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Abstract Given a desired signal yd = (ydi )i∈{0,...,N }, we
investigate the optimal control, which applied to nonlinear
discrete distributed system xi+1 = Axi + Exi + Bui , to
give a desired output yd . Techniques based on the fixed point
theorems for solving this problem are presented. An example
and numerical simulation is also given.

Keywords Output controllability · Optimal control ·
Nonlinear system · Fixed point theorem

1 Introduction

The research devoted the controllability was started in the
1960s by Kalman and refers to linear dynamical systems.
Because the most of practical dynamical systems are non-
linear, that’s why, in recent years various controllability
problems for different types of nonlinear or semilinear
dynamical systems have been considered [1–9].

There are large type of controllability such as completely
controllability, small controllability, local controllability,
regional controllability, near controllabilitry, null controlla-
bility and output controllability [4–6,8–14].
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In the present paper we investigate the output controlla-
bility of a class of nonlinear infinite-dimensional discrete
systems. More precisely, we consider the nonlinear system
whose state is described by the following difference equa-
tion

(S)

{
xi+1 = Axi + Exi + Bui , i ∈ {0, . . . , N − 1},
x0,

the corresponding output signal is

yi = Cxi , ∀ i ∈ {0, . . . , N }.

The operator A : X −→ X is supposed to be bounded on
the Hilbert space X (the state space), E : X −→ X is a
nonlinear operator, B ∈ L(U, X) and C ∈ L(X,Y ) where
the Hilbert space U is the input space and the Hilbert space
Y is the output one.

Given a desired output yd = (ydi )i∈{1,...,N }, we investigate
the optimal control u = (ui )i∈{0,1,...,N−1} which minimizes
the functional cost

J (u) =‖ u ‖2

over all controls satisfying

Cxi = ydi , ∀ i ∈ {1, . . . , N }.

To solve this problem and inspired by what was done in
[15,16] we use, in the first part, a state space technique to
show that the problem of input retrieval can be seen as a
problem of optimal control with constraints on the final state
[17]. In the second part, we use a technique based on the
fixed point theorem (see [2,3,7,18–21]). We establish that
the set of admissible controls is completely characterized by
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the pseudo inverse corresponding to the linear part of the sys-
temand thefixedpoints of an appropriatemapping. Finally,A
numerical example is given to illustrate the obtained results.

Remark 1 The assumption that A is a bounded operator is
not so restrictive even in the distributed parameter system.
We can see, for example that the discrete system obtained
from the evolution equation considered in [22], satisfies this
condition.

2 Statement of the problem

We consider the discrete system described by

(S)

{
xi+1 = Axi + Exi + Bui , i ∈ {0, . . . , N − 1},
x0

(1)

the corresponding output

yi = Cxi , i ∈ {0, . . . , N }, (2)

where xi ∈ X is the state of system (S), ui ∈ U is the control
variable and yi ∈ Y is the output function, A ∈ L(X), B ∈
L(U, X) and C ∈ L(X,Y ). Consider the following control
problem. Given a desired trajectory yd = (yd1 , . . . , ydN ), we
try to find the optimal control u = (u0, u1, . . . , uN−1)which
minimizes the functional cost

J (u) = ‖u‖2, (3)

over all controls satisfying

Cxi = ydi , ∀ i ∈ {1, . . . , N }.

2.1 An adequate state space approach

In this subsection, we give some technical results which will
be used in the sequel. For a finite subset σ s

r = {r, r +
1, . . . , s} of ZZ , with s ≥ r , let l2(σ s

r , X) be the space of
all sequences (zi )i∈σ s

r
, zi ∈ X.

Remark 2 l2(σ s
r , X) is a Hilbert space with the usual addi-

tion, scalar multiplication and with an inner product defined
by

< x, y >l2(σ s
r ,X)=

s∑
i=r

< xi , yi >X .

Let L1 and F be the operators given by

L1 : l2
(
σ−1

−N ; X
)

−→ l2
(
σ−1

−N ; X
)

,

(z−N , . . . , z−1) �−→ (z−N+1, . . . , z−1, 0),

F : X −→ l2
(
σ−1

−N ; X
)

,

x �−→ (0, . . . , 0, x)

and define the variables zi ∈ l2(σ−1
−N ; Y ) by

zi = (zi−N , . . . , zi−1),

zik =
{
xi+k, if i + k ≥ 0
x0, else,

where (xi )i is the solution of system (S). Then the sequence
(zi )i is the unique solution of the following difference equa-
tion

{
zi+1 = L1zi + Fxi , i ∈ σ N−1

0 ,

z0 = (x0, x0, . . . , x0).

