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Abstract Thefindingof hidden attractors in a chaotic/hyper-
chaotic system is more important, interesting and difficult
than a self-excited attractor. This paper reports a new sim-
ple 4-D chaotic system with no equilibrium point and having
hidden attractors with the coexistence of attractors (i.e. mul-
tistability). The proposed system has a total of eight terms
including only one nonlinear term and hence, it is simple.
It has only one bifurcation parameter. The system has com-
plex dynamical behaviour. It exhibits 3-torus, 2-torus, chaotic
and chaotic 2-torus behaviours. The coexistence of hidden
attractors in the proposed system is analysed with phase por-
trait, Finite time Lyapunov spectrum, bifurcation diagram,
Poincare map, instantaneous phase plot and 0–1 test. The
system has chaotic behaviour with (+, 0,−,−) sign of dis-
tinct Lyapunov exponents although the Jacobian matrix has
rank less than four. Electronic circuit realisation is shown to
validate the chaotic behaviour of the proposed system.

Keywords Hidden attractors · 4-D chaotic system · Chaotic
2- torus · Simple chaotic system · Multistability

1 Introduction

Advancement in the numerical methods and computer sim-
ulation techniques has helped us to develop chaotic systems
with the desired characteristics. The available chaotic sys-
tems can be classified into two main parts: self-excited
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attractors or hidden attractors [1–4]. The examples of self-
excited attractors are: Lorenz [5], Rossler [6], Chen [7], Lu
systems [8] and system in [9–13]. The hidden attractors may
be grouped into three parts; these are the system with (1)
no equilibrium point [14–17], (2) only stable equilibrium
points [18,19] and (3) system with many equilibria [20–22].
However, the basin of attraction may touch the equilibrium
point in case of a system with many equilibria [20–22]. The
dynamical systems with no equilibrium point are first intro-
duced in Nose-Hoover [23,24] and Sommerfield effect [25].
The finding of the hidden attractors is difficult compared
with the self-excited attractors because the behaviours of
hidden attractors do not depend on the location of the equilib-
rium points [1,2,15,26–28]. The study of hidden attractors is
important because it can lead to unexpected and potentially
disastrous behaviours in many physical systems [29,30].

Fewpapers are available on4-Dor 5-Dchaotic/hyperchao-
tic systems with no equilibrium point. The available 4-D or
5-D chaotic/hyperchaotic systems with no equilibrium point
are shown in Table 1.

It is clear from Table 1 that no simple 4-D system is
reported with no equilibrium point which has coexistence
of asymmetric attractors. The system in [42] has a total of
seven terms with two nonlinear terms. The new system has
eight terms with only one nonlinear term which is simpler
than the available similar 4-D chaotic/hyperchaotic systems.

The paper reports a new simple 4-D dissipative autonom-
ous chaotic systemwith no equilibriumpoint and coexistence
of attractors.

Following points explain the unique and interesting prop-
erties of the system.

1. The system consists of a total eight terms including only
one nonlinear term and one constant term. Therefore, the
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Table 1 Categorisation of reported 4-D or 5-D chaotic/hyperchaotic systems with no equilibrium points

Sl. No. 4-D/5-D System Nature of
system

References
of papers

1. 4-D Chaotic system No equilibrium point attractors with coexistence of attractors [31]

No equilibrium point attractors with asymmetric multistability this work

Multi-scroll or multi-attractor with no equilibrium point [32,33]

2. 4-D Hyperchaotic system No equilibrium point attractors [34–39]

Multi-scroll or multi-attractor with no equilibrium points [40,41]

Coexistence of attractors with no equilibrium points [42]

3. 5-D Hyperchaotic system No equilibrium point attractors [43]

Coexistence of attractors with no equilibrium points [44]

proposed system is a simple compared with the similar
type of systems available in the literature.

2. The system has coexistence (multistability) of attractors.
3. The findings of the bifurcation diagram and Lyapunov

spectrum reveal that the system has chaotic 2-torus
behaviour for the bifurcation parameter. This type of
behaviour in a chaotic system is rare in the
literature.

