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Abstract In this paper, bifurcation trees of periodicmotions
to chaos in a damped, parametric Duffing oscillator are
investigated. From the semi-analytic method, differential
equations of nonlinear dynamical systems are discretizedfirst
to obtain implicit mappings. Following the implicit mapping
structures, periodic nodes of periodic motions are computed.
The bifurcation trees of period-1 to period-4 motions are
presented to demonstrate the routes of period-1 motions to
chaos, and the corresponding stability and bifurcation are
determined by eigenvalue analysis. For a better understand-
ing of nonlinear behaviors of periodicmotions in a parametric
Duffing oscillator, harmonic frequency–amplitude character-
istics of periodic motions are presented. From the analytical
predictions, numerical simulations are performed.The trajec-
tory, time-histories of displacement and velocity, harmonic
amplitudes and phases of period-1 to period-4 motions are
presented. Based on comparison of numerical and analyti-
cal results, determined is how many harmonic terms should
be included in finite Fourier series, which help one select
harmonic terms in analytical solutions and engineering appli-
cation.
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1 Introduction

Nonlinear oscillators extensively exist in engineering. An
important issue is how to achieve accurate approximate solu-
tions of nonlinear oscillators with strong nonlinearity. For
recent hundreds years, several analytic methods have been
developed for periodic motions of nonlinear oscillators, such
as the method of averaging, perturbation methods, harmonic
balance method, generalized harmonic balance method. In
this paper, a semi-analytic method will be applied to deter-
mine the route of period-1 motion to chaos in a parametric
Duffing oscillator.

In 1788, Lagrange [1] studied the three-body problem as
a perturbation of two-body problem by using the method
of averaging. The basic idea of this method is the origi-
nal dynamical system can be approximated by an averaged
system. In 1899, Poincare [2] used the perturbation method
for analyzing the periodic motion of celestial mechanics. In
1920, van der Pol [3] built the oscillator by circuits and
the periodic motions were determined by the method of
averaging. In 1935, Krylov and Bogoliubov [4] continued
developing the method of averaging in nonlinear dynam-
ical systems. In 1964, Hayashi [5] used several analytic
methods to determine the periodic solutions and the sta-
bility of nonlinear systems. In 1973, Nayfeh [6] introduced
the perturbation method systematically and used multi-scale
perturbation method to approximate the periodic motions of
Duffing oscillator. 1976, Holmes and Rand [7] investigated
the existence and stability of periodic solutions of theDuffing
oscillator. The catastrophe theory was used for the stability
and bifurcations of Duffing equation. In 1979, Nayfeh and
Mook [8] employed the perturbation method for periodic
motions of the Duffing oscillators in structural vibrations. In
1980, Ueda [9] numerically simulated chaos of the Duffing
oscillator by numerical simulation. In 1987,Garcia-Margallo
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and Bejarano [10] employed a generalized harmonic balance
method to determine the approximate solutions of periodic
motions in dynamical systems with strong nonlinearity. In
1990, Coppola and Rand [11] discussed the approximation
of limit cycle determined by averaging method with elliptic
functions.

In 1868, the linear Mathieu equation was first investi-
gated by Mathieu [12]. In 1913, Whittaker [13] introduced
a method to find the general solution of the Mathieu
equation. In 1961, Sevin [14] studied a pendulum-type vibra-
tion absorber with parametric excitation. In 1965, Tso and
Caughey [15] investigated the stability of nonlinear systems
with parametric excitation. In 1993, Mond [16] discussed
the stability of nonlinear Mathieu equation. In 1997, Luo
and Han [17] studied the stability and bifurcations of peri-
odic motions in the generalized Duffing oscillator. In 1999,
Luo and Han [18] gave the analytical prediction of chaos in a
nonlinear rod, and the chaos and periodic motions were sim-
ulated by Poincare mapping. In 2004, Luo [19] developed
the analytical conditions for chaotic motions in the reso-
nant separatrix bands of a Mathieu-Duffing oscillator. The
numerical prediction of chaotic motion in the resonant bands
was also completed through the energy increment spectrum
method. In 2008, Peng et al. [20] used the harmonic bal-
ance method with three harmonic terms to approximate the
periodic motions in the Duffing oscillator.

In 2012, Luo [21] developed a generalized harmonic bal-
ance method for the approximation of analytic solutions, and
the finite Fourier series was used to approximate the ana-
lytical solution of periodic motions. Luo and Huang [22]
employed such an analytical method for the approximate
analytical solutions of periodic motions in a periodically
forced Duffing oscillator. Analytical period-1 motions were
obtained. From the analytical solutions, the initial condi-
tions can be computed and numerical solutions of periodic
motion were computed. Luo and Huang [23] used the gener-
alized harmonic balance method for the analytical solutions
of period-m motions in such a nonlinear dynamical system,
and the bifurcation trees of period-1 to period-8motionswere
obtained. In 2013, Luo and Yu [24] presented the bifurcation
trees of period-1 motions to chaos in a quadratic nonlin-
ear oscillator. In 2013, Luo and Laken [24] investigated the
analytical solutions of periodicmotions in vander Pol oscilla-
tor. In 2013, Luo and Dennis [25] presented the asymmetric
period-1 and symmetric period-2 motions in a parametric
Duffing oscillator.