Let ei ∈ X × l2(σ−1
−N ; X) be the signals defined by ei =(

xi
zi

)
, then we easily establish the following result.

Proposition 1 (ei )i∈σ N
0

is the unique solution of the differ-
ence equation described by

(S1)

⎧⎨
⎩
ei+1 = Ψ ei + Φei + B̄ui , i ∈ σ N−1

0 ,

e0 =
(
x0
(x0, . . . , x0)

)
,

where Ψ =

(
A 0
F L1

)
, Φ =

(
E 0
0 0

)
and B̄ =

(
B
0

)
.

Remark 3 The equality

eN =
(
xN
zN

)
=
(
xN
(x0, . . . , xN−1)

)
,

allows us to assimilate the trajectory (x0, . . . , xN−1, xN ) of
system (S) to the final state eN of (S1). This implies that
our problem of input retrieval is equivalent to a problem of
optimal control with constraints on the final state eN .

2.2 The optimal control expression

Let’s consider the operator Γ defined by

Γ : X × l2
(
σ−1

−N ; X
)

−→ l2
(
σ N
1 ; Y )(

x, (ξi )−N≤i≤0
) �−→ (t1, . . . , tN )

(4)

with ti = Cξi−N , ∀i ∈ σ N−1
1 and tN = Cx .

Definition 1 (a) The system (S) is said to be exactly output
controllable on σ N

1 if ∀x0 ∈ X, ∀y ∈ l2(σ N
1 ; Y ), ∃u ∈

l2(σ N−1
0 ;U ) such that Cxi = yi , i ∈ σ N

1 .
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(b) The system (S) is said to be weakly output control-
lable on σ N

1 if ∀ε > 0, ∀x0 ∈ X, ∀y ∈
l2(σ N

1 ; Y ), ∃u such that ‖ Cxi − y ‖Y ≤ ε.

Definition 2 (a) The system (S) is said to be Γ -controllable
on σ N

1 if ∀e0 ∈ X, ∀yd ∈ l2(σ N
1 ; Y ), ∃u ∈

l2(σ N−1
0 ;U ) such that Γ eN = yd .

(b) The system (S) is said to be Γ -weakly controllable on
σ N
1 if ∀ε > 0, ∀e0 ∈ X, ∀yd ∈ l2(σ N

1 ; Y ), ∃u such
that‖ Γ eN − yd ‖l2(σ N

1 ;Y ) ≤ ε.

Remark 4 From the above definition, we can easily establish
the following results

(i) (S) is exactly output controllable σ N
1 ⇐⇒ (S1) is Γ -

controllable on σ N
1 .

(ii) (S) is weakly output controllable on σ N
1 ⇐⇒ (S1) is

Γ -weakly controllable on σ N
1 .

Proposition 2 Given a desired output yd = (yd1 , . . . , ydN )

in l2(σ N
1 ; Y ), the problem (P1) and (P2) defined as:

(P1)

⎧⎨
⎩
Find u∗ such that
Cxi = ydi , ∀ i ∈ σ N

1 (i)
‖ u∗ ‖= in f { ‖ v ‖ /v verify (i)} (i i)

(P2)

⎧⎨
⎩
Find u∗ such that
Γ eN = yd in l2(σ N

1 ; Y ) ( j)
‖ u∗ ‖= in f { ‖ v ‖ /v verify ( j)} ( j j)

have the same solution u∗.

By Proposition 2, the resolution of problem (P1) − (P2)

is equivalent to find the control u∗ which ensure the Γ -
controllability of system (S1) and with a minimal cost.

3 Statement of the new problem

We consider the discrete system described by

(S1)

{
ei+1 = Ψ ei + Φei + B̄ui , i ∈ σ N−1

0
e0 is given

(5)

where ei ∈ X = X × l2(σ−1
−N ; X) is the state of system

(S1), ui ∈ U is the control variable, Ψ ∈ L(X ) and B̄ ∈
L(U, X). Consider the following control problem. Given a
desired trajectory yd = (yd1 , . . . , ydN ), we find the control u∗
which minimizes the functional cost

J (u) = ‖u‖2 (6)

over all controls satisfying

Γ eN = yd ,

eN is the final state of system (S1) at instant N , andΓ is given
by (4). We shall call u∗ the wanted control and the solution
of system (S1) is

ei = Ψ i e0 +
i−1∑
j=0

Ψ jΦei−1− j +
i−1∑
j=0

Ψ j B̄ui−1− j , i ∈ σ N
1 .

