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Abstract The aeroelastic reliability and sensitivity of a sim-
ply supported isotropic plate interacting with upper axial
airflow are investigated. Based on the assumedmodemethod
and the linear potential flow theory, the equation of motion of
the plate interactingwith axial airflow is established using the
Hamilton’s principle. The limit state function representing
the aeroelastic failure mode is obtained from aerodynamic
stability analysis of the plate. The mean value first order
second moment method is adopted to analyze the aeroelas-
tic reliability and sensitivity of the plate. The effects of the
stochastic properties of the flow velocity, flow density, and
the plate geometry dimensions on the aeroelastic reliabil-
ity are analyzed. From the results, it can be seen that the
aeroelastic reliability decreases with increasing velocity and
mass density of the airflow. The flow mass density has more
significant effects on the reliability sensitivity than the flow
velocity. The reliability decreases with increasing length and
width, and increases with increasing thickness of the plate.
The standard deviation of the thickness of the plate has more
significant effects on the aeroelastic reliability than the length
and width. This study provides a new perspective on under-
standing the instability behaviors of the plate in airflow.
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1 Introduction

The outer surface of the travelling aircraft, vehicles or high
speed trains can be modeled as isotropic plates interacting
with outside axial airflow. The influence of the axial airflow
on the flat plates shows up as changing the mass, damping
and stiffness coefficients of the plates.While theflowvelocity
increasing, the plate may exhibit instability of the divergence
or flutter types [1]. Since 1950s, the stability of the plate inter-
actingwith axial flow has been investigated bymany scholars
[2–6]. Their investigations showed that with the flowvelocity
increasing, the plate with fixed boundary conditions exhibits
instability of the divergence type and with the flow velocity
increasing further, the plate may exhibit flutter type of insta-
bility. The critical divergence flow velocity is determined by
the density and velocity of the airflow, the boundary condi-
tions, the material properties and the geometry dimension of
the plate.

For the dynamics of the plate interacting with axial flow,
Tang andDowell [7], and Tang and Païdoussis [8] researched
the limit circle oscillations of a two-dimensional plate with
cantilevered boundary conditions in subsonic airflow. From
their studies, it can be seen thatwith the flowvelocity increas-
ing, the plate exhibits the flutter type of instability. The limit
circle oscillation can be seen in their investigations.

In recent studies, Korbahti and Uzal [9] studied the stabil-
ity of an anisotropic plate in subsonic airflow.They found that
the flutter velocity increases when the fibers are placed along
the flow direction. Tan et al. [10] investigated the stability of
a two-dimensional panel with spring support in incompress-
ible axial flow.Their investigation found that the addition of
highly localised stiffeningwas a very effectivemeans to post-
pone the instability of an otherwise homogeneous flexible
panel. Kerboua et al. [11] and Yao and Li [12] studied the
chaotic motion of a composite laminated plate in subsonic
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airflow. The effects of the flow velocity and amplitude of
the external excitation on the chaotic motion of the plate
were studied. Tubaldi and Amabili [13] studied the varia-
tion of the natural frequencies of the periodically supported
plate interacting with flowing flow using the Rayleigh–Ritz
method.

From the prevent investigations, it is known that the axial
flowing fluid produces gyroscopic and centrifugal forces on
the plate, which makes the plate lose stability of the diver-
gence and flutter types [14,15]. The divergence and flutter
types of instabilities are necessary conditions for unstable
nonlinear vibrations such as the chaotic motion and limit
circle oscillation of the plate [16]. So we can define the
divergence or flutter instability as a kind of “failure state” in
reliability theory. In such case, the traditional stability anal-
ysis becomes the reliability analysis.

Reliability is defined as the probability of a structure or
device will perform its intended function during a specified
period of time under given conditions [17]. In fact, the uncer-
tainties widely exist in fluid–structure systems such as the
error during the manufacturing process of the structure and
the randomness of the flowing fluid, whichmakes it uncertain
of the structural stability. In order to guarantee the safety of
the outer surface of the flying machines, the reliability of the
plate interacting with outside airflow is worth of investiga-
tion. To our best knowledge, very few literatures have taken
into account the uncertainties of the plate and the flowing
airflow. This motivated us to carry out the present study.