In this paper, the routes of period-1 motion to chaos
in a parametric Duffing oscillator will be developed by a
semi-analytic method. From the semi-analytical method, the
corresponding differential equations of nonlinear dynamical
systems will be discretized to obtain implicit discrete map-
pings. From the appropriate mapping structures, the periodic
motions on the bifurcation trees will be computed, and the

corresponding stability and bifurcation will be carried out
through eigenvalue analysis.Harmonic frequency–amplitude
characteristics will be presented for a better understanding
of bifurcations of periodic motions. To verify the analytic
prediction of periodic motions, comparison of analytic and
numerical results will be completed, and harmonic amplitude
and phase distributions of periodic motions will be presented
for the harmonic effects on the periodic motions in the para-
metric Duffing oscillator.

2 Methods

FromLuo [26], periodicmotions can be presented by implicit
mappings. If a nonlinear system possesses a period-m flow,
the solution of period-m flows can be represented by discrete
nodes of the continuous system.

Theorem 1 Consider a nonlinear dynamical system as

ẋ = f(x, t,p) ∈ Rn (1)

where f(x, t,p) is a Cr -continuous nonlinear vector function
(r ≥ 1). If such a dynamical system has a period-m flow
x(m)(t)with finite norm ||x(m)|| and periodmT (T = 2π/�),
there is a set of discrete time tk(k = 0, 1, . . . ,mN) with
(N → ∞) during m-periods (mT ), and the corresponding
solution x(m)(tk) and vector field f(x(m)(tk), tk,p) are exact.
Suppose a discrete node x(m)

k is on the approximate solutions

of the periodic flow under ||x(m)(tk) − x(m)
k || ≤ εk with a

small εk ≥ 0 and

||f(x(m)(tk), tk,p) − f(x(m)
k , tk,p)|| ≤ δk (2)

with a small δk ≥ 0. During a time interval t ∈ [tk−1, tk],
there is a mapping Pk : x(m)

k−1 → x(m)
k (k = 1, 2, . . . ,mN ),

i.e.,

x(m)
k = Pkx

(m)
k−1 with gk(x

(m)
k−1, x

(m)
k ,p) = 0,

k = 1, 2, . . . ,mN (3)

where gk is an implicit vector function. Consider a mapping
structure as

P = PmN ◦ PmN−1 ◦ · · · ◦ P1 : x(m)
0 → x(m)

mN ;
with Pk : x(m)

k−1 → x(m)
k (k = 1, 2, . . . ,mN ). (4)

For x(m)
mN = Px(m)

0 , if there is a set of points x(m)∗
k (k =

0, 1, . . . ,mN ) computed by

gk(x
(m)∗
k−1 , x(m)∗

k ,p) = 0, (k = 1, 2, . . . ,mN )

x(m)∗
0 = x(m)∗

mN , (5)
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then the points x(m)∗
k (k = 0, 1, . . . ,mN) are approximations

of points x(m)(tk) of the periodic solution. In the neighbor-
hood of x(m)∗

k , with x(m)
k = x(m)∗

k + �x(m)
k , the linearized

equation is given by

�x(m)
k = DPk · �x(m)

k−1

with gk(x
(m)∗
k−1 + �x(m)

k−1, x
(m)∗
k + �x(m)

k ,p) = 0

(k = 1, 2, . . . ,mN ). (6)

The resultant Jacobian matrices of the periodic flow are

DPk(k−1)···1 = DPk · DPk−1 · · · · · DP1,

(k = 1, 2, . . . ,mN );
DP ≡ DPmN (mN−1)···1

= DPmN · DPmN−1 · · · · · DP1 (7)

where

DPk =
[

∂x(m)
k

∂x(m)
k−1

]
(x(m)∗

k−1 ,x(m)∗
k )

= −
[

∂gk

∂x(m)
k

]−1 [
∂gk

∂x(m)
k−1

]∣∣∣∣∣∣
(x(m)∗

k−1 ,x(m)∗
k )

. (8)

The eigenvalues of DP(x(m)∗
0 ) and DPk(k−1)···1 for such a

periodic flow are determined by

|DPk(k−1)···1 − λ̄In×n| = 0, (k = 1, 2, . . . ,mN );
|DP − λIn×n| = 0. (9)

Thus, the eigenvalues of DPk(k−1)···1 gives the properties of
xk varying with x0. The stability and bifurcation of the peri-
odic flow can be classified by the eigenvalues of DP(x(m)∗

0 )

with

([nm1 , no1] : [nm2 , no2] : [n3, κ3] : [n4, κ4]|n5 : n6 : [n7, l, κ7]).
(10)

I. If the magnitudes of all eigenvalues of DP are less than
one (i.e., |λi | < 1, i = 1, 2, . . . , n), the approximate
period-m solution is stable.

II. If at least the magnitude of one eigenvalue of DP is
greater than one (i.e., |λi | > 1, i ∈ {1, 2, . . . , n}), the
approximate period-m solution is unstable.

III. The boundaries between stable and unstable period-m
flow with higher order singularity give bifurcation and
stability conditions.