(7)

Let L denote the linear operator defined on T =
l2
(
σ N
1 ;X ) by

L : T = l2(σ N
1 ;X ) −→ T

ξ = (ξ1, . . . , ξN ) �−→ Lξ = (Lξ)1≤i≤N

where

⎧⎪⎨
⎪⎩

(Lξ)i = Ψ i−1Φe0 +
i−2∑
j=0

Ψ jΦξi−1− j ; 2 ≤ i ≤ N

(Lξ)1 = Φe0

and Let H denote the linear operator defined on U by

H : U = l2
(
σ N−1
0 ;U

)
−→ T

u = (u0, . . . , uN−1) �−→ Hu

where

(Hu)i =
i−1∑
j=0

Ψ j B̄ui−1− j , i ∈ σ N
1 .

So, the Eq. (7) can be rewritten as

e = (e1, . . . , eN ) = Ψ̃ e0 + Le + Hu (8)

where

Ψ̃ e0 =
(
Ψ i e0

)
1≤i≤N

The operator H is not invertible in general. Introduce then:

H̃ : x ∈ (ker H)⊥ → H̃(x) = H(x) ∈ Range(H)

this operator is invertible and its inverse, which is defined on
Range(H) can be extended to Range(H)

⊕
Range(H)⊥

as follows

H† : x + y ∈ Range(H)
⊕

Range(H)⊥ → H̃−1(x) ∈ U

the operator H† is knownas the pseudo inverse operator of H .
If Range(H) is closed then T = Range(H)

⊕
Range(H)⊥
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and H† is defined on all the space T . The mapping H† sat-
isfies in particular

{
HH†x = x, ∀x ∈ Range(H)

H†Hy = y, ∀y ∈ (ker H)⊥.

4 Fixed point technique

4.1 Characterization of the set of admissible controls

Let yd = (yd1 , . . . , ydN ) a predefined output. The aim of this
section is to give a characterization of the set of all admis-
sible control in consideration the fixed points of a function
appropriately chosen, i.e., We shall characterize the set Uad

of all control which ensure the Γ -controllability.

Uad =
{
u ∈ l2

(
σ N−1
0 ;U

)
/ Γ eN = yd

}

where (e0, . . . , eN ) is the trajectory which takes system
from the initial state e0. If Range(H) is closed then T =
Range(H)

⊕
Range(H)⊥ and H† is defined on all the

space T . We suppose that Range(H) is closed. Let p :
T −→ Range(H) be any projection on Range(H) and
ē �= 0 be any fixed element of Range(H), we define

fē : T −→ Range(H)

e �−→ fē(e) =
{
0 , if and only if Γ eN = yd

ē , else

and let

ξ : T −→ T
e �−→ ξ(e) = e − Ψ̃ e0 − Le

(9)

and we consider the mapping

g : T −→ T
e �−→ g(e) = Ψ̃ e0 + Le + pξ(e) + fē(e).

(10)

Then, we have the following proposition.

Proposition 3 Let Pg = {e ∈ T/g(e) = e} denotes the set
of all fixed points of g. Then

Uad =
⋃
e∈Pg

H†ξ(e) + Ker(H).

Proof Let e∗ ∈ Pg , we have

g(e∗) = Ψ̃ e∗
0 + Le∗ + pξ(e∗) + fē∗(e) = e∗ (11)

then

e∗ − Ψ̃ e∗
0 − Le∗ = pξ(e∗) + fē(e

∗)

which implies that

ξ(e∗) = pξ(e∗) + fē(e
∗) ∈ Range(H)

that means

pξ(e∗) = ξ(e∗)

and fē(e∗) = 0 which carries that Γ e∗
N = yd .

