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Abstract In this paper, a general characterization of the
optimal stochastic combined control for mean-field jump-
systems is derived by applying mixed convex-spike per-
turbation method. The diffusion coefficient depends on the
continuous control variable and the control domain is not
necessary convex. In our combined mean-field control prob-
lem, we discuss two classes of jumps for the state processes,
the inaccessible jumps which caused by Poisson martingale
measure and the predictable ones which caused by the sin-
gularity of the control variable. Markowitz’s mean–variance
portfolio selection problem with intervention control is dis-
cussed.
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1 Introduction

We consider a class of combined control problem for a
stochastic jump-systems governed by controlled nonlin-
ear mean-field stochastic differential equations (MFSDEJs)
driven byPoissonmartingalemeasures andBrownianmotion
of the form

dXu,η(t) = f (t, Xu,η(t), E(Xu,η(t)), u(t))dt

+ σ(t, Xu,η(t), E(Xu,η(t)), u(t))dB(t)

+
∫

�

g(t, Xu,η(t−), u(t), z)N (dz, dt)

+ G(t)dη(t), (1)

Xu,η(0) = X0,

where f, σ, g and G (·) are given deterministic functions,
B(·) is a standard Brownian motion, N (·, ·) is a Poisson
martingale measure, η(·) is the singular part of the control.
The control variable consists of a combination of continuous
stochastic control u(·) and a singular control η(·).

The expected cost on the time interval [0, T ] is defined by

J0 (X0, u(·), η(·))
= E

{ ∫ T

0
�(t, Xu,η(t), E(Xu,η(t)), u(t))dt

+ h(Xu,η(T ), E(Xu,η(T )))

+
∫
[0,T ]

M(t)dη(t)
}
, (2)

where �, h and M(·) are given maps and
∫
[0,T ]M(t)dη(t)

called the intervention cost.
An admissible control (u∗(·), η∗(·)) is called optimal if it

satisfies
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J0
(
X0, u

∗(·), η∗(·)) = inf
(u(·),η(·))∈A1×A2([0,T ])

J0 (X0, u(·), η(·)) .

(3)

Mean-field stochastic control problems have been investi-
gated by many authors, see for instance, [1–14]. Mean-field
type stochastic maximum principle for optimal control under
partial information has been investigated in Wang et al. [1].
Maximum principle for mean-field type stochastic differen-
tial equations with correlated state and observation noises
have been established in Zhang [2]. Stochastic optimal con-
trol of mean-field jump-diffusion systems with delay has
been studied byMeng and Shen [3]. A general necessary and
sufficient conditions of optimality and near-optimality for
continuous-singular control for mean-field SDE have been
established inHafayed andAbbas [4]. Under partial informa-
tion, necessary and sufficient conditions for optimal control
for stochastic systems driven by Lévy processes have been
derived byHafayed et al. [5].Maximumprinciple for optimal
singular control of mean-field stochastic systems governed
byLévy processes, associatedwith Teugelsmartingalesmea-
sures have been investigated byHafayed et al. [6]. Optimality
necessary and sufficient conditions for singular control of
mean-field forward-backward stochastic have been derived
by Hafayed [7]. A McKean-Vlasov optimal mixed regular-
singular control problems, for nonlinear stochastic systems
with Poisson jump processes have been studied in Hafayed
et al. [8]. A general mean-field type maximum principle was
introduced in Buckdahn et al. [9]. A sufficient conditions for
optimal control of mean-field SDEs have been obtained by
Shi [10]. A general stochastic maximum principle for opti-
mal control for mean-field jump diffusions was proved in
Hafayed and Abbas [11]. Under the conditions that the con-
trol domains are convex, a various local maximum principles
have been studied in [12–14]. Feedback control problems for
stochastic systems have been investigated in [15,16].

The stochastic control problems have attracted much
attention because of their practical applications in many
areas such as economics and finances. The optimal com-
bined control problems with applications have been studied
by many authors including [17–20]. Optimal intervention
control problem with application in the exchange rate has
been studied byMundaca andØksendal [17]. A good account
on stochastic optimal control for jump diffusions and mixed
singular stochastic control problems in jump-systems with
applications in finance can be found in [18,19]. Stochas-
tic maximum principle for near-optimal singular control of
jump-systems has been derived by Hafayed and Abbas [20].
The optimal singular control problems have been considered
by many authors, see for instance [21–24] and the references
therein. The general necessary conditions for optimal control
of stochastic systems with jumps have been investigated in
Tang and Li [25].