3 Parametric Duffing oscillator

3.1 Discretization

Consider a parametric Duffing oscillator as

ẍ + δ ẋ + (α + Q0 cos�t)x + βx3 = 0 (11)

where α and β are positive constants. δ is damping coef-
ficient. Q0 and � are excitation amplitude and frequency,
respectively. The foregoing equation can be rewritten in a
state space form as

ẋ = y

ẏ = −δy − (α + Q0 cos�t)x − βx3 (12)

In a time interval t ∈ (tk−1, tk), the discretization of the
foregoing differential equations is obtained by a midpoint
scheme to form the map Pk(k = 1, 2, . . .):

Pk : (xk−1, yk−1) → (xk, yk)

⇒ (xk, yk) = Pk(xk−1, yk−1) (13)

The implicit relations of mapping are

xk = xk−1 + 1

2
h(yk−1 + yk),

yk = yk−1 + h
{

− 1

2
δ(yk−1 + yk)

−1

2

[
α + Q0 cos�(tk−1 + 1

2
h)

]
(xk−1 + xk)

−1

8
β(xk−1 + xk)

3
}
. (14)

3.2 Period-m motions

Consider the mapping structure for a period-1 motion as

P = PN ◦ PN−1 ◦ · · · ◦ P2 ◦ P1 :︸ ︷︷ ︸
N-actions

(x0, y0) → (xN , yN )

(15)

The corresponding algebraic equations are

x1 = x0 + 1

2
h(y0 + y1),

y1 = y0 + h
{

− 1

2
δ(y0 + y1)

−1

2

[
α + Q0 cos�

(
t0 + 1

2
h
)]

(x0 + x1)

−1

8
β(x0 + x1)

3
}
;

...
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xk = xk−1 + 1

2
h(yk−1 + yk),

yk = yk−1 + h
{

− 1

2
δ(yk−1 + yk)

−1

2

[
α + Q0 cos�

(
tk−1 + 1

2
h
)]

(xk−1 + xk)

−1

8
β(xk−1 + xk)

3
}
;

...

xN = xN−1 + 1

2
h(yN−1 + yN ),

yN = yN−1 + h
{

− 1

2
δ(yN−1 + yN )

−1

2

[
α + Q0 cos�

(
tN−1 + 1

2
h
)]

(xN−1 + xN )

−1

8
β(xN−1 + xN )3

}
(k = 1, 2, 3, . . . , N ) (16)

The corresponding periodicity condition is (xN , yN ) =
(x0, y0). Once the discrete nodes of period-1 motions are
attained by 2(N + 1) algebraic equations, the corresponding
stability analysis can be carried out by eigenvalues anal-
ysis. In the neighborhood of x∗

k , xk = x∗
k + �xk, (k =

1, 2, . . . , N ), the linearization of the foregoing equation
gives

�xN = DP�x0
= DPN · DPN−1 · · · · · DP2 · DP1︸ ︷︷ ︸

N-mutiplication

�x0 (17)

with

�xk = DPk�xk−1 ≡
[

∂xk
∂xk−1

]
(x∗

k ,x
∗
k−1)

�xk−1 (18)

where

DPk =
[

∂xk
∂xk−1

]
(x∗

k ,x
∗
k−1)

=
[

∂xk
∂xk−1

∂xk
∂yk−1

∂yk
∂xk−1

∂yk
∂yk−1

]
(
x∗
k ,x

∗
k−1

)
k = 1, 2, . . . , N (19)

Four elements of the foregoing matrix are

∂xk
∂xk−1

= 1 + 1

2
h

∂yk
∂xk−1

,

∂xk
∂yk−1

= 1

2
h

(
1 + ∂yk

∂yk−1

)
,

∂yk
∂xk−1

= −2�

1 + 1
2hδ + 1

2h�
,

∂yk
∂yk−1

= 1 − 1
2hδ − 1

2h�

1 + 1
2hδ + 1

2h�
; (20)

with� = 1
2h[α+Q0 cos�(tk−1+ 1

2h)]+ 3
8hβ(xk−1+xk)2.

To determine the stability and bifurcation conditions of
the period-1 motion, the eigenvalues can be computed by

|DP − λI| = 0 (21)

where

DP =
[
∂xN
∂x0

]
(
x∗
N ,x∗

N−1,...,x
∗
0

) =
1∏

k=N

[
∂xk

∂xk−1

]
(x∗

k ,x
∗
k−1)

= DPN · DPN−1 · · · · · DP2 · DP1 (22)

From Luo [26], the eigenvalues of the DPmatrix are denoted
by λi (i = 1, 2),

(i) If |λi | < 1(i = 1, 2), the periodic solution is stable.
(ii) If |λi | > 1(i ∈ {1, 2}), the periodic solution is unstable.

The bifurcation conditions of periodic motions are

(i) If λi = 1, i ∈ {1, 2} and |λ j | < 1, j ∈ {1, 2}, j �= i ,
the saddle-node (SN) bifurcation occurs.

(ii) If λi = −1, i ∈ {1, 2} and |λ j | < 1, j ∈ {1, 2}, j �= i ,
the period-doubling (PD) bifurcation occurs.

(iii) If |λ1,2| = 1 andλ1,2 = α±βi , theNeimark bifurcation
occurs.

Consider the mapping structure of period-m motion as

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1 :︸ ︷︷ ︸
mN-actions

(x(m)
0 , y(m)

0 ) → (x(m)
mN , y(m)

mN ) (23)

The corresponding algebraic equations are as follows,

x (m)
k = x (m)

k−1 + 1

2
h
(
y(m)
k−1 + y(m)

k

)
,

y(m)
k = y(m)

k−1 + h
{

− 1

2
δ
(
y(m)
k−1 + y(m)

k

)
−1

2

[
α + Q0 cos�(tk−1 + 1

2
h)

](
x (m)
k−1 + x (m)

k

)
−1

8
β
(
x (m)
k−1 + x (m)

k

)3}
(k = 1, 2, . . . ,mN ) (24)
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The periodicity condition is

(
x(m)
mN , y(m)

mN

)
=

(
x(m)
0 , y(m)

0

)
(25)