In this paper,the uncertainties of a fluid–structure system
are taken into account and the aeroelastic reliability and sen-
sitivity of a plate interacting with potential axial airflow are
investigated. The equation of motion of the plate interact-
ing with axial airflow is established based on the Kirchhoff
plate theory and linear potential flow theory. The limit state
function is obtained from analyzing the stability of the plate
and expanded by the Taylor series to the second approxi-
mation. The mean value first order second moment method
(MVFOSM) is adopted to analyze the aeroelastic reliability
and sensitivity of the plate. The effects of the statistic param-
eters of the stochastic parameters on the aeroelastic reliability
of the system are discussed and some significant conclusions
are drawn.

2 Structural modeling

A plate interacting with axial airflow is shown in Fig. 1 The
length, width and thickness of the plate are a, b and h. The
xOy plane of the Cartesian coordinate locates at the middle
surface of the plate. The displacements of the plate along
x, y and z directions are u, v and w. According to the Kirch-
hoff plate theory, the membrane strain and bending curvature
vectors are expressed as
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Fig. 1 Configuration of a plate in axial airflow
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[
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∂v
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+ ∂u

∂y

]T
, (1)
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[
−∂2w

∂x2
, −∂2w

∂y2
, −2

∂2w

∂x∂y

]T
, (2)

where ε0 is the membrane strain vector and κ is the bending
curvature vector.

The strain–displacement relations can be expressed as

ε = [εx , εy, γxy
]T = ε0 + zκ, (3)

where ε is the strain vector and εx , εy and γxy are normal and
shear strains.

The constitutive equation of the plate can written as

σx = E

1 − ν2
(εx + νεy), σy = E

1 − ν2
(εy + νεx ),

τxy = E

2(1 + ν)
γxy, (4)

where σx,σy, τxy ,are the stress components, E is the elastic
modulus and ν is Poisson’s ratio. The potential energy of the
plate is expressed as

U = 1

2

∫ a

0

∫ b

0

∫ h
2

− h
2

(σxεx + σyεy + τxyγxy)dzdydx, (5)

where U is the strain energy of the plate.
The kinetic energy can be written as

T = 1

2

∫ a

0

∫ b

0
ρh(u̇ + v̇ + ẇ)dydx, (6)

where T is the kinetic energy, ρ is the mass density of the
plate and “·” denotes derivation with respect to time.

The virtual work done by the perturbation aerodynamic
pressure is expressed as

δW =
∫ a

0

∫ b

0

pδwdydx, (7)

where δW is the virtual work and 
p is the perturbation
aerodynamic pressure.
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The simply boundary conditions of the plate can be
expressed as

w = ∂2w

∂x2
= 0 (x = 0, x = a),

w = ∂2w

∂y2
= 0 (y = 0, y = b). (8)

In the study, the displacements of the plate at x, y and z
directions are expanded through the assumed mode method,
which is a technique to discretize the vibration of a con-
tinua into a set ordinary different equations. Its limitation is
the higher modes of the vibration are truncated. However, it
has good convergence properties with the mode expansion
number increasing. According to the displacement boundary
conditions given in Eq. (8), the displacements are written as

u(x, y, t) =
M∑
i=1

N∑
j=1

cos

(
iπx

a

)
sin

(
jπx

b

)
pij(t)

= U(x, y)Tp(t),

v(x, y, t) =
M∑
i=1

N∑
j=1

sin

(
iπx

a

)
cos

(
jπx

b

)
sij(t)

= V(x, y)Ts(t),

w(x, y, t) =
M∑
i=1

N∑
j=1

sin

(
iπx

a

)
sin

(
jπx

b

)
qij(t)

= W(x, y)Tq(t), (9)

where M and N are mode expansion numbers, U(x, y),V
(x, y) and W(x, y) are mode shape functions satisfying the
displacement boundary conditions, and p(t), s(t) and q(t)
are generalized coordinates.