Our purpose in this paper is to establish a general char-
acterization of the optimal combined control of mean-field
jump-systems by maximum principle approach, where the
coefficients of the system and the performance functional
depend not only on the state process but also its marginal
law of the state process through its expected value. The
diffusion coefficient depends on the control variable and
the control domain is not assumed to be convex. In our
mean-field stochastic control problem (1–2), the predictable
and inaccessible representations of the jumps are stud-
ied. Markowitz’s mean–variance portfolio selection problem
control with intervention control is studied to illustrate our
theoretical results.

The rest of this paper is organized as follows. The assump-
tions, notations and some basic definitions are given in
Sect. 2. Section 3 is devoted to prove our main result. As
an illustration, Markowitz’s mean–variance portfolio selec-
tion problem with interventions is discussed in Sect. 4.

2 Statement of the control problem

Let T > 0 be a fixed time horizon and (�,F ,Ft ,P) be
a filtered probability space equipped with a P− completed
right continuous filtration on which a one−dimensional
Brownian motion B = (B(t))t∈[0,T ] is defined. Let μ be
a homogeneous Ft -Poisson point process independent of
B(·). We denote by Ñ (dz, dt) the random counting mea-
sure induced by μ, defined on � × R+, where � is a
fixed nonempty subset of R with its Borel σ− field B (�).
Further, let m (dz) be the local characteristic measure of
μ, i.e. m (dz) is a σ -finite measure on (�,B (�)) with
m (�) < +∞. We denote by L

2
F ([0, T ] ;R) = { f (·) is

anFt−adaptedR−valuedmeasurable process on [0, T ] such
that E

∫ T
0 | f (t)|2 dt < ∞} andM2

F ([0, T ] ;R) = { f (·, ·) is
anFt−adaptedR−valued measurable process on [0, T ]×�

such that E
∫ T
0

∫
�

| f (t, z)|2 m (dz) dt < ∞}. We then
define N (dz, dt) = Ñ (dz, dt)−m (dz) dt, where N (·, ·) is
Poisson martingale measure on B (�) × B (R+) with local
characteristicsm (dz) dt.Wedenote by IA the indicator func-
tion of A and Xu,η(t−) = lims→t,s<t Xu,η(s), t ∈ [0, T ] .
We assume that Ft is P−augmentation of the natural filtra-
tion (F (B,N )

t )t∈[0,T ] defined as follows

F (B,N )
t = σ {B(s) : 0 ≤ s ≤ t}

∨σ

{∫ s

0

∫
A
N (dz, dr) : 0 ≤ s ≤ t, A ∈ B (�)

}

∨F0,

where F0 denotes the totality of P−null sets, and F1 ∨ F2

denotes the σ -field generated by F1 ∪ F2. Consider the fol-
lowing sets: A1 is a nonempty subset of R and A2 = R

+.
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An admissible control is a pair (u(·), η(·)) of measurable
A1 × A2− valued, F B

t −adapted processes, such that

(1) η(·) is stochastic process of bounded variation, non-
decreasing continuous on the left with right limits and
η(0−) = 0. The process η(·) is called intervention con-
trol, where η(t−) = lims→t,s<t η(s), t > 0.

(2) E
[
supt∈[0,T ] |u(t)|2 + |η(T )|2] < ∞.

Notice that the jumps of a singular control η(·) at any
jumping time t j denote by�η(t j ) � η(t j )−η(t j−) and
we define the continuous part of the singular control
by η(c)(t) = η(t) − ∑

0≤t j≤t �η(t j ), i.e., the process
obtained by removing the jumps of η(t). We denote
A1 ×A2 ([0, T ]) the set of all admissible controls. The
corresponding state processes, solution of MFSDEJs-
(1) is denoted by X∗(t) = Xu∗,ξ∗

(t).

Throughout this paper, we distinguish between the jumps
obtained by the singular control η(·) at any jumping time t
defined by �ηXu,η(t) = G(t)�η(t) = G(t)(η(t) − η(t−))

and the jumps of Xu,η(t) obtained by the Poissonmartingales
measure Ñ (z, t) given by

�N Xu,η(t) =
∫

�

g
(
t, Xu,η(t−), u(t−), z

)
Ñ (dz, {t})

=
{
g (t, Xu,η(t−), u(t), z) : if η has a jump of size z at t.
0 : otherwise,

where Ñ (dz, {t}) means the jump in the Poisson random
measure occurring at time t. The general jump of the state
processes at any jumping time t is given by

�Xu,η(t) = Xu,η(t) − xu,η(t−)

= �ηX
u,η(t) + �N Xu,η(t).