Consequently, the Eq. (11) become

e∗ = Ψ̃ e∗
0 + Le∗ + ξ(e∗) = Ψ̃ e∗

0 + Le∗ + HH†ξ(e∗).
(12)

Let u∗ = H†ξ(e∗)+α∗, with α∗ ∈ ker(H) and e∗ ∈ Pg ,
then

Hu∗ = HH†ξ(e∗) + H(α∗)

and from (12), we have

Hu∗ = HH†ξ(e∗) = e∗ − Ψ̃ e∗
0 − Le∗

which implies that

{
e∗ = Ψ̃ e∗

0 + Le∗ + Hu∗
Γ e∗

N = yd

thus

u∗ ∈ Uad .

Consequently,∀e ∈ Pg , we have H†ξ(e)+Ker(H) ⊂ Uad

and

⋃
e∈Pg

H†ξ(e) + Ker(H) ⊂ Uad .

Now, we show that Uad ⊂⋃e∈Pg H
†ξ(e) +Ker(H). Let

u∗ ∈ Uad and (eu
∗

1 , . . . , eu
∗

N−1) the trajectory of system (S1)
corresponding to control u∗, then we have

{
eu

∗ = Ψ̃ e0 + Leu
∗ + Hu∗

Γ eu
∗

N = yd

and
{

ξ
(
eu

∗) = Hu∗

Γ eu
∗

N = yd .

Consequently

⎧⎨
⎩

ξ
(
eu

∗) = Hu∗ ∈ Range(H)

fē
(
eu

∗) = 0
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and

eu
∗ = Ψ̃ e0 + Leu

∗ + pξ
(
eu

∗)+ fē
(
eu

∗) = g
(
eu

∗)
.

Then eu
∗
is a fixed point of the mapping of g, moreover,

we can write

u∗ = H†ξ
(
eu

∗)+
(
u∗ − H†ξ

(
eu

∗))

which implies that

H
(
u∗ − H†ξ

(
eu

∗)) = Hu∗ − HH†ξ
(
eu

∗) = 0

consequently

(
u∗ − H†ξ

(
eu

∗)) ∈ Ker(H)

and finally we have

Uad ⊂
⋃
e∈Pg

H†ξ(e) + Ker(H).

��
Remark 5 Thefixed points of g are independent of the choice
of the projection p and the element ē. Indeed, let p1 and p2
two projection on Im H and ē1 and ē2 two any elements not
equal to zero of Im H . Let’s consider the applications

g1 : T −→ T,

e −→ g1(e) = Ψ̃ e0 + Le + p1ξ(e) + fē1(e),

g2 : T −→ T,

e −→ g2(e) = Ψ̃ e0 + Le + p2ξ(e) + fē2(e).

Let e a fixed point of g1, by proof of Proposition 3,we have
Γ eN = yd and ξ(e) ∈ Im H , he result that p2ξ(e) = ξ(e)
and fē1(e) = 0, then

g2(e) = Ψ̃ e0 + Le + ξ(e) = e.

What shows that e is a fixed point of g2. By symmetry, it
clear that the fixed points of g2 are also the fixed points of g1.

4.2 Problem of minimization

By the above proposition, we can characterize the set of
admissible control Uad , among those controls, we allow to
determine those with the minimal norm, i.e., we solve the
following problem:

P̄ : min
u∈ Uad

(J (u) =‖ u ‖2).

If we suppose that Pg is fini, i.e., Pg = {e1, . . . , eq}, we
have

Uad =
q⋃

i=1

H†ξ(ei ) + Ker(H) =
q⋃

i=1

U i
ad

where

U i
ad = H†ξ(ei ) + Ker(H)

then, we obtain

P̄ ⇐⇒ min
1≤i≤q

(
min

u∈ U i
ad

(
J (u) =‖ u ‖2

))
. (13)

Remark 6 Let u ∈ U i
ad then u = H†ξ(ei ) + v with v ∈

Ker(H). Thus

‖ u ‖2 = < u, u >=< H†ξ(ei ) + v, H†ξ(ei ) + v >

= ‖ H†ξ(ei ) ‖2 + 2 < H†ξ(ei ), v > + ‖ v ‖2
= ‖ H†ξ(ei ) ‖2 + Ji (v)

finally we have

J (u) =‖ H†ξ(ei ) ‖2 +Ji (v),

with

Ji (v) = 2 < H†ξ(ei ), v > +‖v‖2. (14)

Lemma 1 The two following problems are equivalents

(a)

⎧⎨
⎩

min
u∈U i

ad

J (u) =‖ u∗ ‖2

with u∗ = H†ξ(ei ) + v∗

(b)

