limit of %
dOin Upper control limit of ‘Zl—f
ABmin Lower bound of A6,
ABmax Upper bound of A6,
$1.2..11 Notation for the column basis of the matrix

PP used in the time scale analysis
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The Jacobian matrix evaluated at the steady
state for the system before time scale analysis
The Jacobian matrix evaluated at the steady
state for the system used in the time scale anal-
ysis

Rotor area (mz)

Diagonal matrix of the eigenvalues at the
steady state

Shaft damping constant

Matrix with diagonal entries of real eigen-
values and block diagonal entries of real and
imaginary parts of complex eigenvalues
Corrected version of the difference between the
bus frequency and the reference frequency
Correction of power order due to inertia control
Lower bound of dfdbwi

Upper bound of dfdbwi

dP, inp
dt

dP inp
dt

Lower control limit of

Upper control limit of
Infinite bus voltage (pu)

Reactive voltage in the generator (pu)
Reactive voltage command (pu)

Integrator of the difference between the gener-
ator and reference speeds (putime)

Integrator of the difference between the power
order and the rated power (putime)

Lower bound of f}

Upper bound of fj

Lower bound of f>

Upper bound of f>

Filtered version of the reference frequency (pu)
Number of poles

Vector of upper bounds of the sum of absolute
partial derivatives of f(t, y)

Turbine inertia constant

Generator inertia constant

Reactive current in the generator (pu)

Active current command (pu)

Active current in the generator (pu)

Upper control limit of %

Active current in the generator, the same as I,
(pw)

Integral gain for the integrator f>
Integral gain for the integrator fi
Integral gain for the integrator Q.
Torque control gain

Pitch compensation proportional
The gain of PLL

Pitch control proportional

Torque control proportional

Piejec
P, avf

Payi

Pelec

Pelecmar
Pelecmin
P, inp
Piim

Prnech
Prechmax
P mechmin

P mechmax1

P mechmax?2
P, mnwi

P, mxwi

Pnew

Pora
P
Pymax
Promin
Pyind
PP

PFA ¢

Qcmd

erop

0 gen

Qinpt
inptmax

Qinptmin

Omax
Qmin
Qord
Owy

Qwvl

Integral gain for the integrator Q.
Reference voltage’s gain

Shaft stiffness constant

Reactive voltage command time constant
Correction of power order due to inertia control
gain

Matrix consists of the eigenvectors as column
basis at the steady state

Filtered electrical power (pu)

Filtered available power in the active power
(pu) control

Available power in the active power control
(pw)

Electrical (active) power delivered to the grid
(pw)

Upper bound of Ppjec

Lower bound of Py,

Power order (pu)

Power subtracted from P;,, before generating
Wsho

Power extracted by the turbine (pu)

Upper bound of Pyech,

Lower bound of Pyech

Upper bound of 31,;%“”

Upper bound of 31.;#""

Lower control limit of dpwi

Upper control limit of dpwi

Matrix consists of the eigenvectors as column
basis at the steady state for the diagonalized
system

Total power order

Rated power (pu)

Upper control limit of Py,

Lower control limit of Py,

Wind power in the air streams (pu)
Reconstruction of the matrix P with real and
imaginary parts of the eigenvectors to be the
new column basis

Power factor angle

Reactive power command (pu)

Q drop function (pu)

Reactive power delivered to the grid (pu)
Input signal to generate Q jyop

Upper bound of Qs

Lower bound of Q

Upper control limit of Qy,, and Qg

Lower control limit of Q,,, and Qa4
Reactive power order (pu)

The sum of the integrators Q,,,; and Q,yyy
Integrator in the lower branch before reaching
the output of reactive power control (pu)
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QWVM

Vermn
Vermx
Vinax
Vinax1
Vinax2
Vinin
Vinin
Vinin2
Vinnm
Vinxm
Vref
Vreg
Vregmax
Vregmin
Vitq

Vsmle
Vya
Vwind
w

wo

Whase

Integrator in the lower branch before reaching
the output of reactive power control (pu)
Infinite bus (grid) resistance (pu)

The complex power

Reactive power order time constant
Generator torque

Qinpr time constant

Filtered version of the reference frequency
time constant

Turbine torque

Filtered available power (P,) time constant
Pitch angle command’s time constant

Filtered electric power time constant
Supervisory voltage’s time constant

Shaft torque

The integrator Q,,,; time constant

Wash out power error’s time constant

The gain K,,; time constant

The fast time scale

The medium time scale

The slow time scale

Magnitude of the terminal voltage (pu)
Filtered supervisory voltage (pu)

Complex representation for the terminal volt-
age

Lower control limit of Vi,eq + Vrg — Vya
Upper control limit of Vi,ee + Vg — Vya
Upper control limit of V,..r

Upper bound of %

Upper bound of %

Lower control limit of V,.r

Lower bound of %

Lower bound of %

Lower bound of V

Upper bound of V

Reference voltage (pu)

Supervisory voltage

Upper bound of Ve

Lower bound of Ve

Reference voltage directed to the reactive
power control

Vector of steady state values for V2. 11

The effect of Qgyp after a gain

Wind speed (m/s)

The total generator speed, the same as Wgeneraror
(pw)

Initial speed (non dynamical part of the gener-
ator and turbine speeds) in pu

Base angular frequency

Dynamical variable to represent generator speed

(pw)

Weenerator The total generator speed in pu (wg + wo) in
pu

Wemax Upper bound of wy,

Wemin Lower bound of wy,

Wref Rotor reference speed (pu)

Wrotor The total turbine speed (the same as Wy, pine)
in pu

Wsho Dynamical error measurement (wash out) for
the difference between the output of the active
power control and the power order (pu)

Wy Dynamical variable to represent turbine speed
(pw)

Wimax Upper bound of w;

Wynin Lower bound of wy

Wiurbine The total generator speed (w; + wp) in pu

X Infinite bus (grid) reactance (pu)

Xeg Reactance in the generator

Xstate Vector of steady state values for yi‘ 2 11

Xl gmax Upper control limit of Egepg ’

XIgmin Lower control limit of Eg¢ng

Y Vector of absolute upper bounds of y compo-
nents

y The system’s state variable by order as intro-
duced

y* Vector of state variables used in the multi time

scale analysis

1 Introduction

The future of humanity lies with renewable energies. There
are many reasons that indicate the absolute necessity for the
replacement of our energy systems. Some argue this case with
economic justifications, while others lean on environmental
concerns. Regardless of the reasons behind this need, we
require additional understanding of the generation of renew-
able energies if we are to make this critical change. According
to the United States’ Department of Energy [1], wind energy
is the fastest growing renewable energy resource being uti-
lized. This rapid expansion demands more scientific research
and studies to understand the behavior and dynamics of wind
turbine generators (WTGs) if we are to gain the most from
this valuable resource. Governments and corporations alike
are seeking to understand the challenges and consequences
of integrating WTGs within large cities with/without other
power systems. As a result of the complexities involved in
the implementation of WTGs, research in control systems,
power generation, and energy storage of WTGs has increased
dramatically over the last decade.

Within the development of emerging technologies, applied
mathematics offers the opportunity for increased scientific
understanding and accuracy of the phenomena related to the
new technology. Due to this, mathematical modeling and
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analysis needs to be involved in describing and studying
WTGs. These mathematical studies provide valuable infor-
mation inregards to the dynamics of a WTG. In addition, such
scientific research provides more accurate results regarding
stability, sensitivity, and simulation studies of WTGs.

Type-3 WTGs according to [2] are more efficient in
extracting power from the air streams. Coefficients of Per-
formance (C), curves) are relatively better for type-3 WTGs.
Even though many studies focused on optimization of (C,
curves) by developing new designs of WTGs blades such
as [3], type-3 as in the studies [3-5] is able to provide an
extraction efficiency up to 0.4-0.5 of the power available in
the air streams. A detailed study about C, curves can be
found in [3].