For convenience,wewill use the followingnotations through-
out the paper. For ϕ = f, σ, � :

ϕx (t) = ∂ϕ

∂x
(t, X∗(t), E(X∗(t)), u∗(t)),

δϕ(t) = ϕ(t, X∗(t), E(X∗(t)), u(t))

−ϕ(t, X∗(t), E(X∗(t)), u∗(t)),
gx (t, z) = gx (t, x(t−), u(t), z) ,

gxx (t, z) = gxx (t, x(t−), u(t), z) ,

ϕxx (t) = ∂2ϕ

∂x2
(t, X∗(t), E(X∗(t)), u∗(t)),

Wt (ϕ, y) = 1

2
ϕxx (t, X

∗(t), E(X∗(t)), u∗(t))y2,

Wt,z(g, y) = 1

2
gxx (t, X

∗(t), u∗(t), z)y2.

We denote by

δH(t) = �∗(t)δ f (t) + K ∗(t)δσ (t)

+
∫

�

δg (t, z) γ ∗(t, z)m(dz) − δ�(t),

Hx (t) = fx (t)�∗(t) + σx (t) K ∗(t)

+
∫

�

gx (t, z) γ ∗(t, z)m(dz) − �x (t) ,

Hxx (t) = fxx (t)�∗(t) + σxx (t) K ∗(t)

+
∫

�

gxx (t, z) γ ∗(t, z)m(dz) − �xx (t) .

Throughout this paper, we assume the following

Hypothesis (H1)The functions f : [0, T ]×R×R × A1→ R,

σ : [0, T ]×R×R × A1→ R, � : [0, T ]×R×R × A1 → R

and h : R × R → R are twice continuously differentiable
with respect to (x, y). Moreover, f, σ, h and � and all their
derivatives up to second-order with respect to (x, y) are con-
tinuous in (x, y, u) and bounded.

Hypothesis (H2) The function g : [0, T ] × R×A1×� →
R is twice continuously differentiable in x . Moreover, gx
is continuous, supz∈� |gx (t, z)| < +∞ and there exists a
constant C > 0 such that

sup
z∈�

∣∣g (t, x, u, z) − g
(
t, x ′, u, z

)∣∣
+ sup

z∈�

∣∣gx (t, x, u, z) − gx
(
t, x ′, u, z

)∣∣
≤ C

∣∣x − x ′∣∣ . (4)

sup
z∈�

|g (t, x, u, z)| ≤ C (1 + |x |) . (5)

Hypothesis (H3) The functions G (·) : [0, T ] → R, and
M (·) : [0, T ] → R

+ are continuous and bounded.
Under the hypotheses (H1–H3), Eq. (1) has a unique solution
xu,η (·) given by

Xu,η(t) = X0 +
∫ t

0
f (s, Xu,η(s), E(Xu,η(s)), u(s))ds

+
∫ t

0
σ(s, Xu,η(s), E(Xu,η(s)), u(s))dB(s)

+
∫ t

0

∫
�

g(s, Xu,η(s−), u(s), z)N (dz, ds)

+
∫
[0,t]

G(s)dη(s),

such that E
[
supt∈[0,T ] |Xu,η(t)|n] < Cn,whereCn is a con-

stant depending only on n and the functional J (X0, ·, ·) is
well defined.

We introduce the adjoint equations involved in the stochas-
tic maximum principle for our mean-field control problem,
which are independent to singular control.
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(1) First-order adjoint equation:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d�(t) = − {
fx (t)�(t) + E

(
fy(t)�(t)

)
+σx (t) K (t) + E

(
σy(t)K (t)

) + �x (t) + E
(
�y(t

)
)

+ ∫
� gx (t, z) γ (t, z)m(dz)

}
dt + K (t)dB(t)

+ ∫
� γ (t, z)N (dt, dz)

�(T ) = − (
hx (X (T ), E(X (T )) + E

(
hy (X (T ), E(X (T ))

))
.

(6)

(2) Second-order adjoint equation: classical linear backward
SDEJs (see [11,25])

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dQ(t) = − {
2 fx (t) Q(t) + σ 2

x (t) Q(t) + 2σx (t) R(t)
+ ∫

� (ψ(t, z) + Q(t)) (gx (t, z))2 m(dz)
+2

∫
�

ψ(t, z)gx (t, z)m(dz)
+ Hxx (t))} dt + R(t)dB(t) + ∫

�
ψ(t, z)N (dz, dt)

Q(T ) = −hxx (x(T ), E(x(T ))) .