3 Aerodynamic force

The perturbation aerodynamic pressure is established
through the linear potential flow theory. In this study, the
axial airflow along the plate is incompressible, inviscid, and
irrotational. So the flow field can be described by the follow-
ing Laplace equation [1]

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0, (10)

where φ is the perturbation velocity potential function. The
perturbation aerodynamic pressure can be expressed by the
following linear Bernoulli equation


p = ρ∞
(

∂φ

∂t
+U∞

∂φ

∂x

)∣∣∣∣
z= h

2

, (11)

where ρ∞ is the mass density of the airflow. The motion of
the plate and the axial airflow can be coupled by the following
boundary condition

∂φ

∂z

∣∣∣∣
z= h

2

=
{
l ∂w

∂t +U∞ ∂w
∂x , on the plate,

0, off the plate.
(12)

The perturbation velocity potential function is associated
with x, y, z and time t , In the present study, the perturbation
velocity potential function is worked out by using a undeter-
mined function method. The solution of Eq. (10) is described
by the following expression

φ(x, y, z, t) =
M∑
i=1

N∑
j=1

sin

(
iπx

a

)
sin

(
jπx

b

)
ψij(z) fij(t), (13)

where ψij(z) and fij(t) are undetermined functions of vari-
ables z and t . Substituting Eq. (13) into Eq. (10) and
eliminating fij(t), one can obtain the following linear dif-
ferential equation about ψij(z).

d2ψij(z)

dz2
−
(
i2π2

a2
+ j2π2

b2

)
ψij(z) = 0. (14)

Considering the finiteness of the velocity potential function
when z → +∞ and φ = 0 at z = 0, the solution of Eq. (14)
is chosen as

ψij(z) = exp

⎛
⎝−
√
i2π2

a2
+ j2π2

b2
z

⎞
⎠ . (15)

Substituting Eq. (15) into Eq.(11), the perturbation aerody-
namic pressure can be presented by


p = ρ∞
M∑
i=1

N∑
j=1

{
ψij(h/2)

ψ ′
ij(h/2)

[
Wijq̈ij(t) + 2U∞

∂Wij

∂x
q̇ij(t)

+U 2∞
∂2Wij

∂x2
qij(t)

]}
, (16)

where Wij is the i × j th element of mode shape function
W(x, y). Introducing the following substitutions

W̃ij(x, y) = −ab

π
√
i2b2 + j2a2

Wij(x, y), (17)

The perturbation aerodynamic force can be express as


p = ρ∞

[
W̃T(x, y)q̈(t) + 2U∞

∂W̃T(x, y)

∂x
q̇(t)

+U 2∞
∂2W̃T(x, y)

∂x2
q(t)

]
. (18)

123



564 G. Yao et al.

Equation (18) is the perturbation aerodynamic pressure of
the plate in axial airflow. It can be seen in Eq. (18) that the
pressure is consist of the inertia, gyroscopic and centrifugal
forces to the plate. It should be noted that the perturbation
aerodynamic pressure in Eq. (18) is available only for simply
supported plate interacting with ideal flow.

4 Equation of motion and stability analysis

The equationofmotion canbe established through theHamil-
ton’s principle

∫ t2

t1
(δT − δU )dt +

∫ t2

t1
δWdt = 0, (19)

where δ denotes the first variation and t1 and t2 are integration
time limits.

Substituting Eq. (9) into Eqs. (5–7), the potential energy
U , kinetic energy T and the virtualwork δWcanbe expressed
as

U = pTK1p + sTK2s + qTK3q + pTK4s, (20)

T = 1

2
(ṗTM1ṗ + ṡTM2ṡ + q̇TM3q̇), (21)

δW = (q̈TM f + q̇TC f + qTK f )δq, (22)

where the matrixes K1,K2,K3, K4, M1, M2, M3, M f , C f

and K f are listed in the “Appendix”. Substituting Eqs. (20–
22) into Eq. (19) and performing the variation operation in
terms of the generalized coordinates p, s, and q, one can
obtain the following equation ofmotion of the fluid–structure
system

MT
1 p̈ +

(
K1 + KT

1

)
p + K4s = 0,

MT
2 s̈ +

(
K2 + KT

2

)
s + KT

4p = 0,

(MT
3 − MT

f )q̈ − CT
f q̇ +

(
K3 + KT

3 − KT
f

)
q = 0. (23)

Introducing M,C,K and ξ as follows

M =
⎡
⎣MT

1 0 0
0 MT

2 0
0 0 MT

3 − MT
f

⎤
⎦ , C =

⎡
⎣0 0 0
0 0 0
0 0 −CT

f

⎤
⎦ ,

K =
⎡
⎣K1 + KT

1 K4 0
KT

4 K2 + KT
2 0

0 0 K3 + KT
3 − KT

f

⎤
⎦ ,

ξ = [
pT sT qT

]T
, (24)

Equation (23) is then transformed into

Mξ̈ + Cξ̈ + Kξ = 0. (25)

Equation (25) is the equation of motion of the plate under
axial airflow. It relates the transverse deflection with the
velocity and mass density of the flowing fluid. From the def-
inition of the matrices in Eq. (24), it can be seen that the
airflow affects the mass, damping and stiffness matrices. By
analyzing the stability of this equation, the critical divergence
flow velocity of the plate can be obtained.