For period-m motions, the discrete nodes can be computed
by 2(mN + 1) equations. The corresponding stability and
bifurcation conditions of period-m motion can be carried
out by the eigenvalue analysis. Once the periodic nodes are
obtained, in the vicinity ofx(m)∗

k , x(m)
k = x(m)∗

k +�x(m)
k , (k =

0, 1, 2, . . . ,mN ), the linearization of the equation gives

�xmN = DP�x(m)
0

= DPmN · DPmN−1 · · · · · DP2 · DP1︸ ︷︷ ︸
mN−multiplication

�x(m)
0 , (26)

with

�x(m)
k = DPk�x(m)

k−1

≡
[

∂x(m)
k

∂x(m)
k−1

]
(
x(m)∗
k ,x(m)∗

k−1

) �x(m)
k−1, (27)

where

DPk =
[

∂x(m)
k

∂x(m)
k−1

]
(x(m)∗

k ,x(m)∗
k−1 )

=
⎡
⎢⎣

∂x(m)
k

∂x(m)
k−1

∂x(m)
k

∂y(m)
k−1

∂y(m)
k

∂x(m)
k−1

∂y(m)
k

∂y(m)
k−1

⎤
⎥⎦

(
x(m)∗
k ,x(m)∗

k−1

)
, k = 1, 2, . . .mN

(28)

To determine the stability and bifurcation conditions of
period-m motion, the eigenvalues can be computed by

|DP − λI| = 0 (29)

where

DP =
[

∂x(m)
mN

∂x(m)
0

]
(
x(m)∗
mN ,x(m)∗

mN−1,...,x
(m)∗
0

)

=
1∏

k=mN

[
∂x(m)

k

∂x(m)
k

]
(x(m)∗

k ,x(m)∗
k−1 )

= DPmN · DPmN−1 · · · · · DP2 · DP1. (30)

The period-mmotions possess the same criterion for stability
and bifurcation conditions with period-1 motions.

3.3 Finite Fourier series formulation

From Luo [26], once the node points of period-m motions
are obtained, the node points x (m)

k = (x (m)
k , y(m)

k )T (k =
0, 1, 2, . . . ,mN ) of parametric Duffing oscillator can be
expressed by the finite Fourier series as

x(m)(t) ≈ a(m)
0 +

M∑
j=1

b j/m cos
( j

m
�t

)

+ c j/m sin
( j

m
�t

)
. (31)

For M = mN/2, the expression of the node points x(m)
k by

the finite Fourier series for t ∈ [0,mT ] is

x(m)
k ≈ x(m)(tk)

≈ a(m)
0 +

mN/2∑
j=1

b j/m cos

(
j

m
�tk

)

+ c j/m sin

(
j

m
�tk

)

= a(m)
0 +

mN/2∑
j=1

b j/m cos
( j

m

2kπ

N

)

+ c j/m sin
( j

m

2kπ

N

)
(k = 0, 1, . . . ,mN − 1) (32)

where

T = 2π

�
= N�t,

�tk = �k�t = 2kπ

N
,

a(m)
0 = 1

mN

mN−1∑
k=0

x(m)
k ,

b j/m = 2

mN

mN−1∑
k=1

x(m)
k cos

(
k
2 jπ

mN

)
,

c j/m = 2

mN

mN−1∑
k=1

x(m)
k sin

(
k
2 jπ

mN

)
.

( j = 1, 2, . . . ,mN/2) (33)

and

a(m)
0 = (a(m)

01 , a(m)
02 )T,

b j/m = (b j/m1, b j/m2)
T,

c j/m = (c j/m1, c j/m2)
T. (34)
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The harmonic amplitude and phase for both displacement
and velocity of the period-m motions are

A j/m1 =
√
b2j/m1 + c2j/m1,

ϕ j/m1 = arctan
c j/m1

b j/m1
,

A j/m2 =
√
b2j/m2 + c2j/m2,

ϕ j/m2 = arctan
c j/m2

b j/m2
. (35)

The approximate expression can be written as

x(m)(t) ≈ a(m)
0 +

mN/2∑
j=1

b j/m cos
( k

m
�t

)

+ c j/m sin
( k

m
�t

)
(36)

4 Bifurcation trees

The bifurcation trees of period-1 motion to chaos for the
parametric Duffing oscillator are predicted analytically in
this section. Two branches of bifurcation trees of asym-
metric period-1 to period-4 motions and one branch of
symmetric period-2 motions are illustrated. In all illustra-
tions, the black-solid and red-dash curves represent stable
and unstable solutions, respectively. The acronyms ‘PD’ and
‘SN’ represent period-doubling and saddle node bifurcations,
respectively. The ‘S’ and ‘A’ denote symmetric and asym-
metric solutions, respectively. The period-1, period-2 and
period-4 motions are labeled as P-1, P-2 and P-4.

4.1 The first bifurcation tree

The first branch of bifurcation trees of period-1 to period-4
motions for the parametric Duffing oscillator is illustrated in
Figs. 1–6. The parameters are chosen as

Q0 = 30, δ = 0.1, α = 5, β = 30 (37)

The global view of bifurcation trees for displacement and
velocity of periodic nodes are plotted in Fig. 1 through xk
and yk for mod(k, N ) = 0. For a better view of the bifur-
cation tree, the zoomed view of bifurcation trees of period-2
and period-4 motions are illustrated in Figs. 2–6. The corre-
sponding bifurcation points for period-1 to period-4 motions
are presented in Tables 1–3.