{
min

v∈Ker H Ji (v) =‖ v∗ ‖2
with Ji (v) = 2 < H†ξ(ei ), v > + ‖ v ‖2

Proof (b) �⇒ (a) Let w ∈ U i
ad which implies that w =

H†ξ(ei ) + w̄ with w̄ ∈ Ker(H), then we have

J (w) =‖ w ‖2=‖ H†ξ(e∗
i ) ‖2 + Ji (w̄)

thus

J (w) ≥‖ H†ξ(e∗
i ) ‖2 + Ji (v

∗)

consequently

J (w) ≥‖ u∗ ‖2 = J (u).
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So, ∀w ∈ U i
ad , we have J (w) ≥ J (u∗) and

min
u∈U i

ad

J (w) = J (u∗) =‖ u∗ ‖2 .

(a)�⇒ (b) Let u∗ such that ‖ u∗ ‖2 = min
u∈U i

ad

(J (u)), or U i
ad is

closed, then we have u∗ ∈ U i
ad and there exists v∗ ∈ Ker(H)

such that u∗ = H†ξ(ei ) + v∗.
Let w ∈ Ker(H) and consider u = H†ξ(e∗

i ) + w then we
have

‖ u ‖2 ≥‖ u∗ ‖2

‖H†ξ(e∗
i )‖2+ 2<H†ξ(e∗

i ), w> + ‖w‖2 ≥ ‖H†ξ(e∗
i )‖2 +

2 < H†ξ(e∗
i ), v

∗ > + ‖ v∗ ‖2
thus, we have

2 < H†ξ(e∗
i ), w>+ ‖ w ‖2 ≥ 2 < H†ξ(e∗

i ), v
∗>+‖ v∗ ‖2

which implies that

Ji (w) ≥ Ji (v
∗), ∀w ∈ Ker(H)

consequently

min
v∈Ker H Ji (v) = Ji (v

∗) = ‖v∗‖.

��
Theorem 1 If we suppose that the set Pg is finite, then the
optimal control allow to have the Γ -Controllability (then the
exactly output controllability of system (S)) is given by

u∗ = H†ξ(ei0),

with ei0 a fixed point of application g given by (10) andwhich
verified

‖ H†ξ(ei0) ‖2 = inf
1≤i≤q

{
‖ H†ξ(ei ) ‖2

}
.

Proof Let’s consider Pg = {e1, . . . , eq}, then by Lemma 1,
we have

min
u∈Uad

J (u) = ‖u‖2 with u∗ = H†ξ(ei ) + v∗

where v∗ is an element of H that achieves theminimumof the
functional J given by (14), However, H is a closed subspace,
then the minimum of J is reached for v∗ = 0 and therefore,
we have

min
u∈Uad

J (u) = ‖H†ξ(ei )‖2.

While using the equivalence (13), we deduct that

min
u∈Uad

(J (u) = ‖u‖2) = inf
1≤i≤q

{‖H†ξ(ei )‖2} = ‖H†ξ(ei0)‖2

where ei0 ∈ {ei1 , . . . , eiq }. ��

5 Other application for characterize the set of
admissible controls

In this section, a necessary and sufficient condition based on
the set of fixed points of an other application appropriately
chosen, for that a control is admissible. Indeed, let’s consider
the operator L , H , Ψ and Γ defined in preceding paragraph
and we define the Hilbert spaces M = T × Y with Y =
l2(σ N

1 ; Y ) and the operators S, L, H and ξ̃ by

S : X −→ M, L T −→ M,

α �−→
(

Ψ̃ α

Γ Ψ Nα

)
, x = (xi )i∈σ N

1
�−→

(
Lx
Γ (Lx)N

)
,

H : U −→ M, ξ̃ M −→ M,

u �−→
(
Hu
Γ (Hu)N

)
,

(
x
z

)
�−→

(
x
z

)
− Se0 − Lx .

We remind that the solution of system (5) is written in the
form

e = (ei )i∈σ N
1

= Ψ̃ e0 + Le + Hu

which give(
e
Γ eN

)
= Se0 + Le + Hu. (15)

We suppose that Im H is closed, then the pseudo inverseH†

of H is defined on all space M. Let’s yd a fixed element of
Y , we define the following application

G : M −→ M(
x
z

)
�−→ G

(
x
z

)
= Se0 + Lx + pξ̃

(
x
yd

)

+
(
0IRN

z − yd

)
.