Due to better control characteristics and options, most
agree that Doubly Fed Asynchronous/Induction Generator
(DFAG/DFIG) is the future of WTG technologies. Also, it
is easier and more practical to connect these type of gen-
erators to the grid. A detailed study describing this can be
found in the literature review of [6] with citations to many
sources in the literature that focus mainly on investigating
the applicability of DFAG/DFIG technologies. In separate
research, both General Electric [7,8] and Electric Power
Institute [9] suggest the use of DFAG/DFIG. Therefore,
we consider Type 3 Doubly Fed Asynchronous/Induction
Generator (DFAG/DFIG) in our study. WTGs with DFAG
technology can be grouped in three directions of study. The
first is studies focused on modeling, as in [10-17]. How-
ever [18-20], explain the modeling aspect in greater detail.
The second direction includes studies focused on small sig-
nal stability and faults analysis of practical problems, as
in [21,22]. The third direction of study focuses on the sensi-
tivity, such as [23,24]. In [24], the authors showed how some
of the parameter affected the dynamic behavior of type-3
DFAG. While a larger model with deeper study was analyzed
in [23].

In our study, the main citations referenced while build-
ing the model are [7,8,22,23]. In [8], the block diagrams
cover the basic wind power extraction model and rotor
model. Also, discussion about the reference speed, pitch
control, and reactive power control in both the cases of
power factor and supervisory voltage are provided. In [7],
C, curves are discussed in more detail and two optional
control blocks are added (active power and inertia controls).
In [22], the model blocks and a simulation for small sig-
nal stability are provided. Also, a Simulink model was built
and eigenvalues were computed in [22]. The paper [25] sum-
marized some of the important results the General Electric
(GE) team presented in [7,8]. The GE team confirmed in
their studies the reliability of using their model to represent
WTG models for other companies that manufacture WTGs.
Moreover, they have compared their simulations to a lot of
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scenarios and measured data. Because of the comparability,
validation, citations to them, and the possibility of extend-
ing GE models to other WTGs, we consider them in our
study.

No full time domain analysis or study was found in the
literature for the research provided by GE and similar stud-
ies. This is despite such studies having been cited as some
of the most significant resources towards the building of
WTGs models. This is a problem, as it has triggered a
cycle in which many scholars focus upon validating and
re-validating the model that was based upon engineering
experimentation and judgment, not on scientific mathemat-
ical analysis. Although the authors in [23] did built a part
of the model mathematically for a sensitivity study while
activating the pitch control, questions such as whether or
how numerical solvers are reliable for simulations and math-
ematical studies were not addressed. No rigorous proofs or
mathematical analysis were identified in the literature to con-
firm or deny the necessity of the control limits proposed in
[7,8] and many other sources. Also, without the uniqueness
of solutions to the initial value problem, we can’t heavily
trust simulations using numerical solvers to indicate the full
picture of what is occurring within the wind turbine. This
hasn’t been discussed or proven in any of the papers that
built parts of the model in the form of differential equations,
such as [6,23,24]. Without any available existence, unique-
ness, and boundedness proofs, the mathematical analysis of
these models and any resultant contribution is under doubt
and subject to questioning. This missing element prevents
us from significantly developing an acceptable understand-
ing of the dynamics and stability of WTGs, especially when
we integrate them with other power sources that have been
more fully studied and analyzed mathematically. We need
stronger theoretical analysis to the existent control system
as a whole of WTGs to be able to develop new control the-
ory for this emerging technology, and this is the focus of our
paper.

In this paper, we layout the model in the form of a differ-
ential algebraic system in time domain. We then eliminate
the algebraic constraint, allowing for the model to be in the
form of a nonlinear system of differential equations (Sect. 2).
We then provide a rigorous mathematical analysis by prov-
ing boundedness for the WTGs’ state variables, as well as
their derivatives; important from a mechanical and electrical
point of view. We then prove the existence and uniqueness
for the dynamical system. We define a region in R and X
space (Safe Region), in which existence and uniqueness are
guaranteed (Sect. 3). For areduced version of the model (low
wind speeds), we perform two and three time scale analysis
with simulations, which haven’t been previously provided
within the literature (Sect. 4). The conclusions of our work
is presented at the end.
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2 Mathematical model of WTGs

By applying Inverse Laplace Transform to the transfer func-
tions in [7,8], a model of differential algebraic equations can
be built. We did this process in a smaller case in [23,26,27]
to study limited situations when the pitch control is activated
and to study the effect of a Q drop function on the reactive
power. Please refer to these references for descriptions about
the blocks and groups we have in this paper. After we have
the system in differential algebraic equations in Sect. 2.1,
then we provide a proof to eliminate the algebraic constraint,
which turns the system to differential equations system in
Sect. 2.2.

2.1 Differential algebraic form of the system

Group 1: Two-mass rotor.

dwg 1 Pooc
—=—|————-D — — Ko AB,, | .
dt 2H, [ wg + wWo rg(Wg = wr) '8 mi|
(D
dw; 1 P, h
7 = ﬁ [ﬁ =+ Dlg(Wg - wt) + thAem} .
(2
d(A6,,)
— = Whase(wg — wy), 3)

A one-mass model can be used to simplify the two-mass
model in group 1. This has been discussed in [7]. This
one-mass differential equation was introduced in [24]. The
following equation represents the one mass model:

dw 1

= [Puech — Putec].
dt Hwpyse [Prech elec]

Whether tow-mass model is used (as in this document) or
one-mass model, we have the following relations to be used:

1
Puech = Ecp()\, 9),0Aﬂ)3

wind
R o
—2 Z Z“lﬁjel)‘j PA Vi
i=0 j=0

and,
Pejec = VIplv'
Group 2: Pitch control.
dfi
E :wg'i‘w()_wrefo )
df>
E = Pinp — Py. (5

@ _ 1
dt T,
+Kpc(Pinp - stl)+Kic(f2_9)]- (6)

Kpp(wg + wo — Wrer) + Kipfl

Group 3: Reference speed.

d I
dWref _ 1 [0.75P3 4 1.59Petec +0.63 = wyey ]

d[ 60 elec
(7
Group 4: Power order.
dP; 1
P [(wg + wo) (K prrq (wg + wo — wref)
dt Tpe
+Kitrqfl) - Pinp]- (8)
dwgpo dPinp d Py 1
dt dt dt T, " ©

Group 5: Reactive power control (power factor case) and
electrical control.

d P 1
d: =< = m [Petec — Pieiec] - (10)
dV,.
_Lf = KQi [Qcmd - Qgen] (1)
dt
where,
V(E,—V)
Qpen = —3— 2
gen Xeq

Qcma 1s a part of group 5 and 6 and is given by

Pielec - tan(PFAref)
Ocmd = Qord

from another model or constant.

Power factor case
Supervisory voltage case

Group 6: Reactive power control (supervisory voltage case)
and electrical control.

derap 1
—_— = inpt — . 12
dt Tlpqd [Qmpt erop] (12)
A% 1
% = T [Vreg - Vlreg] . (13)
dQuui 1
d_wv = [va(Vref - Vlreg - qu) - Qwvl] . (14)
f T,
o
dl:vu = Ky (Vref - Vlreg - Vq ) . (15)
dQora 1
o = 7 (Quut + Quu = Qora)- (16)

Equation (11) still holds in this group as well.
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Fig. 1 Block diagram of wind Poeon
turbine model Connection Bus
N Wind Power Rotor Model EEessssssss—— |
Cp(A, 0) wy (Groups 1)
Pepec
Wy l Qgen
0
. . W Reference
Vwind Pitch Control ref Speed Generator .
(Group 2) (Group 3) (Group 8)
Vier Tpry
Pinyp
N <« -
&?r?;;:fa%)mi'ol Pau Power Order & Rc?cl:iitcr léa(;lrltrols
fi (Group 4) ’ <56
bus (Group 7) dpwi Pinps Pord (Groups 5,6,7)

Group 7: Active power control and inertia control.

dPyyf 1
dt Tpau[ avl avf] (I7)
d(flrdfwi 1
(idfwi) _ [dfdbwi — fldfwi). (18)
dt Tlpwi
d(dpwi Kui dpwi
ddpwi) _ Koi | aeii — fdpwi — 2PV (19)
dt lpwi Twowi
Group 8: DFAG generator/converter.
AdE; cmd
— = KuilVees = V. (20)
o B i — By e
dr 002" 4T Rak
dlplv 1 Pora
= —1 . 22
dt  0.02 [ v @2)
Group 9: The algebraic (network) equation (see [22]):
0= (V22 = [2(Patec R + Qgen X) + E*| V2
+ (R + X*) (P + Qren)- (23)

The dynamics of all control blocks and groups of differen-
tial equations is summarized in the block diagrams of Fig. 1.
The model’s parameter values can be taken from [7,8,22].
A summary for the needed parameter values including C),
curves’coefficients is provided in Tables 1 and 2.