4. The system exhibits only quasi-periodic (2-torus, 3-
torus) behaviour other than the chaotic behaviour.

5. Although the rank of the Jacobian matrix of the sys-
tem is less than four, but the system has four distinct
(+, 0,−,−) values of Lyapunov exponents for some val-
ues of the parameter.

The above points also indicate the novelty and contribution
of the paper.

In 2011, Sprott [45] proposed some standard for the pub-
lication of a new chaotic system. The new system should
satisfy at least one of the following criteria [21,45]:

1. The system shouldmodel an important unsolved problem
in nature and analyse the problem.

2. The system should exhibit some novel behaviour.
3. The system should be simpler than the similar available

system in the literature.

The new system satisfies the second and third criteria.
The outline of the paper is as follows. Section 2 describes

the dynamics of the proposed 4-Dchaotic system. Somebasic
properties of the new system are analysed in Sect. 3. Sec-
tion 4 represents the findings of the numerical tools used
for analyses of the system. Lyapunov spectrum analysis and
bifurcation diagram of the proposed system are presented in
Sect. 6. Circuit design and its results of the proposed system
are given in Sect. 7. The conclusions of the paper are given in
Sect. 8.

2 Dynamics of the new 4-D chaotic system with no
equilibrium point

This section describes the dynamics of the new 4-D chaotic
system.Weconsider the following simple 4-Dchaotic system
for our study.

ẋ1 = −x2 − x3

ẋ2 = x1 + x4

ẋ3 = a
(
1 − x22

)
− bx3

ẋ4 = −cx2 (1)

where a, b and c are the constant positive parameters and
x1, x2, x3 and x4 are the state variables of the system. Here,
the parameters a = 0.5 and b = 0.6 are kept fixed whereas c
is considered as the only bifurcation parameter. The system
has chaotic behaviour for c = 0.0303 where the Lyapunov
exponents are Li = (0.0568, 0,−0.0003,−0.6565) and
Lyapunov dimension (Kaplan–Yorke dimension) is DKY =
3.0860. The dynamic behaviours of the system for other val-
ues of the bifurcation parameter are discussed in Sect. 5.
Here, all the simulations are carried out with the initial con-
ditions x (0) = (0.01, 0.001, 0.001, 0, 0.1)T using ode45
solver in MATLAB simulation environment.

Detailed theoretical and numerical analyses of system (1)
are presented in the subsequent sections.

3 Some basic properties of system (1)

This section analyses some common basic properties of sys-
tem (1).

3.1 Dissipative, existence of the attractor and
symmetrical property

It is not hard to prove that the system is a dissipative chaotic
system. The divergence of the vector field of system (1) is
given as
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Fig. 1 Chaotic attractors of
system (1) with c = 0.0303 and
x (0) =
(0.01, 0.001, 0.001, 0, 0.1)T
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Fig. 2 Time responses of states
of system (1) with c = 0.0303
and x (0) =
(0.01, 0.001, 0.001, 0, 0.1)T
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∇v = ∂ ẋ1
x1

+ ∂ ẋ2
x2

+ ∂ ẋ3
x3

+ ∂ ẋ4
x4

= −b (2)

Thus, system (1) is dissipative chaotic flow for b > 0. Sys-
tem (1) has rate of state space contraction equal to −0.6 for
b = 0.6. Therefore, attractors may exist for the new sys-
tem. System (1) has asymmetry to its coordinates, plane and
spaces. The system is not invariant under any coordinate,
plane and space transformations. The boundedness of sys-
tem (1) is proved using the approach given in [46].

Theorem 1 Suppose the parameters of the system are posi-
tive, then all orbits of system (1)will be confined in a bounded
region.