(7)

As it is well known that under conditions (H1) and (H2),
the first-order adjoint Eq. (6) admits one and only one
Ft−adapted solution pair (�(·), K (·), γ (·, ·)) ∈ L

2
F

([0, T ] ;R) ×L
2
F ([0, T ] ;R) ×M

2
F ([0, T ] ;R). Also the

second-order adjoint Eq. (7) admits one and only one Ft−
adapted solution pair (Q(·), R(·), ψ(·, ·)) ∈ L

2
F ([0, T ] ;R)

× L
2
F ([0, T ] ;R) × M

2
F ([0, T ] ;R) (See [9,11]).

We define the usual Hamiltonian associated with the mean-
field stochastic control problem (1–2) as follows

H (t, X,Y, u, �(t), K (t), γ (t, z))

� �(t) f (t, X,Y, u) + K (t)σ (t, X,Y, u)

+
∫

�

γ (t, z)g (t, X (t), u(t), z)m(dz)

−� (t, X,Y, u) , (8)

where (t, X, u) ∈ [0, T ]×R×A1 and (�(t), K (t), γ (t, z))
∈ R × R × R the adjoint processes given by Eq. (6).

3 Main result

In this section,we establish a set ofmean-field type necessary
conditions for optimal continuous-singular control in jump-
system, where the system evolves according to controlled
MFSDEJs. Our result is proved by applying spike variation
method for continuous parts of the control and convex pertur-
bation technique for singular parts. The following theorem
constitutes the main contribution of this paper.

Let (u∗(·), η∗(·), X∗(·)) is an optimal solution of the
mean-field continuous-singular control problem (1–2).

Theorem 3.1 Let hypotheses (H1), (H2) and (H3) hold.
Then there are two triple of Ft− adapted processes
(�∗(·), K ∗(·), γ ∗(·, ·)) and (Q∗(·), R∗(·), ψ∗(·, ·)) that sat-
isfy (6) and (7) respectively, such that for all (u, η) ∈
A1 × A2, we have

H(t, X∗(t), E(X∗(t)), u, �∗(t), K ∗(t), γ ∗(t, z))
−H(t, X∗(t), E(X∗(t)), u∗(t),�∗(t), K ∗(t), γ ∗(t, z))

+1

2
[σ (

t, X∗(t), E(X∗(t)), u
)

−σ
(
t, X∗(t), E(X∗(t)), u∗(t)

)]2Q∗(t)

+1

2

∫
�

(g
(
t, X∗(t), u, z

) − g
(
t, X∗(t), u∗(t), z

)
)2

× (
Q∗(t) + ψ∗(t, z)

)
m(dz)

≤ 0.P − a.s., a.e.t ∈ [0, T ] , (9)

and

E
∫
[0,T ]

(M(t) + G(t)�∗(t))dη∗(t)

≤ E
∫
[0,T ]

(M(t) + G(t)�∗(t))dη(t). (10)

Proof of Theorem 3.1 In our mean-field control problem (1–
2), since the control domain is not necessarily convex, we
must obtain the maximum principle in its general form. A
classical way of treating such a problem is to use the spike
variation method for the continuous part of the control, and
convex variationmethod for the singular part.More precisely,
if (u∗(·), η∗(·)) is an optimal control and (u(·), η(·)) is an
arbitrary element of Ft−measurable random variable with
values in A1 ×A2 which we consider as fixed from now on.
We define an admissible control as follows:

(
uε(t), ηε(t)

) =
{ (

u, η∗(t) + ε
(
η(t) − η∗(t)

)) : s ≤ t ≤ s + ε,(
u∗(t), η∗(t) + ε

(
η(t) − η∗(t)

)) : otherwise,
(11)

where ε a sufficiently small ε > 0.and s ∈ [0, T ]. Then,
we derive the variational inequalities (9) and (10) in several
steps, from the fact that

J0
(
X0, u

∗(·), η∗(·)) ≤ J0
(
X0, u

ε(·), ηε(·)) . (12)

Let J1 = J0 (X0, uε(·), ηε(·)) − J0 (X0, uε(·), η∗(·)) , and
J2 = J0 (X0, uε(·), η∗(·))− J0 (X0, u∗(·), η∗(·)) . We intro-
duce the following new variational equations for our control
problem, which have a mean-field type.