2.2 The unique terminal voltage solution

In this section we prove that there exists a unique solution
of Eq. (23), such that we have a system that satisfies the

@ Springer

Table 1 Parameters values in the model

Parameter Value

wo 1 (any choice bigger than 0)
Dy 1.5 (60Hz) or 2.3 (50Hz)

Kig 1.11 (60Hz, 1.5MW)

Kig 1.39 (50Hz, 1.5MW)

%pA,, Ky 0.00159 and 56.6 respectively
Whase 125.66 (60Hz) or 157.08 (50Hz)
H(two mass) 4.33

H (one mass) 4.94 (60Hz), 5.29 (50Hz)

H, 0.62 (60Hz), 0.96 (50Hz)
Kpp. Kip 150, 25 respectively

Kpe, Kic 3, 30 respectively

Ty, psu 0.3, 1 respectively

Tye, Kpirg 0.05, 3 respectively

Kiirg: Tw 0.6, 1 respectively

Tpwr, Koi 0.05, 0.1 respectively

Tipga, Tr 5, 0.02 respectively

Ty, Kpy 0.05, 18 respectively

Kiy, Tc 5, 0.15 respectively

Tpavs Tipwi 0.15, 1 respectively

Kuis Twowi 10, 5.5 respectively

Kyi, Xeq 40, 0.8 respectively

R, E 0.02, 1.0164 respectively
X=X+ X X; = 0.0243, X, = 0.00557 respectively

steady states within the control limits mentioned in [7] and
later summarized in Table 3. From an electrical engineering
point of view, what the system normally seeks is current
and power flow from the WTG to the grid, which requires
V > E (V > 1.0164), see the value of E in Table 1. In case
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Table 2 C), coefficients o; ;

i j o j i j o j

4 4 4.9686e—10 4 3 —7.1535¢e—8
4 2 1.6167e—6 4 1 —9.4839¢—6
4 0 1.4787e—5 3 4 —8.9194e—8
3 3 5.9924e—6 3 2 —1.0479¢—4
3 1 5.7051e—4 3 0 —8.6018e—4
2 4 2.7937e—6 2 3 —1.4855¢e—4
2 2 2.1495¢—3 2 1 —1.0996e—2
2 0 1.5727e—-2 - - -

1 4 —2.3895e—5 1 3 1.0683e—3

1 2 —1.3934e-2 1 1 6.0405e—2

1 0 —6.7606e—2 0 4 1.1524e—5

0 3 —1.3365¢e—4 0 2 —1.2406e—2
0 1 2.1808e—1 0 0 —4.1909e—1
Table 3 Control limits to be applied as in [7]

Variable Lower bound Upper bound
Vireg + Vitg — Vqa Vermn = —0.1 Vermy = 0.1
Owy Omin = —0.436 Omax = 0.436
Qcmd Omin = —0.436 Omax = 0.436
Vief Vinin = 0.9 Vinax = 1.1
Eqema Xlomin = 0.5 Xlgmax = 1.45
Lot Lomin > 0 Lymax = 1.1

0 Omin > 0 Omax = 27

Pinp Pymin = 0.04 Pymax = 1.12
Py Pymin = 0.04 1

dpwi Prnwi =0 Pwi = 0.1
Ly dPyin = —0.45 APy = 0.45
6 dOax = —10 dOin = 10

dt

of disturbances, the faster the system enters this range the
better. As mentioned in the control limits by [7] (summarized
later in Table 3), there are minimum and maximum allowed

values for Eycnq and P“’}" such that 0.5 < Egemg < 1.45

and % < 1.1. In the steady state, Eqs. (20) and (22) show
that £, = Egema and Ip;y = %. Therefore, in the steady
state 0.5 < Eg = Eqema < 145 and I, = 24 < 1.1
The following Lemma is to show and identify the unique
solution of the terminal voltage that will yield those limits

while having V > 1.0164.

Lemma 2.0 In the steady state, if 0.5 < E; = Egjema <

1.45 and Ip;y = P“’,’d < 1.1, then there exists a unique
solution of (23) such that V > 1.0164.

Proof By setting Qgen = [see Eq. (11)] and
Perec = IV [see Eq. (3)], Eq. (23) becomes,

V(E,~V)
Xe

V(E, -V
0=V*—2(Ip, V)RV - 2. V= V) yy2_ g2y
Xeq
V2(E, —V)?
+(R*+ X)), V2 + (R* + X?) - Vg, = V)"
Xeg
(24)

Dividing by V2 and algebraic re-arrangement gives

2X  R?+ X2
0:V2[1+X—+L]

eq Xeq
—v [21,,1UR b 2E 2D Eq}
Xeg Xeq
[RZXLHIXZ + R+ XY 12, — Ez} : (23)
With A = 1+ 3£ 4+ 520 5 = _[2IplvR+
2§Eq 2(R2;|(-X2)Eq and C — sz;eqxz_,_(R2+X2)]§lv—E2,

eq eq
solutions of Eq. (295) are,

—B++B2—4AC
V= o ) (26)

With R, X, X.;, > 0,wehave A > 0.If we use the parameter
values of R, X, and X, given in Table 1 and the upper
bounds given in Lemma 2.0 (E, < 1.45and I, < 1.1), we
get:

2 2
_B 2R+ Gt 4
= <099, 27
2(1+ 3 + B2
eq eq

This implies that there exists a unique solution for V such
that V > 1.0164 and that solution is:

—B ++BZ —4AC
V:f(lplmEq;X;R;E): A
(28)
with A, B, and C from Eq. (25). O

3 Boundedness, existence, and uniqueness proofs

In this section, we start by proving boundedness for the solu-
tion of the system of differential equations in Egs. (1)—(22)
with V as in Eq. (28). After that, we prove the right hand
sides of the differential equations are uniformly Lipschitz
continuous and then existence and uniqueness of initial value
problem solutions follows. We then extend our study for exis-
tence and uniqueness in the parameter space of X and R.
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3.1 Boundedness of the system state variables and their Wemin < W < Wemax, (35)
derivatives under control limits Procimin < Preen < Prechmars (36)
Poecmin < Pojec < P, 7

We define the control limits introduced in [7] to be the lower ele‘mm‘ = felec = .elecm“x’ . 37
and upper bounds as in Table 3. dfdbwipin < dfdbwi < dfdbwi, . (38)

Remark 3.0 Boundedness of 0, Pi,p, Vier, Quuis Quou,
dPiyp

dpwi, Egema, TR and Z—? follow from Table 3.

The effect of the system’s controls impose other bound-
edness conditions. One such condition is the non-wind up
control limit. This control is to make sure the integrators are
not divergent. This is also reasonable from hardware point
of view as the integrators can’t accumulate infinite data. As
a result of that, all integrators such as fi, f>, and A6, are
bounded by non-wind up control limit. Other physical con-
sequences that follow from the controls are the boundedness
of variables such as V;., and Q. Those variables are sig-
nals that are generated by the operator controls (machine or
human). The operator (machine or human) will not generate

aninfinite physical quantity such as voltage in the case of V¢
dP, inp

or power in the case of Qnps. The boundedness of — - (see
Table 3) gives the boundedness of w, since % = f(wy),

and f(wyg) is polynomial [see Eq. (8)]. Physically, Ppecn as
the power extracted from the air streams can’t exceed the Betz
limit (approximately 0.59, see section 1.1 for discussion and
references) of the available power in the air streams. The fact
that the power in the air streams is a finite quantity implies that
Precn 18 bounded. Since Ppecn = f (6, Wy, Vying) is a poly-
nomial of 6 and w; (see the detail of Py, after Eq. 3), then
w; is bounded as 0 is bounded from Table 3 and vy,;,q is phys-
ically finite. P, has upper and lower thresholds (see page
4.17 in [7]), which impose P, boundedness and support
the boundedness assumption for w,. In the inertia control,
dfdbwi is bounded since it is an output of bounded function.