In Fig. 1, the horizontal axis is for the excitation frequency
and the vertical axes are for the displacement and veloc-
ity of periodic nodes with mod(k, N ) = 0, respectively.
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Fig. 1 The global view of the first branch of bifurcation trees of period-
1 to period-4motions varying with excitation frequency. i Periodic node
displacement x mod (k,N ), ii periodic node velocity y mod (k,N ), (Q0 =
30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

The solution of period-1 to period-4 motions are asymmet-
ric for the first branch of bifurcation trees. Two SN and
four PD bifurcation points of period-1 motion have been
observed. The stable period-1 motions lie in ranges of � ∈
(1.9947, 1.99595), (3.262, 3.989), (4.946, 11.8164). For the
unstable period-1 motion, the ranges of excitation frequency
are� ∈ (1.99595, 3.262), (3.989, 4.946), (3.3272, 11.8164).
Once the period-doubling bifurcations of period-1 motion
occur, the period-2 motions will appear from the period-1
motions and the stable period-1 motions become unsta-
ble. The period-doubling bifurcation points of period-1
motions are the saddle-node bifurcation points of the period-
2 motions. The bifurcation points of asymmetric period-1
motions are listed in Table 1. Similarly, once the period-
doubling bifurcation points of period-2 motion occur, the
period-4motionswill appear, and the stable period-2motions
become unstable. Once again, the period-doubling bifurca-
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Fig. 2 The first zoomed view of first branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement x mod (k,N ), ii periodic node velocity
y mod (k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30),mod(k, N ) = 0

tion points of period-2 motions are the saddle-node bifurca-
tion points of the period-4 motions.

For a better view of bifurcation trees, the period-1 to
period-4 motions are presented in the zoomed view of bifur-
cation trees in Figs. 2 and 3. There are two period-2 motions
exist in the range of frequency � ∈ (1.99595, 4.946) and
(3.262, 3.989). The period-2 motions possess four period-
doubling bifurcation points at 1.99611, 4.578, 2.91837 and
3.24085. The saddle-node bifurcation points of period-2
motions are � = 1.99595, 4.946, 3.989, 4.07176, 2.91570
and 3.262. The onsets of period-4 motions are at the period-
doubling bifurcations of period-2 motions where the stable
period-2 motions become unstable. The ranges of stable
period-2 motions are � ∈ (1.99595,1.99611), (4.578,4.946),
(3.989,4.07176), (2.91537,2.91570) and (3.24085, 3.262).
The three ranges of unstable period-2 motions are in the
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Fig. 3 The second zoomed view of first branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement x mod (k,N ), ii periodic node velocity
y mod (k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30),mod(k, N ) = 0

intervals of � ∈ (1.99611, 4.578), (4.0176, 2.91570) and
(2.91537, 3.24085). The bifurcation points are listed in
Table 2.

In Figs. 4–6, the zoomed view of bifurcation tress from
period-1 to period-4 motions is presented. The onsets of
period-8motions occur at the period-doubling bifurcations of
period-4 motions where the stable period-4 motions become
unstable. Such period-doubling bifurcations are also the
saddle-node bifurcations of period-8 motions. The period-
4 motions possess six saddle-node and six period-doubling
bifurcations, respectively. The saddle-node bifurcations of
period-4 motions are � =1.99611, 3.558458, 3.609964,
4.578, 3.24085 and 2.915837. The period-doubling bifurca-
tions are � = 1.996126, 3.558465, 3.609961, 4.52,3.23885
and 2.915872. The ranges of stable period-4 motions are
� ∈ (1.99611, 1.996126), (3.558458, 3.558465), (3.609961,

123



432 A. C. J. Luo, H. Ma

Excitation Frequency, 

2.9 3.0 3.1 3.2 3.3

Pe
rio

di
c 

N
od

e 
D

is
pl

ac
em

en
t, 

x m
od

(k
,N

)

0.250

0.375

0.500

0.625

0.750 PDPD

P-4

P-2

P-1
SN PD

(i) 

Excitation Frequency, 

2.9 3.0 3.1 3.2 3.3

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, y

m
od

(k
,N

)

-3.0

-1.5

0.0

1.5

3.0

P-1

P-2

P-4

PDSN PDPD

(ii) 

Ω

Ω

Fig. 4 The third zoomed view of first branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement xmod(k,N ), ii periodic node velocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

3.609964), (4.52, 4.578), (3.23885, 3.24085) and (2.915837,
2.915872). The unstable period-4 motions are in � ∈
(1.996126, 3.558465), (3.558458, 3.609964), (3.609961,
4.52) and (2.915872, 3.23885). The bifurcations are tabu-
lated in Table 3.

4.2 The second bifurcation tree

The second branch of bifurcation trees of period-1 to period-
4 motions are illustrated in Figs. 7–12. The parameters are
same as the first branch of bifurcation trees. The global view
of bifurcation tree is presented in Fig. 7 and other zoomed
views are presented in Figs. 8–12.

Bifurcation trees of period-1 to period-4motions are illus-
trated by the displacement and velocity of periodic nodes
with mod(k, N ) = 0 in Fig. 7. Four branches of period-
2 and period-4 motions have been observed. The solutions
of the second bifurcation trees are asymmetric. There are

Excitation Frequency, 

2.9156 2.9158 2.9160

Pe
rio

di
c 

N
od

e 
D

is
pl

ac
em

en
t, 

x m
od

(k
,N

)

0.32

0.33

0.34

0.35

0.36 PDSN

P-4
P-2

PD

(i) 

Excitation Frequency, 

2.9156 2.9158 2.9160

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, y

m
od

(k
,N

)

-1.956

-1.953

1.840

1.845

P-2
P-4

PDSN PD

(ii) 