It is well known that when the plate is in divergence type
instability, the non-zero points of equilibrium exist in the
equilibrium equation of Eq. (25). By substituting ξ̈ = 0 and
ξ̇ = 0 intoEq. (25), one can obtain the linear algebra equation
for the points of equilibrium

Kξ = 0. (26)

The sufficient and necessary condition for ξ �= 0 is det(K) =
0. So the critical instability flow velocity can be defined as

Ud = min{U∞| det(K) = 0}. (27)

In this study, the displacements of the plate are expanded to
the first four modes, i.e. M = 2 and N = 2. From Eq. (27),
one can obtain the critical divergence flow velocity

Ud = π
1
2

√√√√ Eh3(a2 + b2)
5
2

12ρ f a3b5(1 − ν2)
. (28)

By expanding b to be infinite, we can obtain the divergence
flow velocity of a two-dimensional plate.

U∗
d = lim

b→+∞ π
1
2

√√√√ Eh3(a2 + b2)
5
2

12ρ f a3b5(1 − ν2)

= π
1
2

√
Eh3

12ρ f a3(1 − ν2)
, (29)

where U∗
d denotes the divergence flow velocity of a two-

dimensional plate with simply supported boundary condi-
tions. The result shown in Eq. (29) is in agreement with
the critical divergence flow velocity given in Ref. [3], which
proves the validity of the present study.

5 Reliability and sensitivity analysis of the plate

The reliability of a stochastic structural system is defined as

R = P[g(X) > 0] =
∫

g(X)>0

f(X)dX, (30)

where X = [X1, X2, . . ., Xn]T is the stochastic parameter
vector of the system, X1, X2, . . ., Xn are independent ran-
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dom variables, R is the reliability of the system defined as
the probability of g(X) > 0, f(X) is the probability density
function, and g(X) is the state function representing different
states of the system

⎧⎨
⎩
g(X) < 0 failure state,
g(X) = 0 threshold state,
g(X) > 0 safe state.

(31)

In this study, the system parameters follow the normal dis-
tribution, i.e. Xk ∼ N (μk, σ

2
k )(k = 1, 2, . . ., n). The mean

value vector and covariance matrix are expressed as

E(X) = X̄ = (μ1 μ2 . . . μn )T,

cov(X) = diag(σ 2
1 σ 2

2 . . . σ 2
n ). (32)

In this study, the reliability and sensitivity of the plate inter-
acting with axial airflow are presented using the mean value
first order second moment method (MVFOSM) [18–20],
which is based on and more accurate than the traditional
first-order reliability method (FORM) [21–23] for nonlinear
state functions.

Expanding g(X) to the second-order approximationTaylor
series yields

g(X) = g(X) + [∇g(X)]T[X − X]
+ 1

2
[X − X]T[∇2g(X)][X − X] (33)

where ∇g(X) and ∇2g(X) are the gradient and Hessian
matrix of g(X) at X. From Eq. (33), it is possible to obtain
the mathematical expectation and variance of g(X) as

μg = E[g(X)] = g(X) + 1

2

n∑
k=1

σ 2
k

∂2g(X)

∂μ2
k

,

σ 2
g = E[g(X)2] − μ2

g

=
n∑

k=1

[
∂g(X)

∂Xk

]2
σ 2
k − 1

4

(
n∑

k=1

σ 2
k

∂2g(X)

∂μ2
k

)2

+1

4

n∑
r=1

n∑
s=1

n∑
z=1

n∑
l=1

∂2g(X)

∂μr∂μs

∂2g(X)

∂μz∂μl

E[(Xr − μr )(Xs − μs)(Xz − μz)(Xl − μl)], (34)

where μg and σ 2
g are the mean value and variation of g(X)

with second-order approximation.
The reliability index is defined as

β = μg

σg
. (35)

Generally, the state function g(X) is a complicated function
of the parameter vector X. For most cases, the exact distri-

bution of g(X) is impossible to work out. According to the
central limit theorem, g(X) approximately follows the nor-
mal distribution. Thus the reliability of the system can be
written as

R = P[g(X) > 0] = P

[
g(X) − μg

σg
> −β

]
= �(β), (36)

where � denotes the distribution function of the standard
normal distribution.