Conclusion to the previous paragraph: Non wind up
controls, operator and threshold controls, and physical con-
sequences of the controls give boundedness for the vari-
ables f1, f2, Ab, Vreg: Qinpts Wg, W, Puechs Pelec, and
dfdbwi. Those boundedness conditions lead to the follow-
ing conditions.

Conditions 3.0 f1, f2, Abu, Vieg, Qinpr, Wg, Wy,
Prechs Peiec, and d f dbwi have real lower and upper bounds
such that the following inequalities hold:

Simin < f1 < fimax, (29)
Jamin < f2 = famaxs (30)
ABpmin < Aby < ABimax, 31
Viegmin < Vreg < Vregmax (32)
OQinptmin < Qinpt < Qinprmax- (33)
Wemin < Wg < Wemax, (34)
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Now, we start our proof for the system’s boundedness for
both state variables and their derivatives.

d . .
Lemma 3.0 Suppose w,.; and u;rff are continuous int €

[0, 00), then wyer (1) is bounded as well as its derivative.

Proof Since P, is bounded [condition (37)], then by the
extreme value theorem we let:

.| =0.75P3,. + 1.59Pyec + 0.63
Wrefmin = MIN 60
and,
2
—0.75P2,,

4+ 1.59Pejec + 0.63
60 '

Wrefmax = Max |:

Then from Eq. (7), we get,

Wrer dw w
Wrefmin — égf = d;ef = Wrefmax — ééf (39)
and then,

dw w
Wrefmin = dr:f 6"8f = Wrefmax- (40)
Multiplying by e (the integrator factor), then,

, d [wref . eGLO] ,
Wrefmin * €0 < ——————= < Wrefmax - €90. 41)

dt

. dWwyef
Since wyor and —

are continuous in ¢, then the they are
Riemann integrable. By applying ftf) ()dt tothe estimate (41),
we get:

s o s
60 - Wrefmin | €60 — 660) < Wrepe®

- wref(tO)eé% <60- Wrefmax (eéio - eé%> . (42)

By re-arranging the estimate (42), we get:

Io =t
60 - Wrefmin + €00 (wref(t()) - 60 - Wrefmin)e 00 < Wpef

o —t
<60 wrefmax + €% (wref(tO) —60- wrefmax) e,
(43)
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Then as t — o0, wy¢s is bounded such that:
60 - Wrefmin < Wref = 60 - Wrefmax - 44)

The boundedness for w,.s can be shown independent on ¢
by taking the absolute of estimate (43) such that:

o —t
|wref’ <160 - Wrefmax 1 €60 (wref(lo) —60 - wrefmax)e 60

Ip
€60 (wref (to) — 60 - wrefmax)

= |60 : wrefmax| +
(45)

for all 7.

From the estimate (40), dl;’:f can be shown independent on
t as well. After re-arrangement and taking the absolute of the
estimate (40), we get:

Wref
60

dwref
dt

w
=< ‘wrefmax - 6r7(e)'f‘ =< |wrefmax| +

= |wrefmax}

1
60~wrefmax| + |e% (wref(tO) - 60-wrefmax)
60

(46)

for all ¢.
This proves Lemma 3.0. O

For the many of the remaining differential equations, sim-
ilar proof steps could be conducted. We find upper bounds
and lower bounds from the control limits (Table 3) and/or the
Condition 3.0, so we can turn the equations to estimates and
then we multiply them by the appropriate integrating factors.
After that, boundedness can be shown for the state variables
and their derivatives. A summary of these proof results is
given below.

Results 3.0 Suppose the state variables wgpo, Pleiecs
Qinpts Qords Pavi, fltdfwi, Egema, and Ipp, as well as
their derivatives are continuous in ¢ € [0, 00), then those
state variables are bounded as well as their derivatives, and
the following estimates hold for all 7.

RON
[Wshol < |Twd Pyax| + €T (Wsno(t0) — Twd Pax)| s (47)
d
'ﬂ < 1d Pyay |
o
+ [Tyd Ppax + €Tw (U;ho(to) — Twd Ppax)) . (48)
w
_fo
IPleleCI = IPelecmaxl + eTpur (Plelec(tO) - deax) B (49)

‘ dPiejec < Peltecmax
dt - prr
_fo
P, ‘ Tpwr (P ty) — dP,
+ [Peiecmax + € ( lelec( 0) max)] i (50)
prr
_fo
‘erop‘ = |Qinptmax| +le Tipdq (erop (to) — Qinptmax) B (51)
‘ derup < Qinptmax
dt | Tipag
0
[Qinptmax + eTl’qu (erop (IO) - Qinptmax)] i (52)
Tipaq
Io.
‘Vlreg| = |Vregmax| + ‘er" (Vlreg(tO) - Vregmax) ’ (53)
o
dVlreg < Vregmax [Vregmax +elr (Vlreg (to) — Vregmux)]
dt |~ T, T, ’
(54)
o
[Qordl < [Qmax| + |7 (Qora(to) — Omax)| » (55)
o
onrd < Qmax ¥ [Qmax +ele (Qord (t()) - Qmax)] i (56)
dt Tc Tc
o
Pag] £ 1+ e85 By 1) = ). (57)
T’i
vl —
‘dpavf < 1 4 [1+e’r (Pavf(t()) D] , (58)
dt Tpav Tpof

JL
| fltdfwi| < |dfdwimax| + e rei (fltdfwi(ty) — dfdWimay)

)

(59)
‘d( flrdfwi)| _ 'dfdwimax
dt - T[pwi
0
. Tipui . _ .
" [dfdwimax + e i (fltdfwi(ty) — df dwimax)] 7 (60)
Tlpwi
‘Eq| = !XlQmax| + eo"%(Eq(tO) - XlQmax) > (61)
dﬂ < 'XlQmax [XlQmax + e(){% (Eq (to) — XlQmax)] ’ ’ (62)
dr | — | 0.02 0...02
and,
fo
|Iplv‘ = ’Ipmax’ + |e002 (Iplu(tO) - Ipmax) > (63)

1
[Ipmax + eﬁ(lplv(m) - pmax)]
0...02

Ipmax
0.02

=<

dIppy
dt

(64)

Some of the state variables are bounded but we still need
to show the boundedness of their derivatives. The follow-
ing lemma is to show that. Boundedness of P.. [estimate
(37)] and Iy, [estimate (63)] imply the boundedness of V
(Petec = VIppy). Qgen [see Eq. (11)] boundedness follows
from the boundedness of V and E, [estimate (61)]. Looking
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at Sect. 2.1, after Eq. (11) we find that the two cases of Q q
are bounded based on the bounds in the estimates (10) and
(16).

Conditions 3.1 V, Qge,, and Qg have lower and upper
bounds such that the following inequalities hold:

Viinm <V < Viuxm (65)
Omnm < Qgen < Omxm (66)
Qcmdmax = Qcmd = Qcmdmin (67)

Lemma 3.1 Inaddition to the continuity conditions stated in
Lemma 3.0 and Results 3.0, we suppose wg, wy, Aby, f1,
2. Vier, Quot, Quou» dpwi, and Egepma are continuous in

dwg  dw, dAf, dfi dfs dVrer dQuu
t € [0, 00), t'hen d—td‘,ET, dr > di dtc dr ° dr
4Quwuu le;'vu , d(dé’lw’), and =5"% are bounded.