Proof Consider a Lyapunov function candidate as

v (x) = 1

2

(
cx21 + cx22 + x23 + x24

)
(3)

Using system dynamics (1), the time derivative of (3) can be
written as
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Fig. 3 Poincaré maps of
system (1) with x2 = 0 in: a
x1 − x3 plane and b x3 − x4
plane
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Fig. 4 Poincare maps of
system (1) with x4 = 0 in: a
x1 − x2 plane and b x2 − x3
plane
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(4)

Let, S0 > 0 be the sufficiently large region where all the
state trajectories satisfy v (x) = S for S > S0 along with the
following condition

[(
c

2
√
b
x1 + √

bx3

)2

+
(√

ax3x2 − a

2y

√
x3

)2
]

>

[(
c

2
√
b
x1

)2

+
(

a

2y

√
x3

)2
]

On the hypersurface {x |v (x)} = S with S > S0 we
can write as v (x) < 0. Thus, we can say that the set
{x|v (x) ≤ S} {x|v (x) ≤ S} is a confined region for all the
trajectories of system (1).

3.2 Equilibrium point

The equilibrium point of system (1) can be obtained by
equating derivative of the each state variable to zero i.e.
ẋ1 = 0, ẋ2 = 0, ẋ3 = 0, ẋ4 = 0 and solving them to find
the solution. It is observed that there is no solution of system

(1) and hence, system (1) has no equilibrium point. Thus, we
confirm that system (1) has no equilibrium point.

4 Dynamical behaviour of the new system

In this section, the dynamic behaviours of the proposed sys-
tem are analysed using various numerical methods.

4.1 Chaotic attractors and Poincaré map

The chaotic attractors and time response of system (1) with
c = 0.0303 are shown in Figs. 1 and 2, respectively. The
Poincarémaps of system (1)with c = 0.0303 across different
sections of planes are shown in Figs. 3 and 4. The random
location of dots on the Poincare maps (Figs. 3, 4) indicates
the chaotic behaviour of the new system.

4.2 Instantaneous phase (IP) and frequency spectrum

To validate the existence of chaotic attractors in system (1),
the instantaneous phase (∅) is plotted. The Hilbert transfor-
mation method is used for the generation of instantaneous
phase (∅). The IP of a chaotic signal increases monotoni-
cally with respect to time, whereas for a periodic signal it
remains constant. Suppose, s (t) is an analytical or a com-
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Fig. 5 Instantaneous phase of
system (1) with c = 0.0303 for:
a x2 (t) and b x3 (t) signal
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Fig. 6 Frequency spectrum of
the signal of system (1) with
c = 0.0303 for: a x2 (t) and b
x3 (t) signal
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Fig. 7 0-1 test of x2 (t) state of
system (1) with c = 0.111,
x (0) =
(0.01, 0.001, 0.001, 0.1)T ,
�t = 1: a translation
components (pc (n), qc (n)), b
asymptotic growth rate (kc) and
c mean square displacement
Mc (n)
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plex signal and is generated using a chaotic signal y(t). The
amplitude (A) and phase (∅) of the signal s (t) can be written
as [10]:

s (t) = y (t) + i ỹ (t) = A (t) e j∅(t) (5)

where ỹ (t) = 1

π
P.V

(
∫∞−∞

y
(
t ′
)

t − t ′
dt

)
(6)

where P.V is the Cauchy principle value in the Hilbert trans-
form (HT) [47]. Here, HT is calculated using the technique
given in [47] with the help of MATLAB. The instantaneous
phase of x2 (t) and x3 (t) signals of system (1) after ignoring
the transient part is shown in Fig. 5. It is clear from Fig. 5
that the increase in the instantaneous phase (∅) of the signal
is monotonic with respect to time. This indicates the chaotic
behaviour of system (1).
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Fig. 8 Finite time Lyapunov spectrum of system (1) with x (0) =
(0.01, 0.001, 0.001, 0.1)T

Fig. 9 Bifurcation diagram of system (1) with x (0) = (0.01, 0.001,
0.001, 0.1)T

The frequency spectrum of x2 (t) and x3 (t) of system (1)
with c = 0.0303 is shown in Fig. 6. The random location of
peaks in the frequency spectrum indicates the chaotic nature
of the system.