(16)

with p : T −→ Im H an any projection on Im(H). Then
we have the following result.

Lemma 2 If

(
x
z

)
∈ M is a fixed point ofG, then ξ̃

(
x
yd

)
∈

Im H.

Proof If

(
x
z

)
is a fixed point of G, then we have

G
(
x
z

)
= Se0 + Lx + pξ̃

(
x
yd

)
+
(
0IRN

z − yd

)
=
(
x
z

)
,

which implies
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pξ̃

(
x
yd

)
=
(
x
z

)
− Se0 − Lx −

(
0IRN

z − yd

)

=
(
x
yd

)
− Se0 − Lx

= ξ̃

(
x
yd

)

which show that ξ̃

(
x
yd

)
∈ Im H. ��

Theorem 2 Let’s yd a desired output, the control u∗ =
H†ξ̃

(
x∗
yd

)
+ v∗ ensure the Γ -controllability of system (5)

where x∗ ∈ T and v∗ ∈ Ker H if and only if (x∗, yd) is a
fixed point of application G given by (16).

Proof Let’s consider x∗ ∈ T andv∗ ∈ Ker H. Ifwe suppose

that u∗ = H†ξ̃

(
x∗
yd

)
+v∗ ∈ U ensure the Γ -controllability

of system (S1), i.e., Γ eu
∗

N = yd where e = (e∗
1, . . . , e

∗
N ) is

the trajectory of system (5) corresponding to the control u∗.
Then, by Eq. (15), we have

Hu∗ =
(
x∗
Γ eu

∗

)
− Se0 − Lx∗ = ξ̃

(
x∗
Γ eu

∗

)
= ξ̃

(
x∗
yd

)

which implies that ξ̃

(
x∗
yd

)
∈ Im H, consequently

pξ̃

(
x∗
yd

)
= ξ̃

(
x∗
yd

)
.

So, we have

G
(
x∗
yd

)
= Se0 + Lx∗ + ξ̃

(
x∗
yd

)
=
(
x∗
yd

)

which carries that (x∗, yd)� is a fixed point of G.
Now, if we suppose that (x∗, yd)� is a fixed point of G,

then by Lemma 2, we have ξ̃

(
x∗
yd

)
∈ Im H. On other hand,

we have

(
x∗
yd

)
= Se0 + Lx∗ + ξ̃

(
x∗
yd

)

Let v∗ ∈ Ker H, then if we consider the control u∗ =
H†ξ̃

(
x∗
yd

)
+ v∗, we have Hu∗ = ξ̃

(
x∗
yd

)
and

(
x∗
yd

)
= Se0 + Lx∗ + Hu∗.

If we replace S, L and H by their expression, we obtain

(
x∗
yd

)
=
(

Φ̃e0 + Lx∗ + Hu∗
Γ ΦNe0 + Γ (Lx∗)N + Γ (Hu∗)N .

)

So, x∗ = Φ̃e0+Lx∗+Hu∗ implies that x∗ is the trajectory
of system (5) corresponding to control u∗ and

yd = Γ (ΦNe0 + (Lx∗)N + (Hu∗)N )

= Γ (x∗
N ).

Consequently the control u∗ = H†ξ̃

(
x∗
yd

)
+ v∗ ensure

the Γ -controllability of system (5), which end the proof. ��

6 Example and numerical simulation

Consider the following system

{
ẋ(t) = Δx(t) + Mx(t) + Du(t), 0 < t < 1
x(0) = 0,

(17)

the output function is given by

y(t) =< x(t), φ1 >∈ IR (18)

where x(t) ∈ X = L2(0, 1; IR), u(t) ∈ U = IR, D and M
are respectively the linear and the nonlinear maps defined by

D : IR −→ X
z −→ zφ1

and

M : X −→ X
x −→ sin(< x, φ1 >)φ1

where φn = √
2 sin (nπ.), n ≥ 1. The laplacien Δ is

the infinitesimal generator of the strongly-continuous semi-
group (S(t))t≥0 defined by

S(t) =
∞∑
n=1

e−n2π t < x, φn > φn .