Proof We multiply Eq. (1) by 2H,, Eq. (2) by 2H, and then
by adding them,

d d —P P,
2H We +2H Wy _ elec i mech 68)
8
dt dt we +wo  w; +wo
ZHgdwg +2Hdwt _|_= elec Precn
dt dt we +wo  w; +wo
< —Pejec ‘ Precn
T lwg +wo w; + wo
< Pejecmax Prechmax
T | Wemin + wo Wemin + Wo '

(69)

By taking the absolute value of Egs. (3)-(4) with the condi-
tions (34)—(35) we get:

d A8,
dt

= Whase |wgmax| + Whase [Wimax| (70)

and with |w,.¢| from the estimate (45) we have,

et
dt

= |wgmax| + wo + |6O : wrefmax}

+

[
e% (wref(IO) —60- wrefmax) . (71

By taking the absolute value of Eq. (5) and the bounds in
Table 3 we get:

e
dt

= |Pinpmax| + Py (72)

By taking the absolute value of Eq. (20) and from condition
(65) and the bounds in Table 3 we get:

Vmin
Kvi

me m

Kvi

=<

dE
‘ gcmd (73)

dt
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By taking the absolute value of Eq. (20) and from conditions
(66)—(67) we get:

dVref
dt

= |KQi Ocmdmax | + ‘KQi mem| (74)

By taking the absolute value of Egs. (14)—(15) and the bounds
in Table 3 we get:

d Qi K K

‘ va =< ‘ TI;U Vermx| + I % Omax (75)
and,

d

‘ le;)vu = |Kiv Vermx| . (76)

By taking the absolute value of Eq. (19) and with the bounds
in Table 3 and condition (38) we get:

d(dpwi Kui Kui
' pwi) | | Kui e tpinoe + | K2 f1ra pui
dt Ipwi Tlpwi
P .
+ maxwi (77)
Twowi

and by using the bound pf |fltdfwi| from the estimate (18),
we rewrite the estimate (77) to be,

<2

' d(dpwi)

Koi_ yapwi
dt T max

lpwi

Kwi Tto - . .
Te rwi (fltdfwi(ty) — dfdwi,,, )
pwi

+

(78)

‘ Pmaxwi

Twowi
This proves Lemma 3.1. O

Theorem 3.0 Under the control limits in Table 3 and Con-
ditions 3.0 and 3.1, the differential equations system in
Egs. (1)—~(22) with V as in Eq. (28) have bounded state vari-
ables and derivatives independent on time t.

The proof of Theorem 3.0 follows from Lemma 3.0 and 3.1
and Conditions 3.0 and 3.1.

3.2 Existence and uniqueness under control limits

We start our analysis by proving the existence and uniqueness
of the solution under the control limits. After that we discuss
some conditions in which existence and uniqueness can still
be proven.

Throughout this section we use the following notations:

— Leti be an index such thati € {1, 2, ..., 22}.
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— Let y € R?? represent the state variables by order of the
system in Eqgs. (1)-(22) defined for ¢ € [0, c0). Then y;
represents the ith component of y. For every i we have:
viit — R. (79)

— Let f(t, y) represents the right hand sides of the deriva-
tives in Egs. (1)—(22). Then f; represents the ith compo-
nent of f (¢, y). For every i we have:
fi: Rt x R?? > R. (80)

— Let Y € R?? be the vector of the upper bounds of y (see
Theorem 4.0 for boundedness proofs of y) such that for
all, |yl = Y.

— Let ||-]| be the £! norm.

Before we proceed to existence and uniqueness proofs, we
study first the terminal voltage solution in Eq. (28). As men-
tioned in condition (65), V € R and bounded for the given
parameters in Table 1. The problem is that the parameters R
and X are out of the system’s control as they are parame-
ters of the grid and we want to understand their effect on V.
From Eq. (28), we see that there exist no real solutions for the
steady states or for the system if B> —4AC < 0. Therefore,
we study the behavior of B2 — 4AC, and where it can have
negative values and therefore, we have no real solution for
the system. The following Lemma shows that the function
B? — 4AC has no local minimum or maximum in the given
rectangular domain.

Lemma 3.2 With min(y2;) > 0, min(y») > 0, and
R, X,E, X.q > 0, the function g(y21, y22) = B2 — 4AC
has no local minimum or maximum in the interior of
[min(y21), max(y21)] X [min(yz2), max(y2)].

Proof The proof is by contradiction. O

Suppose there exists a point (y3;, y3,) in the interior of
[min(yz1), max(yz21)] x [min(y22), max(yz2)] that is a local
maximum or minimum, then

ag(y21, y22) —0
W2 oz
This implies that,
2Xyi,  2R%y3 +2X2%y;
0=2|2y5R + Y21 Y21 Y21
eq Xeq

|:2X +2R% 4+ 2x2}
Xeq
2Xy3, N 2R?y3, +2X%y%,
Xeg Xeq

2X min(yz1)
Xeg
n 2R? min(y21) + 2X? min(y21)
Xeg
> 0. (81)

> 2min(y»)R +

Thus, there cannot be a local minimum or maximum.

Corollary 3.2 For the given parameter values in Table 1,
control limits in Table 3, and Conditions 4.0 and 4.1, there
exists a positive minimum of g(y21, y22) = B> — 4AC for
the given rectangular domain in Lemma 4.2. We let gmin =
min(g(y21, y22)).

Lemma 3.3 For all f; a vector component of f(t,y), we
have ||V fi|| is bounded.

Proof We apply the partial derivatives for all f;, the right
hand side of Egs. (1)-(22) and find the bound for ||V f;|| =

232:1 ‘% ‘ for any given r and y. We start by partial deriva-
tives for V.= f(y21, y») in Eq. (28):

V. 2X +2R*+2X°

9y21 2AX .4
2Xyr14+2R?yr +2X2 2X+2R%42X2
| 2[mis Botmt (auape)
4A/ B2 —4AC ’
(82)
' v | _ 2X +2R*>+2X?
ayar | — 2AX ey
Y21 2X+2R2+2X2)
N <4X +4R? + 4x2> YR+ 25—
ZAXeq A/ 8min
(33)

Similarly it can be shown that,

Yo 2X+2R%242X2)

'av _X+R X YnR+ Xeq
yn |~ AXeq ZA»\/gmin
2(R? 4+ X?)Y.
‘ (R*+ XV | 84)
A/ 8min
Since % and ‘% are bounded as in the estimates (83)—

(84), then there are lower and upper bounds for them such
that:

\%

Viint < |=——| < Viax1, (85)
Y21
\%

VminZ S = Vmax2 (86)
y22
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From the conditions (85)—(86), and (65) we get:

Dig + Ky
2H,

Pejecmax

2Hg(wgmin + w0)2

IV fill S‘

' (Vmaxl + VmuxZ)Y22 + mem (87)
2Hg (wgmin + xo0) ’
Before working on ||V f>]|, we will find the bound of ‘ oF ”‘“’1 .
We find that:
‘apmech 1 acp (ylf;:lo’y )
=15 pArthnd
dy> 2 ay2
o\
1 0¥t Ym0y (ﬁf:,-,,f)
= pArthnd
2 a2
_ two iy J o
- wmd Z Zal iV 6( ) Vawind
i=0 j=1
4 4 —1
1 Y.
= szerdeZ]ale6( 2+w0) .
Vwind
i=0 j=1
(88)
Similarly, we can find an upper bound for ‘ il ';”” . There are
upper bounds for )‘”;’"T;'f’l and ‘%y‘:” such that:
0Pyech
‘& =< Pmechmaxl ) (89)
ay2
0Ppoch
'ﬂ = Pmechmax2~ (90)
dye
From conditions (89)—(90), (36), and (35) we get:
||Vf2|| < ' Pmechmaxl ’ Pmechmax .
2H (Wymin + wo) 2H (Wymin + wo)
Dtg + th
P
I Poechmax2 (91)
2H (Wimin + wO)
For [IV 311, IV fall, [IV f5]], and ||V fe|| the bounds are as
following:
[IV 31l < Rwypasel » 92)
[IV fall =2, (93)
IV fsll < 1. (%94)