First-order variational equation: Let xε
1(t) ≡ xu

ε,ηε

1 (t),
and Dε = [s, s + ε] :
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxε
1(t) = {

fx (t)xε
1(t) + fy(t)E

(
xε
1(t)

) + δ f (t)IDε
(t)

}
dt

+ {
σx (t)xε

1(t) + σy(t)E
(
xε
1(t)

) + δσ (t)IDε
(t)

}
dB(t)

+ ∫
�

{
gx (t−, z) xε

1(t) + δg(t−, z)IDε
(t)

}
N (dz, dt)

+G(t)d(ηε − η∗)(t),

xε
1(0) = 0.

(13)
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Second-order variational equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε
2(t) = { fx (t)xε

2(t) + fy(t)E
(
xε
2(t)

)
+Wt ( f, xε

1) + δ fx (t)IDε
(t)}dt

+{σx (t)xε
2(t) + σy(t)E

(
xε
2(t)

)
+Wt (σ, xε

1) + δσx (t)IDε
(t)}dB(t)

+ ∫
�
{gx (t−, z) xε

2(t) + Wt,e(g, xε
1)

+δgx (t−, z)IDε
(t)}N (dz, dt) ,

xε
2(0) = 0.

(14)

Since J2 = J0 (X0, uε(·), η∗(·)) − J0 (X0, u∗(·), η∗(·)) is
independent to singular part, then the proof of (9) is similar
as in ([11], Theorem 3.1). This completes the proof of (9).

��
To prove the second variational inequality (10). We need the
following technical Lemmas.

Lemma 3.1 Let xu
ε,η∗

1 (·) be the solution of mean-field
Eq. (13), corresponding to (uε(·), η∗(·)) then the following
estimation holds

lim
ε→0

E

⎡
⎣ sup
0≤t≤T

∣∣∣∣∣
Xuε,η∗

(t) − X∗(t)
ε

− xu
ε,η∗

1 (t)

∣∣∣∣∣
2
⎤
⎦ = 0.

Proof We set t ∈ [0, T ] ,

βε(t) = 1

ε

[
Xuε,η∗

(t) − X∗(t)
]

− xu
ε,η∗

1 (t), (15)

by Tylor’s formula, we get

Xuε,η∗
(t) − X∗(t)

ε

=
∫ t

0

∫ 1

0
fx (r, X

∗(r) + λε(βε(r) + xu
ε,η∗

1 (r)), E(X∗(r)

+ λε(βε(r) + xu
ε,η∗

1 (r))), uε(r))(βε(r) + xu
ε,η∗

1 (r))dλdr

+
∫ t

0

∫ 1

0
fy(r, X

∗(r) + λε(βε(r) + xu
ε,η∗

1 (r)), E(X∗(r)

+ λε(βε(r) + xu
ε,η∗

1 (r))), uε(r))E(βε(r) + xu
ε,η∗

1 (r))dλdr

+
∫ t

0

∫ 1

0
σx (r, X

∗(r) + λε(βε(r) + xu
ε,η∗

1 (r)), E(X∗(r)

+ λε(βε(r) + xu
ε,η∗

1 (r))), uε(r))(βε(r) + xu
ε,η∗

1 (r))dλdr

+
∫ t

0

∫ 1

0
σy(r, X

∗(r) + λε(βε(r) + xu
ε,η∗

1 (r)), E(X∗(r)

+ λε(βε(r) + xu
ε,η∗

1 (r))), uε(r))E(βε(r) + xu
ε,η∗

1 (r))dλdr

+
∫ t

0

∫
�

∫ 1

0
gx (r, X

∗(r) + λε(βε(r) + xu
ε,η∗

1 (r)), E(X∗(r)

+ λε(βε(r) + xu
ε,η∗

1 (r))), uε(r), z)(βε(r)

+ xu
ε,η∗

1 (r))dλm(dz)dr,

then from the above equation and (15)we conclude thatβε(t)
is independent to singular part, then we can using similar
method developed in Li [12] for the rest of proof. ��
Lemma 3.2 Let x∗

1 (t) solution of Eq. (13) correspondent to
(u∗(·), η∗(·)) . Then we have

0 ≤ E[hx (X∗(T ), E(X∗(T )))x∗
1 (t)

+ hy(X
∗(T ), E(X∗(T )))E(x∗

1 (t))]

+ E
∫ T

0
[�x (t, X∗(T ), E(X∗(T )), u∗(t))x∗

1 (t)

+ �y(t, X
∗(t), E(X∗(t)), u∗(t))E(x∗

1 (t))]dt
+ E

∫
[0,T ]

M(t)d
(
η − η∗) (t).