The operator M satisfied the Lipshitz condition. Indeed, for
all x, y ∈ X , we have

‖M(x) − M(y)‖ = ‖(sin(x1) − sin(y1))φ1‖
≤ |sin(x1) − sin(y1)|
≤ 2

∣∣∣∣sin
(
x1 − y1

2

)∣∣∣∣
∣∣∣∣cos

(
x1 + y1

2

)∣∣∣∣
≤ |x1 − y1| ≤ ‖x − y‖.

where x1 =< x, φ1 > and y1 =< y, φ1 >.
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Consequently, the system (17) has a unique mild solution
in L2(0, 1; X) (see Balakrishnan [23]) given by

x(t) =
∫ t

0
S(t − r)Mx(r)dr +

∫ t

0
S(t − r)Du(r)dr.

Let N ∈ IN , δ = 1
N the sampling data, ti = iδ, ∀i ∈ IN ,

A = S(δ), xi = x(ti ), ui = u(ti ) and yi = y(ti ), the discrete
version of system (17), (18) is the following

{
xi+1 = Axi + Exi + Bui , i ≥ 0
x0 = 0,

(19)

yi = Cxi , i ≥ 0 (20)

where E , B, and C are given by

E =
∫ δ

0
S(r)Mdr , B =

∫ δ

0
S(r)Ddr and

Cx =< x, φ1 >, ∀x ∈ X .
By a direct calcul, we can verifies that the operator H , L

and ξ , the sets Ker H , (Ker H)� and Im H are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H : u ∈ l2
(
σ N−1
0 , IR

)
−→ Hu ∈ l2

(
σ N
1 ,X )

(Hu)i = 1 − e−π2δ

π2

⎛
⎜⎜⎜⎝

ūi−1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, ū0, . . . , ūi−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where ūi =
∑i

j=0
e− jπ2δui− jφ1 and i ∈ σ N

1 ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L : e ∈ l2
(
σ N
1 ,X ) −→ Le ∈ l2

(
σ N
1 ,X )

(Le)i =
(
1 − e−π2δ

π2

)
⎛
⎜⎜⎜⎝

x̄i−1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, x̄0, . . . , x̄i−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where x̄i =
∑i

j=0
e− jπ2δ sin (< xi− j , φ1 >)φ1 and xi =

Gei , i ∈ σ N
1 with

⎧⎨
⎩
G : X −→ X(

z
(z−N , . . . , z−1)

)
−→ z

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ : e ∈ l2
(
σ N
1 ,X ) −→ ξe ∈ l2

(
σ N
1 ,X )

(ξe)i = ei − 1 − e−π2δ

π2

⎛
⎜⎜⎜⎝

x̄i−1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−t imes

, x̄0, . . . , x̄i−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠

Ker H = {0}, (Ker H)� = U = l2
(
σ N−1
0 ; IR

)

and

Im H =
{
z = (zi )i∈σ N

1
∈ l2

(
σ N
1 ,X ) , zi =⎛

⎜⎜⎜⎝
αiφ1⎛

⎜⎝ 0, . . . , 0︸ ︷︷ ︸
(N−i+1)−times

, α1φ1, . . . , αi−1φ1

⎞
⎟⎠

⎞
⎟⎟⎟⎠ , i ∈ σ N

1 , αi ∈ IR

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Let H̃ the operator defined by

H̃ : (Ker H)� = U −→ Im H
v −→ H̃v = Hv

H̃−1 : Im H −→ U⎛
⎜⎜⎜⎝

αiφ1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, α1φ1, . . . , αi−1φ1

⎞
⎟⎠

⎞
⎟⎟⎟⎠ −→ v

where⎧⎪⎪⎨
⎪⎪⎩

v0 = π2

1 − e−π2δ
α1

vi = π2

1 − e−π2δ
[αi+1 − e−π2δαi ], i ∈ σ N−1

1 .

Lets ē = (b1, 0, . . . , 0)� where b1 =
(

φ1

(0, . . . , 0)

)
and

the projection P

P : l2
(
σ N
1 ,X ) −→ Im H

z = (z1, . . . , zN ) −→ Pz

Pz =

⎛
⎜⎜⎜⎝

z̄i⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, z̄1, . . . , z̄i−1

⎞
⎟⎠

⎞
⎟⎟⎟⎠

i∈σ N
1

with z̄i =< z1i , φ1 > φ1 and z1i = Gzi , i ∈ σ N
1 .