Ω

Ω

Fig. 5 The fourth zoomed view of first branch of bifurcation trees
of period-2 to period-4 motions varying with excitation frequency.
i Periodic node displacement xmod(k,N ), ii periodic node velocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

four saddle-node and four period-doubling bifurcations of
period-1 motions. The four saddle-node bifurcations are at
� = 1.102954 ,1.90124, 1.4207, 2.9127. The four period-
doubling bifurcations are at � = 1.102957, 1.87395 and
1.4350, 2.520. The stable period-1 motions are in � ∈
(1.102954, 1.102957), (1.87395,1.90124), (1.4207,1.4350)
and (2.52, 2.9127). The bifurcation trees possess the unsta-
ble period-1 motions in the range of frequency � ∈
(1.102957, 1.87395), (1.4207, 1.90124), (1.4350, 2.520) and
(1.4190, 2.9127). The onsets of period-2 motions are at
the period-doubling bifurcations of period-1 motions. The
stable period-1 motions become unstable at the period-
doubling bifurcations of period-1 motions, which are also
the saddle-node bifurcation points of period-2 motions.
The bifurcation points of asymmetric period-1 motions
are tabulated in Table 4. The second branch of bifurca-
tion trees possesses four branches of period-2 motions.
The eight saddle-node bifurcations are � = 1.102957,
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Fig. 6 The fifth zoomed view of first branch of bifurcation trees
of period-2 to period-4 motions varying with excitation frequency.
i Periodic node displacement xmod(k,N ), ii periodic node velocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

2.109832, 1.552185, 2.520, 1.87395, 1.134039, 2.163203
and 1.4350. The eight period-doubling bifurcations are � =
1.102958, 2.108141, 1.552186, 2.4823, 1.87005, 1.134040,
2.155383 and 1.44518. The stable period-2 motions lie in the
ranges of frequency � ∈ (1.102957, 1.102958), (2.108141,
2.109832), (1.552185, 1.552186), (2.4823, 2.520), (1.87005,
1.87395), (1.134039, 1.134040), (2.155383, 2.163203) and
(1.4350, 1.44518) The unstable period-2 motions are in � ∈
(1.102958, 2.108141), (1.552185, 2.109832), (1.552186,
2.4823), (1.134039, 2.163203), (1.87005, 1.134040),
(2.155383, 1.44518). The bifurcation points are listed in
Table 5.

If the period-doubling bifurcation points of period-2
motions are observed, the period- 4 motions appear. The sta-
ble period-2 motions became unstable at the period-doubling
bifurcation points, which are the saddle-node bifurcation
points of the corresponding period-4motions. For the second
branch of bifurcation trees, there are four branches of period-

Table 1 Bifurcations for asymmetric period-1 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

1st branch 1.99470 SN Yes

1.99595 PD

3.262 PD

3.989 PD

4.946 PD

11.8164 SN

Table 2 Bifurcations for asymmetric period-2 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

1st branch 1.99595 SN Yes

1.99611 PD

4.578 PD

4.946 SN

3.989 SN

4.07176 SN

2.91570 SN

2.91837 PD

3.24085 PD

3.262 SN

Table 3 Bifurcations for asymmetric period-4 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

1st branch 1.996110 SN Yes

1.996126 PD

3.558465 PD

3.558458 SN

3.609964 SN

3.609961 PD

4.520 PD

4.578 SN

3.24085 SN

3.23885 PD

2.915872 PD

2.915837 SN

4 motions. Similarly, period-8 motions can be observed at
the period-doubling bifurcation points of period-4 motions.
The saddle-node bifurcation points of period-4 motions are
at � = 1.102958, 2.108141, 1.44518, 2.155383, 1.134040,
1.87005, 1.552186 and 2.4823.The period-doubling bifurca-
tionpoints are� =1.102959, 2.107731,1.445337, 2.153383,
1.134041, 1.869552, 1.552187 and 2.4783. The stable
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Fig. 7 The global view of second branch of bifurcation trees of period-
1 to period-4 motions varying with excitation frequency. i Periodic
node displacement xmod(k,N ), ii periodic node velocity ymod(k,N ), (Q0 =
30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

period-4 motions are in the ranges of frequency � ∈
(1.102958, 1.102959), (2.107731, 2.108141), (1.552186,
1.552187), (2.4783, 2.4823), (1.445180, 1.448337), (2.1533-
83, 2.155383), (1.134040, 1.134041) and (1.869552, 1.87005).
The unstable ranges of period-4 motions are � ∈ (1.102959,
2.107731), (1.552186, 2.108141), (1.552187, 2.4783),
(1.445337, 2.153383), (1.134040, 2.155383), (1.134041,
1.869552). The bifurcation points of period-4 motions are
listed in Table 6. Through the zoomed views in Figs. 7–11,
the bifurcation trees are clearly presented.

4.3 Symmetric period-2 motions

The symmetric period-2 motion is presented in Fig. 13.
This branch of solution is pure symmetric. The symmetric
period-2 motion only possesses a single saddle-node bifur-
cation point. The saddle-node of symmetric period-2 motion
is � = 7.840. The stable period-2 motion lies in the inter-
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Fig. 8 The first zoomed view of second branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement xmod(k,N ), ii periodic node velocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

val of frequency � ∈ (7.840,∞). The unstable range of
period-2 motion is � ∈ (3.393, 7.840).

5 Frequency–amplitude responses

Once discrete nodes of periodic motions are obtained by the
implicit discrete mappings structures, the harmonic ampli-
tude can be computed by application of the finite Fourier
series. To avoid abundant illustration, only selected har-
monic amplitude curves of displacement are presented. The
picked harmonic amplitude is constant term a(m)

0 , (m =
1, 2, 3, 4) and Ak/m(m = 4, k = 1, 2, 3, 4, . . .). The har-
monic amplitude for symmetric period-2 motion will not
presented because it is very simple in this paper.