The bound for ||V fs|| is given by

Kpp+Kip+Kpc+Kic+l

2
Vil <
IV fell < T,

(95)
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From conditions (65), (85) and (90) the bound of ||V fs]|| is
given by

IV fll
1.5V2 Y22 + L.5Viem Vinax2 Yy + 1.59Vinam + 1.59Vinax2 Yo
- 60
L.5Vinxm Vinax1 Y222 + 1.59Viax1 Y22 1
—. 96
60 + 60 (96)

The bound of ||V fgl| is given by

IV fsll < 3Kptrq(Y1+w0) + Kptrq(Yl+w0+Y7)
sl = T pc T pc
Kitrg(Ya+1)+1
+ ' ttrq(;pc ) ‘ (97)

The bounds of ||V fy|| comes from the bound in the estimate
Eq. (97) [see Eq. (9)]. Then the bound of ||V f9|] is given by

1
IV foll = IV fsll + (98)

w

Then the bound of ||V fio|| is given by

mem + Vmax2Y22 + Vmax1Y21 1

T pwr

IV fioll <

prr )
99)

Incase Qcma = yi1o tan(PFA,.r),then aaQy%od = tan(PFA,y).

In case Qg = yi6, then Bava;gd = 1. With conditions (65),
(85) and (90), Then the bound of ||V f11]] is given by

2Vixm Y-
IV fll = Koi - max{tan(PFArep), 1) + K oi | =3
eq
+KQi mem + Vmax1Y21 + KQ[ 2mem Vmax2 )
X X
eq eq
(100)
Then the bound of ||V f12]] is given by
IV fi2ll < . (101)
Ipqd
With Vg = Kg4qQarop» the bounds of ||V fi3]| ... [V fioll
are given by
IV fisll < ||, (102)
r
K2+ Kga) + 1
IV fiall < ‘ z 1 , (103)
Ty
IV fisll < |Kiv@+ K (104)
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3
IV fisll = | (105)
¢
1
IV firll < , (106)
pav
1
IV figll < T , (107)
lpwi
IV fioll < |ty L (108)
Jll =
Tlpwi Twuwi

From conditions (89)—(90), the bound of ||V f»¢]] is given by,

||Vf20|| < |Kyi + Kvi Vinax1 + Kvi Vinax2| - (109)
The bound of ||V f>1]] is given by,
[IV fa1l] < 100. (110)

From conditions (65), (85) and (90) the bound of ||V f>;]] is
given by,

Ys
\V4 <
[IV fa2ll < ‘OOZVmI‘tm + ‘OOZme]
0.0ZVmin2 .

Estimates (87)—(111) establishes our result and prove
Lemma 3.3. O

Lemma 3.4 The function f(t, y) is uniformly Lipschitz con-
tinuous in y.

Proof Based on the proof of Lemma 4.3, we let FF be a
vector in R22, such that for all i, we have ||V fill < FF; and
we let the largest component of FF be FF .. Since t is a
defined parameter such that the map (80) holds true. Then,
by the mean value theorem of several variables, for any given
vj, ykand j, k € {1,2...22}, we have:

| fitt, y)) — fit, v || < FFi ||y — yel|- (112)
Now, we can show that:
22
[f@yp) = faE | < Y| fieyp) = fite, w|
i=l1
22
<Y FFi|ly; — ]|
i=1
<22 FFpax|yj — || (113)

Since 22 - FF 4y is independent on ¢, then f (¢, y) is uni-
formly Lipschitz continuous in y and this shows the proof
for Lemma 3.4. O

Theorem 3.1 For the initial value problem Z—f = f(t,y),
y(to) = yo, there exists € > 0 such that there is a unique
solution for the given initial value problem on [to) — €, ty+€].

Remark 3.2 Proof of Theorem 3.1 follows from Picard—
Lindelof Theorem as in chapter 13, sections 1 and 2 of the
analysis reference [28], supported by the continuity assump-
tion of f (¢, y) in ¢, and both Theorem 3.0 and Lemma 3.4.

3.3 General study of existence and uniqueness versus
grid parameters

The results of existence and uniqueness proofs depend on the
behavioral analysis of the function g(y21, y») = B> —4AC
that we have in Lemma 4.2, as we showed that this func-
tion has a minimum only on the borders of a given rectangle
domain. By checking the borders of the rectangle domain
with fixed R, X in Table 1, we have g(y21, y22) > 0, which
enables us to prove the existence and uniqueness of real solu-
tions. Since R, X represent the impedance of the grid, it is
reasonable to assume that a change or drop can happen in
their values. This raises the question of whether we can still
prove existence and uniqueness with different R, X and have
a safe region in the space of R, X, such that, existence and
uniqueness are still guaranteed.

We want to have V = =—B+vB_—44C ‘2122_4“ with0 < B2 —4AC
as in Eq. (28). This will lead us to find a region within R, X
space such that the following estimate holds,

2X 2(R? + X2 2
0< [ZyzzR 4 2o (R + ))’21i|
eq Xeq

2X R4+ X2

41+ + —
Xeq Xeq

R? + Xx?
(— +(R*+ XP)y3, — EZ) : (114)
Xeg

We found that if we compute the number Y>;, then we can
find a region 0 < _sz;exz — (R* + XZ)Yzz2 + E? in the
first quadrant of R, X inq which the estimate (114) holds,
and therefore existence and uniqueness for the initial value
problem for any give R, X inthat area. The following Lemma
is to show that.

Lemma 3.5 With R, X > 0, X4 and E as in Table 1,0 <
y22 < Y22, and 0 < yzy, then if

2, y2
0< R +X

11
< Xy (115)

—(R>+ X% .Y} + E2,
the inequality (114) holds.
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Fig. 2 Safe region in which 1
_R+X2 _ (p2 2
0 25 ;(M (R +X7) sl
Yy + E
0.8
0.7+

0.6

0.4
Safe Region
0.3
0.2
01+
1 |
% 0.1 0.2

Proof The following estimate follows from the given condi-
tion y2 < Y2,

R% + X2
(X— + (R* + Xz)ygz - Ez)
eq

R? + X2
< (XL + (R? + X*)Y5 — E2) ) (116)

eq

We multiply the inequality (116) by the negative quantity
_ 2X R2+X2> )
4 (1 + o + X, ) then we get:

2X R4+ Xx?
—4(1+ +—
Xeq Xeg
(R2 + X2
Xeq

+ (R*+ X295 — E2) >

( 2X R2+X2)
414+ —+ —
Xeq Xeg

R?> 4+ X?
(— + (R2+X2).Y5 — E2> ) (117)

Xeg

Then, if 0 < —sz;eqxz —(R* + X2)Y222 + E2, we have:

2X R?*+ X2
0<—4(14—+——
Xeq Xeq
R% + X2
(— + R+ xH.Yh - E2)
X
2X 2R+ X2y T
< |:2y22R+ . ( )Y21}
Xeq Xeq
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2X  R?*+ X2
—4<1+ +L)

Xeq Xeq
R+ X2
(— + (R*+ x93 — E2> . (118)
Xeg
This proves Lemma 3.5. O

One can now clearly see that we can find a value for
Y2;, followed by a safe region in which the estimate (118)
holds. From our boundedness analysis previously discussed,
as shown in estimate (63), we see that,

0 <y = 1Ipw =< Ipmax
P P

1 —1
+eﬁ(1plv(t0) — Ipmax)ed2 = Yo (119)

Looking at Bq. 22 (422 = b [ 2t — 1,1, with yop =

1 ,,IU), we see that in the steady state y»» = i Q,”’ . From the

control limits (Table 3), we see that % is bounded above
by Ipmax- If we assume that y22(0) < Ipmax We then can
find a number for Y>> and therefore a graphical result for

Lemma 4.5.

Proposition 3.5 If 1,1,(t0) < Ipmax then we have Yy, =
Tpmax = 1.1.