The sensitivity of the reliability with respect to the mean
value and the variance of the stochastic parameter variables
can be expressed as

∂R

∂μk
= 1√

2π
e− β2

2

(
1

σg

∂μg

∂μk
− μg

σ 2
g

∂σg

∂μk

)
,

∂R

∂σk
= 1√

2π
e− β2

2

(
1

σg

∂μg

∂σk
− μg

σ 2
g

∂σg

∂σk

)
. (37)

Equations (36) and (37) are the reliability and sensitiv-
ity formulations of the stochastic system with second-order
approximation. From these analytical expressions, the effects
of the statistical characters of different stochastic parameters
on the reliability of the system can be analyzed.

In this paper, the stochastic parameter vector is chosen as
X = [a b h ρ∞ U∞ ]T. The plate is stable whileUd > U∞.
Thus the state function is defined as

g(X) = π
3
2

√√√√ Eh3(a2 + b2)
5
2

12ρ f a3b5(1 − μ2)
−U∞. (38)

Substituting Eq. (38) to the procedure from Eqs. (33) to (37),
the reliability and sensitivity of the plate can be analyzed.

6 Numerical simulations and discussions

A plate interacting with axial airflow on the upper surface
as shown in Fig. 1 is taken into consideration. The material
parameters of the plate are E = 200GPa, ν = 0.3 and ρ =
7850kg/m3. The geometry dimension of the plate, the flow
velocity and the flow mass density are stochastic variables
following the normal distributions. The mean values of these
parameters are μa = 0.8m, μb = 1.5m, μh = 0.002m,
μρ = 1.29kg/m3 and μ f = 114m/s, where μa , μb, μh , μρ

andμ f are mean values of a, b, h, ρ∞ andU∞. The standard
deviations of these parameters are expressed as σa = Ca ×
μa , σb = Cb × μb, σh = Ch × μh , σρ = Cρ × μρ , and
σ f = C f × μ f , where σa , σb, σh , σρ and σ f are standard
deviations of a, b, h, ρ∞ and U∞, and Ca , Cb, Ch , Cρ and
C f are the deviation coefficients.
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Fig. 2 Variations of the first four natural frequencies with respect to the flow velocity (a = 0.8m, b = 1.5m, h = 0.002m, ρ f = 1.29 kg/m, E =
200Gpa)

Fig. 3 Displacement–time responses of the plate when U∞ = 110m/s and U∞ = 120m/s

Figure 2 shows the dynamic properties of the plate with
increasing flow velocity. It can be seen in Fig. 2 that with the
flow velocity increasing, the first four natural frequencies
of the plate decrease. When the flow velocity increases to
113.4m/s, the fundamental natural frequency of the plate
decreases to 0, which imply that the fundamental vibration of
the plate disappears and the plate is in a unstable divergence
state. The critical divergence flow velocity is also can be
calculated by using Eq. (28). The critical divergence flow
velocity obtained from Eq. (28) and from Fig. 2 are in good
agreement, which proves the correctness of Eq. (28). From

Fig. 2, the dynamic properties of the plate before and after
the divergence instability are clearly understood.

Figure 3 shows the displacement–time response of the
plate for stable state when U∞ = 110m/s and for unstable
state when U∞ = 120m/s. In the simulation, the external
excitation is a transient impulse of 1N lasting for 0.001 sec-
ond. The actuating point is located at (a/3, b/3) on the plate.
It can be seen in Fig. 3 thatwhen the plate is in stable state, the
amplitude of the forced vibration is 1×10−4m and the point
of equilibrium of the vibration is w = 0. When the plate is
in divergence state, the vibration amplitude is 1×10−3m and
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Fig. 4 The reliability and sensitivity of the system with respect to flow velocity

Fig. 5 The reliability and sensitivity of the system with respect to the mass density of the airflow

w = 0 is no longer the equilibrium point of the vibration.
Figure 3 gives a direct expression for the stable and unstable
states of the plate.