The map H is given by H : e ∈ l2(σ N
1 ,X ) −→ He ∈

l2(σ N
1 ,X ), where, for every i ∈ σ N

1 , we have

(He)i = ( fē(e))i + (Le)i + (Pξ(e))i

= ( fē(e))i +

⎛
⎜⎜⎜⎝

x̄i⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, x̄1, . . . , x̄i−k−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠ .

where x̄i =< xi , φ1 > φ1.
Let e a fixe point of H , we have

ei = ( fē(e))i +

⎛
⎜⎜⎜⎝

x̄i⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, x̄1, . . . , x̄i−k−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠
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where xi = Gei . As ( fē(e))i , i ∈ σ N
2 , we show that

( fē(e))1 = 0. Indeed, if we suppose that ( fē(e))1 �= 0, then

( fē(e))1 = ē1 = b1 =
(

φ1

(0, . . . , 0)

)
thus

< ei , b1 >X×l2(σ−1
−N ,X )

= ‖b1‖2X×l2(σ−1
−N ,X )

+

<

⎛
⎜⎜⎜⎝

x̄i⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, x̄1, . . . , x̄i−k−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠ , b1 >

which implies that

< xi , φ1 >= 1+ < xi , φ1 >

which is absurd, then fē(e) = 0 and

ei =

⎛
⎜⎜⎜⎝

x̄i⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, x̄1, . . . , x̄i−k−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠ , ∀i ∈ σ N

1 .

Γ eN = yd ⇐⇒ (< x1, φ1 >, . . . , < xN , φ1 >) =
(yd1 , . . . , ydN )

⇐⇒ < xi , φ1 >= ydi , i ∈ σ N
1 .

Consequently

ei =

⎛
⎜⎜⎜⎝

ydi φ1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, yd1φ1, . . . , ydi−1φ1

⎞
⎟⎠

⎞
⎟⎟⎟⎠ , ∀i∈σ N

1 .

(ξ(e))i =

⎛
⎜⎜⎜⎝

ydi φ1⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(N−i+1)−times

, yd1φ1, . . . , ydi−1φ1

⎞
⎟⎠

⎞
⎟⎟⎟⎠

+
(
1 − e−π2δ

π2

)⎛⎜⎜⎜⎝
ȳdi−1⎛

⎜⎝ 0, . . . , 0︸ ︷︷ ︸
(N−i+2)−times

, ȳd1 , . . . , ȳdi−2

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where ȳdi =
∑i

k=0
e−kπ2δ ydi−kφ1 and ∀i ∈ σ N

1 .

(H†(ξ(e)))i=
(

π2

1 − e−π2δ

)(
ydi+1 − e−π2δ ydi

)
− sin

(
ydi

)

Consequently

Uad =
⎧⎨
⎩
(

π2

1 − e−π2δ

(
ydi+1 − e−π2δ ydi

)
− sin

(
ydi

))
i∈σ N−1

0

⎫⎬
⎭

Table 1 The values of the exact control and the approximate control

t Exact control Approx. control Error

0.0 0 0 0

0.1 0.36403 0.36403 0

0.2 0.75343 0.74976 3.66591E−03

0.3 1.15265 1.14353 9.12257E−03

0.4 1.54579 1.53043 1.53593E−02

0.5 1.91716 1.89543 2.17311E−02

0.6 2.25198 2.22420 2.77782E−02

0.7 2.53688 2.50371 3.31711E−02

0.8 2.76051 2.72281 3.76965E−02

0.9 2.91395 2.87270 4.12458E−02

Fig. 1 Graph of the control for different values of N

Numerical simulation For

ydi =
(
1 − e−π2δ

π2

)
i−1∑
j=0

(
2sin

(
2 jδ − π

6

)+ 1
) (

e−π2δ

+
(
1 − e−π2δ

π2

)
sin(1)

)i− j−1

, ∀i ∈ σ N
1 ,

we obtain the numerical results describes in Table 1.
The corresponding optimal cost is J (u∗) = 0.34819.

Some control trajectories for different values of N are
depicted in Fig. 1.

7 Conclusion

In this paper, we investigate the output controllability prob-
lem for nonlinear discrete distributed system with energy
constraint. We use a technique based on the fixed point the-
orem and we establish that the set of admissible controls can
be characterized by the set of the fixed point of an appropri-

123



On the output controllability of a class of discrete nonlinear distributed systems: a fixed… 777

ate mapping. A numerical example is given to illustrate the
obtained results.
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