Proof By a simple computations, we get

J1
ε

= 1

ε

[
J

(
X0, u

ε(·), ηε(·)) − J
(
X0, u

ε(·), η∗(·))]

= 1

ε
E[[h(Xuε,ηε

(T ), E(Xuε,ηε

(T )))

−h(Xuε,η∗
(T ), E(Xuε,η∗

(T )))]
+ 1

ε
E

∫ T

0
[�(t, Xuε,ηε

(t), E(Xuε,ηε

(t)), uε(t))

−�(t, Xuε,η∗
(t), E(Xuε,η∗

(t)), uε(t))]dt
+ 1

ε
E

∫
[0,T ]

M(t)d
(
ηε − η∗) (t).

By Tylor’s formula, and the fact that
ηε(t) − η∗(t)

ε
=

(η(t) − η∗(t)) , we get: for any η(·) ∈ A2 ([0, T ])

J1
ε

= E
∫ 1

0
hx (X

uε ,ηε

(T ) + λε(γ ε(T )

+ xε
1(T )), E[Xuε ,ηε

(T )

+ λε(γ ε(T ) + xε
1(T ))]) (

γ ε(T ) + xε
1(T )

)
dλ

+ E
∫ 1

0
hy(X

uε,ηε

(T ) + λε(γ ε(T ) + xε
1(T )), E[Xuε ,ηε

(T )

+ λε(γ ε(T ) + xε
1(T ))])E (

γ ε(T ) + xε
1(T )

)
dλ

+ E
∫ T

0

∫ 1

0
�x (t, X

uε ,ηε

(t)

+ λε(γ ε(t) + xε
1(t)), E[Xuε,ηε

(t)

+ λε(γ ε(t) + xε
1(t))])

(
γ ε(t) + xε

1(t)
)
dλdt

+ E
∫ T

0

∫ 1

0
�y(t, X

uε ,ηε

(t) + λε(γ ε(t)

+ xε
1(t)), E[Xuε ,ηε

(t)

+ λε(γ ε(t) + xε
1(t))])E

(
γ ε(t) + xε

1(t)
)
dλdt

+ E
∫
[0,T ]

M(t)d
(
η − η∗) (t).

Finally, since the derivatives hx , hy, �x and �y are bounded,
the result follows from Lemma 3.1 and by letting ε going to
zero. This completes the proof of Lemma 3.2. ��
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Now, from Lemma 3.2 and by applying similar arguments
developed in [4], we get

lim
ε→0

J1
ε

= E
∫
[0,T ]

(M(t) + G(t)�∗(t)
)
d

(
η − η∗) (t) ≥ 0.

This completes the proof of (10) and Theorem 3.1. ��

4 Application: Markowitz’s mean–variance
problem

In this section, we apply our general maximum principle of
optimality to study a Markowitz’s mean–variance portfolio
selectionwith interventions andwederive the explicit expres-
sion of the optimal portfolio selection strategy in feedback
form. We consider a market consisting of stock and a bond
whose prices are stochastic processesSi : i = 0, 1 , governed
by the following equations: t ∈ [0, T ]

⎧⎨
⎩
dS0 (t) = S0 (t) μ0(t)dt,S0 (0) > 0.
dS1 (t) = S1 (t) μ1(t)dt + σtS1 (t) dB(t)

+S1 (t)
∫
�
At (z) N (dz, dt) ,S1 (0) > 0,

(16)

where μ1(t) : is the appreciation rate process of the stock,
μ0(t) is the interest rate process, σt and At (z) are bounded
deterministic functions such that μ1(t) �= 0, σt �= 0 and
μ1(t) > μ0(t). In order to ensure that S1 (t) > 0 for all
t ∈ [0, T ] we assume that At (z) > −1 for any z ∈ �, and
the function t → ∫

�
A2
t (z)m(dz) is a locally bounded. We

denote by u(t) the amount invested in the stock. Now, we
introduce the wealth dynamics as follows
⎧⎨
⎩
dXu,η(t) = [

μ0(t)Xu,η(t) + (μ1(t) − μ0(t))u(t)
]
dt

+σt u(t)dB(t) + ∫
�
At− (z) u(t)N (dz, dt) + G(t)dη(t),

Xu,η(0) = X0,

(17)

If the correspondingwealth process Xu,η(·) given byEq. (17)
is square integrable, the control variable (u(·), η(·)) is called
tame. We denoteA1×A2 ([0, T ]) the set of admissible port-
folio valued in A1 × A2. Consider the following controlled
system (17) along with the cost functional.