4.3 0–1 Test analysis

It is a binary value (0 or 1) test used to classify the chaotic or
periodic nature of a system [48]. In this test, the dynamics of
the system is transformed into a space of translation variable
and asymptotic growth rate (kc) of the mean square displace-
ment Mc (n) of the trajectories. The value of kc define the

-0.15 -0.1 -0.05 0 0.05
-1

0
1

2

-1

0

1

x2x4

x 1

Fig. 10 Coexistenceof chaotic attractors of system (1)with c= 0.0011
for x (0) = (0.01, 0.001, 0.001,±0.1)T

chaotic or periodic behaviour of the system. The translation
variables (pc, qc) can be written as [48–50]:

{
pc (n) = ∑n

k=1 x (k) coskc

qc (n) = ∑n
k=1 x (k) sinkc

(7)

where c is an arbitrarily chosen variable in the range (0 − 2π)

and x (k) is the time series of any state variable of the
system [48–50]. For the chaotic nature, pc (n) and qc (n)

represent a random Brownian like motion, whereas for the
periodic solution, the plane of the translation variables is
a bounded motion. The mean square displacement Mc (n)

obtained using pc (n) and qc (n) can be defined as in [48–
50].

Mc (n) = limN→∞
1

N

∑N

j=1

{
[pc ( j + n) − pc ( j)]2

+ [qc ( j + n) − qc ( j)]2
}

(8)

Mc (n) grows exponentially for the chaotic behaviour,
whereas it varies periodically for periodic nature. The asymp-
totic growth rate (kc) is defined as given in [48–50]

kc = limn→∞
logMc (n)

log n
(9)

The output of kc ≈ 1 represent the chaotic nature, and kc ≈ 0
represents the periodic behaviour. The translation variable
(pc, qc), asymptotic growth rate (kc) and mean square dis-
placement (Mc (n)) of system (1)with c = 0.0303 are shown
in Fig. 7. We got kc = 0.9971 ≈ 1 for c = 0.0303 which
indicates chaotic behaviour.

Table 2 Four distinct nature of
Lyapunov exponents
(+, 0,−,−) for some values of
parameter c

Sl. No. Parameter c LE1 LE2 LE3 LE4 Summation of LEs

1. 0.0038 0.0771 0 −0.0006 −0.6765 −0.6

2. 0.0041 0.0714 0 −0.0005 −0.6709 −0.6

3. 0.0074 0.0724 0 −0.0005 −0.6719 −0.6

4. 0.0122 0.0678 0 −0.0004 −0.6674 −0.6

5. 0.025 0.0671 0 −0.0004 −0.6667 −0.6
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Fig. 11 Coexistence of chaotic
attractors of system (1) with
c = 0.0259 and x (0) =
(0.01, 0.001, 0,±0.1)T : a phase
portrait b instantaneous phase
plot of x3 state and c translation
components of 0-1 test for x2 (t)
variable
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Fig. 12 Coexistence of 3-torus
(behaviour) of system (1) with
c = 0.1699 and x (0) =
(0.01, 0.001, 0,±0.1)T where
LEs are (0, 0, 0, −0.5998): a
phase portrait and b translation
components of 0-1 test for x2 (t)
variable
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5 Bifurcation and finite time Lyapunov spectrum
analyses

The existence of the quasi-periodicity (2-torus, 3-torus),
chaotic and chaotic 2-torus nature of the system is discovered
using the variation of the bifurcation parameter and keeping
other fixed. This is achieved by usingLyapunov spectrumand
bifurcation diagrams plot. Here, finite-time Lyapunov expo-
nents (LEs) are calculated by using Wolf et al. algorithm
[51] with observation time T = 20000, step size �t = 0.02
and initial conditions x (0) = (0.01, 0.001, 0.001, 0.1)T in
MATLAB simulation environment. Lyapunov spectrums for
parameter c is generated with fixed step size �c = 0.0001.
The observation time, step size and initial conditions for plot-
ting the bifurcation diagram of the system for bifurcation
parameter c is the same as that of Lyapunov spectrum. Lya-
punov spectrum and bifurcation diagram of system (1) with