Proof If 1,,(t0) < Ipmax, then from the estimate (119), we

have:

y22 = Ipiv < Lpmax = Y22. (120)

Now we can define our safe region and find it graphically. O

Definition 3.5 With y»>(0) < 1.1 and Y2, = 1.1, the safe
regionis theregionin R, X spaceboundedby R =0, X =0,
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and sz;fz — (R + XY + E? = 0 such that the
solution for the initial value problem exists bounded and
unique for all R, X. The safe region is graphically found in
Fig. 2.

4 Time scale analysis with simulations

In [26, section 2.C], there is a discussion and explanation
about the model’s activated and deactivated controls based
on the range of wind speed. The same discussion shows that
for low wind speeds, in specific the range 3 < vying < 8.2
(see figure 8 in [26]), the pitch control is set to zero to
maximize the power extraction. As a result, Eqs. (5)—(6)
are eliminated in this range. In [27, section 2], we see in
the block description, that the reactive power control can
be either in the power factor case [Group 5, Egs. (10)—

[ —51.61 0 0 0 0 0
0 —48.66 0 0 0 0
0 0 -20 0 0 0
0 0 0 —16.47 0 0
0 0 0 0 —1.42 +12.03i 0
D= 0 0 0 0 0 —1.42 —12.03i
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

can linearize around the steady state and diagonalize in such a
way that we have eleven variables that correspond one to one
with the eigenvalues. Locally then, we can divide the system
into smaller systems within different time scales. After that,
we can test how far from the steady state the new systems can
approximate the main system, and therefore approximate the
nonlinear dynamics.

We start with fixing vy;,g = 5 m/s and the parameters as
in Table 1. We compute the Jacobian matrix (A), at the steady
state for the differential equations system that we have now,
which is consistent of 11 nonlinear differential equations. We
eliminate the algebraic equation using Eq. (28), and compute
the matrices P, P! and D such that,

P 'AP=D, A=pPDP"! 121)
where,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
—0.68 + 2.13i 0 0 0 0

0 —0.68 — 2.13i 0 0 0

0 0 —0.19 — 0.19¢ 0 0

0 0 0 —0.19 — 0.19i 0

0 0 0 0 —0.014

(11D)] or supervisory voltage case [Group 6, Egs. (12)—(16)
in addition to (11)]. Therefore, if we consider the system for
lower wind speeds (3 < vying < 8.2) and in power fac-
tor case, then as explained above, as in [26,27], the system
reduces to Egs. (1)—(4), (7)—(8), (10)—(11), and (20)—(22).
Multi time scale analysis is often possible when there are
some variables that act fast in comparison to some other
variables. We see that, at least locally, variables correspond
to eigenvalues [diagonal components of the matrix D in
Eq. (121)] with significant differences in magnitude. As
noticed X|_4 are significantly larger in magnitude than the
other eigenvalues. Also, the opposite holds true for A1y, as it
is significantly smaller in magnitude compared to the other
eigenvalues.

Another factor that encourages a multi time scale study, is
that, for the given range of wind speeds, eigenvalues are not
sensitive to wind speed as mentioned in [23]. So locally we

Now, let i, j be indices for the rows and columns of the
matrix P respectively.
we construct a matrix

PP=[¢1 ¢2 &3 ds ¢5 ¢6 7 d3 b9 P10 11|

such that ¢ = Pj—1..11,j=k for k = 1,2,3,4,11. Those
columns are the eigenvectors associated with the real eigen-
values A1 23 4,11. However, ¢5 = Real[Pizl_ull’j:_s], b6 =
Imag[Pi=1..11,j=51, &7 = Real[Pi=1..11,j=71],
¢ = Imag[Pi=1..11,j=711, ¢9 = Real[Pi=1.11,j=9], and
¢10 = Imag[Pi=1..11,j=9]-

We can see now that

PP~'.A.-PP=DD, A=PP-DD-PP! (122)
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where
[ —51.61 0 0 0 0 0 0 0 0 0 0 ]
0 —48.66 0 0 0 0 0 0 0 0 0
0 0 —20 0 0 0 0 0 0 0 0
0 0 0 —16.47 0 0 0 0 0 0 0
0 0 0 0 —1.42  12.03 0 0 0 0 0
DD = 0 0 0 0 —1203 —142 0 0 0 0 0
0 0 0 0 0 0 —068 213 0 0 0
0 0 0 0 0 0 —-213 —-068 0 0 0
0 0 0 0 0 0 0 0 —0.19 0.19 0
0 0 0 0 0 0 0 0 —0.19 -0.19 0
|0 0 0 0 0 0 0 0 0 0  —0.014 |
dyf d

The target for us now, is to diagonalize and have a set of
new variables that have full one to one correspondence to the
eigenvalues and the eigenvectors respectively.

Let the new variables be V; , i = 1...11 such that,

V =[V) Vo V3 Vy Vs Vg V7 Vg Vo Vig VinlT = PP ly*
= PP_l[wref f Wg Wt Ay, Pinp Piejec Vref

chmd Eq Iplv]T- (123)

The transformation between the new set of variables and the
old ones is given by,

V=pPP l.y* y*=PP.V. (124)

We already have the system % = f(y*) and we want to
construct % = f(V). We start with the terminal voltage
in Eq. (28). We let the terminal voltage in terms of the new
variables be V., and derived as following,

V = V*(Eq = ¥io. Ipiv = ¥11)
= V*(PPi=10,j=1..11 - V. PPi=11,j=1..11 - V)

= View(V). (125)

de n=11

=11
2

Since we have b = 4 [PPi— j—1..11 - V], for all k=

dyf .
1...11, then % can be rewritten,

n=11

> Pp

n=

av,
,-zk,jz,,d—t” forallk =1...11. (126)

For the vector function f(y*), every vector component
firy*) = fe(PP - V). Simply, in the right hand side of
the differential equations, we substitute,

i =PPi—i j=1..11
n=11
V= Z PPi—i j=nVy forallk =1...11.

n=1

(127)

Now we combine Eqs. (125)—(127), then we get:

n=I1 dv
Z PPi:k,j:nd—t” = fyx(PP-V) forallk=1...11.
n=l1

(128)

For every given k, we have an equation out of Eq. (128). After
solving this system of 11 equations, we get,

Cli—k,j=n Vn + Cli—t, j=12

= Z Cai=k,j=nVn + Caj=k, j=12 +

n=1

dt

Vnew

n=11 n=11
+ (Z Cbi=k,j=nVn + CCi_k,j_12> (Z Ccizk,j=nVun + CCi_k,j_12>

n=1 n=1
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n=11 n=11
—1 Ceizk, j=nVn + Cei=y j=

+ View Z Cdi:k,j:nVn+Cdi:k,j:12 _}_Zz;h i=k,j=n"n i=k,j=12

n=1 Yon=1 Cfi=k,j=nVa + Cfizk j=12

2
n=11 . . . . n=11 . . . .
n— =k, j= =k, j= n— =k, j= =k, j=
|:Z lcglkj nVn+Cgtk] 12+(Z IChlkj nVn+Chzkj 12>i|
+ n=11
anl Cki:k,j:n Vn + Cki:k,j=12
3 4
n=11 . . . . n=I11 . . . .
n— =k, j= =k, j= n— =k, j= =k, j=
[(Z 1 Clizk,j=nVn + Clj=¢,j 12) +(Z 1 Cli=k,j=nVn + Cji=k,j 12) i|
+ n=11
anl Cki:k,j:n Vo + Cki:k,j=12

n=11 2
+ Vnzew (Z Cmi=p, j=nVn + Cm,':k,j:]z) foralk=1...11. (129)

n=1

As noticed, we stored the resulting values of the computa-
tions in the arrays Ca, Cb, Cc, Cd, Ce, Cf, Cg, Ci, Cj,
Ck, Cl, and Cm where they have a size of 11 rows and 12
columns. The row k corresponds to the coefficients of Vi 11
and the constant term respectively on the right hand side of