The global view of constant terms versus excitation fre-
quency for the first branch of bifurcation trees is presented

123



Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator 435

Excitation Frequency, 

2.107 2.108 2.109 2.110 2.111

Pe
rio

di
c 

N
od

e 
D

is
pl

ac
em

en
t, 

x m
od

(k
,N

)

0.22

0.24

0.76

0.80
SNPD PD

P-2

P-4

(i) 

Excitation Frequency, 

2.107 2.108 2.109 2.110 2.111

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, y

m
od

(k
,N

)

-2.6

-1.6

4.0

4.2

P-2

PD PD

P-4

SN

(ii) 

Ω

Ω

Fig. 9 The second zoomed view of second branch of bifurcation trees
of period-2 to period-4 motions varying with excitation frequency.
i Periodic node displacement x mod (k,N ). ii periodic node velocity
y mod (k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30),mod(k, N ) = 0

in Fig. 14(i). For asymmetric period-1 to period-4 motions,
a(m)
0 �= 0.The maximum value of constant term is a(m)

0 ≈
0.77. For � > 5, the bifurcation trees are simple. The
bifurcation points mainly occur in the range of frequency
� ∈ (1.9, 5). The excitation frequency varies from the
approximate range of� ∈ (1.9, 11.7).Asymmetric period-1
to period-4motions are clearly observed from the bifurcation
trees. For a better illustration of bifurcation trees, the zoomed
view of constant terms versus excitation frequency is pre-
sented in Fig. 14(ii)–(iv). The period-1 to period-2 motions
and period-2 to period-4 motions are observed.

Harmonic amplitude A1/4 versus excitation frequency is
presented in Fig. 14(v). For period-1 and period-2 motions,
we have A1/4 = 0. For period-4 motions, A1/4 �= 0.
The maximum value of the harmonic amplitude is about
A1/4 ≈ 0.16. The period-4 motions exist in the approxi-
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Fig. 10 The third zoomed view of second branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement x mod (k,N ), ii periodic node velocity
y mod (k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30),mod(k, N ) = 0

mate range of frequency� ∈ (1.9, 4.6).Harmonic amplitude
A1/2 versus excitation frequency is presented in Fig. 14(vi).
For period-1 motions, we have A1/2 = 0. For period-2
and period-4 motions, A1/2 �= 0. The maximum value is
about A1/2 ≈ 1.88. Two branches of period-2 motions are
presented in Fig. 14(vi). The period-2 motions lie in the
approximate range of frequency � ∈ (1.9, 5). Harmonic
amplitude A3/4 versus excitation frequency is presented in
Fig. 14(vii). Such a harmonic amplitude is similar to the
harmonic amplitude A1/4. The maximum value is about
A3/4 ≈ 0.14. Fig. 14(viii) shows the harmonic amplitude A1

versus excitation frequency. Such a harmonic amplitude is for
all period-1, period-2, and period-4 motions. The maximum
value is about A1 ≈ 2.4. The zoomed views of harmonic
amplitude A1 are presented in Fig. 14(ix)–(xi). The detailed
bifurcation tree is observed clearly.
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Fig. 11 The fourth zoomed view of second branch of bifurcation
trees of period-2 to period-4 motions varying with excitation fre-
quency. iPeriodic nodedisplacement xmod(k,N ), iiperiodic nodevelocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

To avoid abundant illustrations, only a few primary
harmonic amplitudes are presented to show the harmonic
amplitude variations. Harmonic amplitude A2 is presented
in Fig. 14(xii). The maximum value for this harmonic
amplitude is about A2 ≈ 0.51. Harmonic amplitude A3

versus excitation frequency is presented in Fig. 14(xiii).
The maximum values for this harmonic amplitude is about
A3≈0.14.

To avoid abundant illustration, harmonic amplitudes A4

to A16 is not presented herein. In Fig. 14(xiv), the har-
monic amplitude A17 versus excitation frequency curve is
presented. The harmonic amplitude drops dramatically at the
onset of the bifurcation trees, which is in the approximate
range of excitation frequency � ∈ (1.9, 2.0) . Harmonic
amplitude A69/4 versus excitation frequency is presented
in Fig. 14(xv). The quantity levels for the two branches of
period-4motions are approximate to A69/4 ∼ 9.0×10−9 and
1.4 × 10−8 at excitation frequency � ≈ 3.0, respectively.
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Fig. 12 The fifth zoomed view of second branch of bifurcation trees
of period-1 to period-4 motions varying with excitation frequency.
i Periodic node displacement xmod(k,N ), ii periodic node velocity
ymod(k,N ), (Q0 = 30, δ = 0.1, α = 5, β = 30), mod(k, N ) = 0

Table 4 Bifurcations for asymmetric period-1 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

2nd branch 1.102954 SN Yes

1.102957 PD

1.87395 PD

1.90124 SN

1.4207 SN

1.4350 PD

2.520 PD

2.9127 SN

Harmonic amplitude A35/2 versus excitation frequency is
presented inFig. 14(xvi). Twobifurcation trees fromperiod-2
to period-4 motions are showed in Fig. 14(xvii). The quan-
tity levels of harmonic amplitude for the two branches of
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Table 5 Bifurcations for asymmetric period-2 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