J0(X0, u(·), η(·)) = E
[
(Xu,η(T ) − E(Xu,η(T )))2

]

+
∫
[0,T ]

M(t)dη(t), (18)

We may interpret the function M(·) as a cost rate for the
use of the singular control η(·). Our objective is to find an
admissible portfolio (u∗(·), η∗(·) which minimizes the cost
function (18). The Hamiltonian H gets the form

H (t, X, E (X) , u(t),�(t), K (t), γt (e))

= −�(t)μ0(t)X (t) − u(t)

[
�(t)(μ1(t) − μ0(t))

+K (t)σt +
∫

�

γt (z) At (z)m(dz)

]
.

Consequently, since this is a linear expression of u(·) then it
is clear that the supremum is attained at u∗(t) satisfying

�∗(t)(μ1(t) + μ0(t)) + K ∗(t)σt +
∫

�

γ ∗
t (z) At (z)m(dz) = 0.

(19)

By simple computation, the first-order adjoint Eq. (6) asso-
ciated with u∗(t) gets the form
⎧⎨
⎩
d�∗(t) = −μ0(t)�∗(t)dt + K ∗(t)dB(t)

+ ∫
�

γ ∗
t (z)N (dt, dz),

�∗(T ) = 2 (X∗(T ) − E(X∗(T )) ,

(20)

and the second-order adjoint equation being

⎧⎨
⎩
dQ∗(t) = −2μ0(t)Q∗(t)dt + R∗(t)dB(t)

+ ∫
�

ψ∗
t (z)N (dz, dt),

Q∗(T ) = 2.

Byuniqueness of the solution of the above classical backward
SDE it is easy to show that

Q∗(t) = 2 exp[2
∫ T

t
μ0(r)dr ],

R∗(t) = 0, for any t ∈ [0, T ] ,

ψ∗
t (z) = 0, for any z ∈ �.

In order to solve the above Eq. (20) and to find the expression
of u∗(t) we conjecture a process �∗(·) of the form

�∗(t) = ϕ1(t)X
∗(t) + ϕ2(t)E

(
X∗(t)

) + ϕ3(t), (21)

where ϕ1(·), ϕ2(·) and ϕ3(·) are deterministic differentiable
functions. Applying Itô’s formula to (21), in virtue of SDE-
(17), we get

−μ0(t)�
∗(t) = X∗(t)ϕ1(t)

+ϕ1(t)
[
μ0(t)X

∗(t) + (μ1(t) − μ0(t))u
∗(t)

]
+ϕ2(t)

[
μ0(t)E(X∗(t)) + (μ1(t) − μ0(t))u

∗(t)
]

+ϕ2(t)E
(
X∗(t)

) + ϕ3(t), (22)

K ∗(t) = ϕ1(t)σt u
∗(t),

γ ∗
t (z) = ϕ1(t)u

∗(t)At (z) , (23)

and

ϕ1(T ) = 2, ϕ2(T ) = −2, ϕ3(T ) = 0. (24)
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Combining (23) and (24) together with (19), we get

u∗(t) = −(μ1(t) − μ0(t))�∗(t)
ϕ1(t)

[
σ 2
t + ∫

�
A2
t (z)m(dz)

] . (25)

We denote

M(t) =
∫

�

A2
t (z)m(dz) + σ 2

t , (26)

by using (19) together with (25) and (26) then we get

ϕ3(t) = 0 for t ∈ [0, T ] ,

u∗(t) = (μ0(t) − μ1(t)) (M(t)ϕ1(t))
−1

× (
ϕ1(t)X

∗(t) + ϕ2(t)E
(
X∗(t)

))
=

{
(μ0(t) − μ1(t)) (M(t))−1

}
X∗(t)

+
{
(μ0(t) − μ1(t)) (M(t))−1 ϕ2(t) (ϕ1(t))

−1
}
E

(
X∗(t)

)
.