Figure 4 shows the effects of the mean value of the flow
velocity on the reliability of the plate. In the simulation, the
deviation coefficients are chosen as Ca = Cb = Ch =
Cρ = C f = 0.005 and μ f is set as stochastic variable.
From Fig. 4a, it can be seen that with μ f increasing from
112m/s, the reliability of the system decreases from 1.When
μ f > 116.5m/s, the reliability decreases to 0, which indi-
cates that the plate is in divergence type of instability. Fig. 3b
represents the sensitivity of the reliability with respect toμ f .
From Fig. 4b, it can be seen that the sensitivity is negative
when 112m/s < μ f < 116.5m/s and the minimum of the
sensitivity is obtained when μ f = 114.2m/s. It also can be
concluded from Fig. 4 that the critical divergence flow veloc-
ity is between 112 and 116.5m/s.

Figure 5 shows the variations of the reliability and sen-
sitivity of the system with respect to the mean value of the
flow mass density. In the simulation, the mean value of the
flow mass continuously changes from 1.25 to 1.35kg/m3.

From Fig. 5, it can be seen that the reliability decreases with
increasing μρ . It also can be seen in Figs. 4 and 5 that the
reliability is more sensitive to μρ than μ f .

In order to analyze the effects of the geometry dimension
of the plate on the reliability, the mean values of the length,
width and thickness of theplate are separately set as variables.
Figure 6 shows the reliability and sensitivity with respect to
the mean values of the geometry dimension. From Fig. 6,
it can be seen that the reliability decreases with μa and μb

increasing, and increaseswithμh increasing, which indicates
that the plate with shorter length, more narrow width and
higher thickness is more stable in axial airflow. It also can
be seen in Fig. 6 that the sensitivity of the reliability with
respect toμa andμb are in the same order of magnitude, and
the maximum of the sensitivity with respect to μh is about
4.5 × 104, which indicates that the stability of the plate is
quite sensitive to the thickness of the plate.

Figure 7 shows the derivatives of the reliability with
respect to σa , σb, and σh for different deviation coefficients.
From Fig. 1 configuration of a plate in axial airflow. From
Fig. 7, it can be seen that the reliability of the system is more
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Fig. 6 The reliability and sensitivity of the system with respect to the geometric dimensions of the plate

sensitive to σh than σa and σb. This reminds us the deviation
of the thickness of the plate should be strictly restricted while
designing the outer surfaces of the traveling machines.

7 Conclusions

In this paper, the reliability and sensitivity of an isotropic
plate interacting with axial airflow is conducted. The limit
state function is obtained by analyzing the stability of the
plate and expanded by the Taylor series to the second order
approximation. The reliability and sensitivity of the plate are
obtained using the mean value first order second moment

method (MVFOSM). From the analysis and numerical sim-
ulation, the following conclusions can be drawn

1. With the velocity and themass density of the axial airflow
increasing, the reliability of the plate decreases. Themean
value of the flow mass density has greater impact on the
reliability sensitivity of the plate than the flow velocity.

2. With the mean values of the length and width of the plate
increasing, the reliability decreases. The reliability of the
system increases with increasing plate thickness. The
reliability sensitivity is more sensitive to the thickness
than the length and width of the plate.
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Fig. 7 Sensitivity of the system reliability with respect to deviation standards of the geometric dimensions for different deviation coefficients

3. The reliability sensitivity of the plate is more dependent
on the standard deviation of the thickness than the length
and width of the plate, which reminds us while designing
the aeroelasitic system like the outer surface of a flying
machine, the thickness deviation of the plate should be
strictly limited.

This study can be helpful for the stability and reliability
analysis of the plate interacting with axial airflow.
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Appendix

K1 =
∫ b

0

∫ a

0

Eh

2(1 − ν2)

∂U
∂x

∂UT

∂x
+ Eh

4(1 + ν)

∂U
∂y

∂UT

∂y
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∫ b

0
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M1 =
∫ b

0

∫ a

0
ρhUUTdxdy, M2 =

∫ b

0

∫ a

0
ρhVVTdxdy,

M3 =
∫ b

0

∫ a

0
ρhWWTdxdy (A-5)

M f =
∫ b

0

∫ a

0
ρ∞W̃W

T
dxdy, (A-6)

C f =
∫ b

0

∫ a

0
2ρ∞U∞

∂W̃
∂x

WTdxdy, (A-7)

K f =
∫ b

0

∫ a

0
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