A second validation, will be by linearizing the new system
and then substituting the variables by the new steady state
in the Jacobian matrix. The eigenvalues are typical to the
original system and Eq. (121) holds for D Such that,

the differential equation % in the system. The vector of 1 _
the steady state, of the original system x;4;¢, relates to the Prew - Anew - Pnew = D, Apew = Pnew - D - Py, (132)
vector of the steady state of the new system Ve as follows,
where
-1 0 0 0 0 0 0 0 0 0 0|
0O 1 0 0 0 0 0 0 0 0 0
0O 0 -1 0 0 0 0 0 0 0 0
o 0 o0 -1 0 0 0 0 0 0 0
0 0 O 0 -0.7071 -0.7071 0 0 0 0 0
Piw=| 0 0 0 0 —0.7071i 0.7071i 0 0 0 0 0 |,
0O 0 0 0 0 0 —0.7071i 0.7071i 0 0 0
0O 0 0 0 0 0 0.7071 0.7071 0 0 0
0O 0 0 0 0 0 0 0 —0.7071i 0.7071i O
0O 0 O 0 0 0 0 0 0.7071 0.7071 0
| 0 0 0 0 0 0 0 0 0 0 -1 |
Vitate = pp!. Xsrates Xstate = PP - Vage. (130) and A, = DD [see Eq. (122)].

The same holds for the vectors of initial conditions in the
original and new systems respectively X;,iriqr and Viniriai,

Vinitial = PP™" - Xinitiats Xinitiat = PP - Vigitiat.  (131)

For vying = 5 and parameters in Table 1, we derived the
new system as in Eq. (129). We computed V4 both by
the transformation in Eq. (130) and numerical solving of the
system by setting the derivatives to zero. As a first validation,
we found them matching. Table 4 shows the result.

4.1 Two time scales for any wind speed

We ran a simulation for the 11 by 11 system in Eq. (129).
Then, we constructed two time scale systems to approximate
the solutions of the full system. Since locally Vi 4 corre-
spond to very large negative eigenvalues A _4 respectively,
then we treat them as fast variables. Conversely, V5.1 corre-
spond to A5 11 which are slow variables. While the dynamics
of the fast variables Vj_4 are taking place in the fast time
scale, the derivatives of the slow variables, with respect to
the fast time scale, are approximately zero, which means
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Table 4 Steady state in both original and new systems at vying = 5

Xsrate 0.7855 0.2181 —0.2144 —0.2144 —0.1179 0.1028 0.1028 1.0188 1.0316 1.0316 0.1008
Vitate 1.5818 0.4480 —22.1727 24.6789 1.1625 1.8988 0.5029 29.0176 0.3902 —17.2672 1.0960
Fig. 3 Capture of V5 solution. 0.85 T T T T T T
Full system (solid), fast solution
(dashed), and slow solution 0.8 B
(doted) 075/ -4
0.7+ -
0.65F -
=Y 06 .
0.55 -
0.5 .
0.45+-
0.4 r i
0.35 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time

that they stay constant as their initial conditions in the fast
time scale. After the fast variables reach their steady state in
the fast time scale, the slow variables start their dynamics in
the slow time scale and the derivatives of the fast variables
become algebraic equations coupled with the slow system.
From the physical system, we have the initial conditions
Xinitiaql and we calculate the corresponding V;,i;iq from
Eq. (131). We let 17 and ¢, represent the fast and slow time
scales respectively, then we have the following two systems
which approximate the behavior of the system in Eq. (129):

dv,
Fk = f(tf,Vi.4) forallk =1...4 (system of 4 DEs)
f
Vk = f(ty) = constant
= initial condition forallk =5...11 (133)
and,
dv,
K—0=f(t,Vi_11) forallk=1...4
dty
dv,
Y= s Vs forallk =5... 11
dtg
(system of 7 DEs and 4 algabraic equations).
(134)

We ran simulations when the initial conditions are very
close to the steady states and, as expected, the results are
as expected. That wasn’t surprising, as the approximation is
more accurate the closer the initial conditions are to the steady

@ Springer

state. However, we wanted to test the nonlinear dynamics, as
the initial conditions are far enough from the steady state. We
ran a simulation for X;pisiq1 = Xgrare + 0.5 and captured the
results. Those initial conditions represent some of the most
nonlinear dynamics that can happen, as X4z + 0.5 exceed
the control limits for most of the state variables. The simula-
tions gave promising results. As a sample for the Two time
scale simulations, Figs. 3, 4 and 5 show V5 full simulation
with and without two time scale approximation. We found
the approximation is good even for these extreme initial con-
ditions, which exceeded the control limits for some of the
state variables.

4.2 Three time scales for any wind speed

By looking at the magnitudes of the eigenvalues, we notice
that we can group them not only in two scales, but in three
as well. The order of Ay is, by far, the smallest and still sig-
nificantly smaller than A5_19. As a result, we ran another
simulation for the system by approximating the solution
behavior by three time scales smaller systems. ¢ is still the
fast time scale, in which Vj_4 (the fast variables) dynamics
take place, while #,, is a medium time scale in which Vs_ 19
are the medium variables for which their dynamics take place
int,,. t; represents the slow time scale in which V; dynamics
take place in this time scale. We tested the system for initial
conditions that are close enough to the steady state and the
results were as expected, however, we prefer to present results
of nonlinear behavior. We ran the simulation with the same
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Time

Fig. 4 Focused figure for the 0.85 T
transient slow solution of V5.
Full system (solid), fast solution 08/
(dashed), and slow solution 0751
(doted)
0.7t
0.651-
=Y 06
0.551-
0.5
0.451-
0.4
0355 05 i
Fig. 5 Focused figure for the 0.9 T T

fast solution of V5. Full system
(solid) and fast solution (dashed)

Fig. 6 Vg in full system (solid), 45 T
fast is not apparent, medium
(dashed), and slow (underneath
the both the fast and medium) 40

35H]

>W
301
7
25
2y 5 0

initial conditions as in the previous subsection. Figures 6 and
7b show Vg full simulation with and without three time scale
approximation.

Time

dv,
di = f(t7, Vi_4) forallk = 1...4 (system of 4 DEs)
f

Vi = f(ty) = constant

= initial condition forallk =5...11 (135)
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Fig. 7 Focused figures for the 45 ; ;

V3 solution behavior to capture
the slow solution (solid). The
fast is dashed. a Focused figure
for the transient slow solution.
Full system (solid) and medium
(dashed), b focused figure for
the fast solution

=
| |
25 2 4
45 | :
40
351
L
>
30
25f
| |
25 0.01 0.02

and,

v

e — 0= fay, Vi) forallk=1...4
dtf

dv

S = Ft. Vs..10) forallk =5...10
dt,

Vi = f(t,,) = constant = initial condition fork = 11

(system of 6 DEs and 4 algabraic equations) (136)

and,
dV,
Y= 0=f(, Vi) forallk=1...10
dty
dV,
£ = fty, V5. 11) fork =11
dt

(one DE and 10 algabraic equations). (137)

@ Springer

| | |
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time

(b)

5 Conclusions

The mathematical model suggested by recognized papers
and studies to represent wind turbines dynamics has now
been translated to a system of nonlinear algebraic equations.
Proof of the uniqueness to the terminal voltage has been rep-
resented, which generates a system of nonlinear differential
equations. Under control limits, the system’s state variables
and derivatives have been rigorously proven to be bounded.
Under a defined ‘Safe Region’ in R and X space, we proved
the existence and uniqueness for a given initial value prob-
lem. These proofs add assurances to implement the system by
numerical solvers, guaranteeing that convergence of numer-
ical solvers and simulators is a convergence to the unique
solution of the given initial value problem. For a reduced ver-
sion of the system, we have shown and performed two and
three time scale analysis. This should open a whole new door
for the dynamical study of wind turbines nonlinear dynamics.
Since the literature had not previously provided any of the



Mathematical analysis of wind turbines dynamics under control limits: boundedness, existence...

949

proposed mathematical analysis or time scale simulations,
we assert that this paper is a base theoretical study for this
emerging nonlinear dynamical system.
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