(27)

Now combining (22) with (21), we deduce

u∗(t) (ϕ1(t) + ϕ2(t)) (μ0(t) − μ1(t))

= [2μ0(t)ϕ1(t) + ϕ1(t)] X
∗(t)

+ [2μ0(t)ϕ2(t) + ϕ2(t)] E(X∗(t)). (28)

By comparing the terms containing X∗(t) and E (X∗(t)),
we obtain from (27) with (28) the two ordinary differential
equations (ODEs in short):

[
(μ0(t) − μ1(t))

2 (M(t))−1 − 2μ0(t)
]
ϕ1(t)

+(μ0(t) − μ1(t))
2 (M(t))−1 ϕ2(t) = ϕ1(t).[

(μ0(t) − μ1(t))
2 (M(t))−1 − 2μ0(t)

]
ϕ2(t)

+(μ0(t) − μ1(t))
2 (M(t))−1 ϕ2

2(t)

ϕ1(t)
= ϕ2(t). (29)

Let us turn to calculate explicitly ϕ1(t) and ϕ2(t). Since
ϕ1(T ) = 2, ϕ2(T ) = −2, [see (24)], then by dividing the
first ODE in (29) by ϕ1(t) and the second ODE by ϕ2(t) we
get

ϕ1(t) = 2 exp
[∫ T

t μ0(s)ds
]
, ϕ1(T ) = 2

ϕ2(t) = −2 exp
[∫ T

t μ0(s)ds
]
, ϕ2(T ) = −2.

(30)

From (30) we conclude that u∗(t) is given by

u∗(t) =
[
(μ0(t) − μ1(t)) (M(t))−1

]
X∗(t)

−
[
(μ0(t) − μ1(t)) (M(t))−1

]
E

(
X∗(t)

)
. (31)

The first-order adjoint processes are given by

�∗(t) = ϕ1(t)X∗(t) + ϕ2(t)E (X∗(t)) ,

K ∗(t) = σtϕ1(t)u∗(t),
γ ∗
t (z) = ϕ1(t)u∗(t)At (z) ,

and the second-order adjoint processes are given by

Q∗(t) = 2 exp[2 ∫ T
t μ0(r)dr ],

R∗(t) = 0, ψ∗
t (z) = 0,

satisfying the adjoint Eq. (6). Now, let η(·) ∈ A2 ([0, T ])
such that

dη(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ∈ {(w, t) ∈ � × [0, T ] :
M(t) + G(t)�∗(t) ≥ 0},

dη∗(t) if t ∈ {(w, t) ∈ � × [0, T ] :
M(t) + G(t)�∗(t) < 0},

(32)

then by a simple computations, it is easy to see that

0 ≤ E
∫
[0,T ]

(M(t) + G(t)�∗(t))d
(
η − η∗) (t)

= E
∫
[0,T ]

(M(t) + G(t)�∗(t))dη(t)

−E
∫
[0,T ]

(M(t) + G(t)�∗(t))dη∗(t)

= E
∫
[0,T ]

(M(t) + G(t)�∗(t))

×I{(w,t)∈�×[0,T ]:M(t)+G(t)�∗(t)≥0}d
(−η∗) (t)

= −E
∫
[0,T ]

(M(t) + G(t)�∗(t))

×I{(w,t)∈�×[0,T ]:M(t)+G(t)�∗(t)≥0}dη∗(t),

which implies that η∗(t) satisfies for any t ∈ [0, T ]

E
∫
[0,T ]

(M(t) + G(t)�∗(t))

×I{(w,t)∈�×[0,T ]:M(t)+G(t)�∗(t)≥0}dη∗(t)
= 0. (33)

By applying (32) and (33), we have

η∗(t)=
∫ t

0
I{(w,s)∈�×[0,T ]:M(s)+G(s)�∗(s)≥0}c (w, s)ds+η(t),

=
∫ t

0
I{(w,s)∈�×[0,T ]:M(s)+G(s)�∗(s)<0}(w, s)ds+η(t).

(34)
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5 Conclusion and future works

In this paper, general necessary conditions of optimal
continuous-singular control for mean-field jump diffusion
have been discussed. The control domain is not necessary
convex. These results extend some existing models. If we
assume G(·) ≡ M(·) ≡ 0, (without singular parts), The-
orem 3.1 reduces to maximum principle proved in [11]. If
we assume g ≡ 0 (without Poisson jump), our result (Theo-
rem 3.1) reduces to Theorem 6.1 proved in [4].

An open question is to study continuous-singular opti-
mal control for mean-field jump-systems, where the coef-
ficients G(·) and M(·) of the singular parts depend to
state and continuous control processes (i.e, the singu-
lar parts have the form:

∫
[0,t] G(t, Xu,η(t), u(t))dη(t) and∫

[0,t]M(t, Xu,η(t), u(t)))dη(t). This topic will be included
in our future article.
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