c ∈ [0.001, 0.19] are shown in Figs. 8 and 9, respectively.
It is seen from Figs. 8 and 9 that system (1) has chaotic,
chaotic 2-torus, 3-torus and 2-torus behaviours for the dif-
ferent values of parameter c. The chaotic 2- torus nature of the
system is considered when the sign of Lyapunov exponents
is (+, 0,−,−) [52]. The four distinct nature (+, 0,−,−) of
Lyapunov exponents of system (1) for some values of some
parameter c are given in Table 2. Thus, the system can be con-
sidered as a four dimensional for these set of parameters [39].

6 Coexistence of asymmetric hidden chaotic
attractors

The proposed system has coexistence (multistability) of
asymmetric hidden chaotic attractors with the change in the
initial conditions from x (0) = (0, 0, 0, 0.1)T to x (0) =
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Fig. 13 Coexistence of 2-torus
(behaviour) of system (1) with
c = 0.0376 and x (0) =
(0.01, 0.001, 0.001,±0.1)T

where LEs are
(0, 0,−0.0047,−0.5959): a
phase portrait and b translation
components of 0-1 test for x2 (t)
variable
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Fig. 14 Circuit implementation of system (1) with a = 0.5, b = 0.5, c = 0.0303

(0, 0, 0,−0.1)T . The system exhibits this phenomenon for
all ranges of the bifurcation parameters. The coexistence
of the different dynamic behaviours of the new system is
presented using phase portrait and translation components
of the 0-1 test. The coexistence of chaotic 2-torus attrac-
tors of system (1) with c = 0.0011 and c = 0.0259, and
x (0) = (0.01, 0.001, 0.001,±0.1)T are shown in Figs. 10
and 11, respectively. The 3-torus behaviour of system (1)
with c = 0.1699 and x (0) = (0.01, 0.001, 0.001,±0.1)T is
shown in Fig. 12. Figure 13 shows 2-torus behavior of sys-
tem (1) with c = 0.0376 and x (0) = (0.01, 0.001, 0.001,
±0.1)T

7 Circuit validation

It this section, circuit design and implementation of system
(1) are presented to validate the chaotic behaviour of sys-
tem (1). The circuit design of system (1) with a = 0.5, b =
0.5, c = 0.0303 is shown in Fig. 14. It is seen from Fig. 14
that the circuit is designed with six number of Op-Amp,
one multiplier and fewer components (resistors, capacitors).
Attractors plot obtained using circuit design of system (1)
is shown in Fig. 15. It is seen from Fig. 15 that attractors
plot obtained using circuit implementation matches with the
results obtained using MATLAB simulation.
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Fig. 15 Chaotic attractors of
system (1) using circuit
simulation with c = 0.0303
across: a x1 − x2, b x1 − x3 and
c x2 − x3 plane

8 Conclusions

This paper reports a new simple 4-D chaotic system with no
equilibrium point and coexistence of hidden chaotic attrac-
tors. The system consists of one bifurcation parameter. The
system has a total of eight terms including only one non-
linear term. Therefore, the system is simple compared with
the other similar available 4-D chaotic/hyperchaotic sys-
tems. The rank of the Jacobian matrix of the new system
is less than four. However, the system has four distinct Lya-
punov exponents with (+, 0,−,−) sign for some values of
the parameters. Thus, the system can be considered as four-
dimensional for these set of parameter. Further, the system
has chaotic 2-torus, chaotic, 3-torus and 2-torus behaviours.
The system exhibits multistability of the chaotic attractor,
3-torus and 2-torus behaviours for the bifurcation parameter.
The complex and rich dynamical behaviours of the system
are analysed using theoretical and numerical techniques like
phase portrait, instantaneous phase plot, Poincarémap, bifur-
cation diagram, Lyapunov spectrum and 0–1 test. The results
obtained by circuit design and implementation of the pro-
posed system validate the MATLAB simulation results.
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