2nd branch 1.102957 SN Yes

1.102958 PD

2.108141 PD

2.109832 SN

1.552185 SN

1.552186 PD

2.4823 PD

2.520 SN

1.87395 SN

1.87005 PD

1.134040 PD

1.134039 SN

2.163203 SN

2.155383 PD

1.44518 PD

1.4350 SN

Table 6 Bifurcations for asymmetric period-4 motions (Q0 = 30, δ =
0.1, α = 5, β = 30)

� Bifurcations Bifurcation tree

2nd branch 1.102958 SN Yes

1.102959 PD

2.107731 PD

2.108141 SN

1.552186 SN

1.552187 PD

2.4783 PD

2.4823 SN

1.44518 SN

1.445337 PD

2.153383 PD

2.155383 SN

1.134040 SN

1.134041 PD

1.869552 PD

1.87005 SN

bifurcation trees are different. For the excitation frequency
� ≈ 3.0, the quantity levels for the two bifurcation trees
are A35/2 ∼ 8.0 × 10−9 and 1.6 × 10−8, respectively.
Harmonic amplitude A71/4 versus excitation frequency is
presented in Fig. 14(xviii). For the excitation frequency
� ≈ 3.0, the quantity levels for the two bifurcation trees
are A71/4 ∼ 4.3 × 10−9 and 6.4 × 10−9, respectively. In
Fig. 14(xvi), the harmonic amplitude A18 versus excitation
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Fig. 13 The global view of bifurcation trees of symmetric period-1 to
period-4motions varyingwith excitation frequency. i Periodic node dis-
placement xmod(k,N ), iiperiodic nodevelocity ymod(k,N ), (Q0 = 30, δ =
0.1, α = 5, β = 30), mod(k, N ) = 0

frequency is presented. The harmonic amplitude drops expo-
nentially at the onset of the bifurcation trees. For the range of
� ∈ (1.99, 1.996) and � ∈ (3.3, 3.7), the harmonic ampli-
tude A18 < 1 × 10−15.

The harmonic frequency–amplitude characteristics of the
second bifurcation trees varying with excitation will be pre-
sented in Fig. 15. Constant terms for such bifurcation trees
versus is presented in Fig. 15(i). The second bifurcation trees
are more complicated than the first one. For asymmetric
period-1 to period-4 motions, a(m)

0 �= 0.The second bifur-
cation tree experiences two branches of period-2 and four
branches of period-4 motions, respectively. The maximum
value of constant term is about a(m)

0 ≈ 0.53. The excitation
frequency is in the approximate range of � ∈ (1.1, 2.9).
For a better illustration of bifurcation trees, the zoomed view
of constant terms versus excitation frequency is presented
in Fig. 15(ii). One branch of bifurcation trees of period-2
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Fig. 14 The frequency–amplitude characteristics of first bifurcation trees of period-1 to period-4 motions varying with excitation frequency. i
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Fig. 14 continued
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Fig. 14 continued

to period-4 motions is observed in the range of frequency
� ∈ (2.10, 2.18).

Harmonic amplitude A1/4 versus excitation frequency is
presented in Fig. 15(iii). For period-1 and period-2 motions,
A1/4 = 0. The maximum value of the harmonic ampli-
tude is about A1/4 ≈ 0.15. The period-4 motions exist in
the range of � ∈ (1.1, 2.48). Harmonic amplitude A1/2

versus excitation frequency is presented in Fig. 15(iv). For
the period-1 motion, A1/2 = 0. The maximum value is
about A1/2 ≈ 0.24 for period-2 and period-4 motions. Two
branches of period-2motions are presented in Fig. 15(v). The
period-2 motions lie in the approximate range of frequency
� ∈ (1.1, 2.5). Harmonic amplitude A3/4 versus excitation
frequency is presented in Fig. 15(v). The maximum value
is about A3/4 ≈ 0.15 for period-4 motion. In Fig. 15(vi),
shown is the harmonic amplitude A1 varying with excita-
tion frequency. The maximum value is about A1 ≈ 0.5 for
period-1, period-2 and period-4 motions. The zoomed view
of the harmonic amplitude in the second bifurcation tree is
in Fig. 15(vii). Harmonic amplitude A2 varying with exci-
tation frequency is presented in Fig. 15(viii). The maximum
value for this harmonic amplitude is about A2 ∼ 1.0. Har-
monic amplitude A3 versus excitation frequency is presented
in Fig. 15(ix). The maximum values for such a harmonic
amplitude is about A3 ≈ 0.64.

To avoid abundant illustration, harmonic amplitudes of
A4 to A23 are not presented herein In Fig. 15(x), harmonic
amplitude A24 versus excitation frequency is presented. The
harmonic amplitude decreases at the onsets of the bifurcation
trees in the range of � ∈ (1.1, 1.15). Harmonic amplitude
A97/4 versus excitation frequency is presented in Fig. 15(xi).
Themaximumquantity level for the four branches of period-4
motions is about A97/4 ∼ 1.7 × 10−5. Harmonic ampli-
tude A49/2 varying with excitation frequency is presented

in Fig. 15(xii). The maximum quantity level for the two
branches of period-2 motions is about A49/2 ∼ 3.2 × 10−5.
Harmonic amplitude A99/4 versus excitation frequency is
presented in Fig. 15(xiii). The maximum quantity level of
A99/4 ∼ 1.4 × 10−5 is for the four branches of period-
4 motions. In Fig. 15(xiv), harmonic amplitude A25 versus
excitation frequency is presented. The harmonic amplitude
drops at the onset of the bifurcation trees. For the range of
� ∈ (1.10, 1.11) and� ∈ (1.40, 1.42), the harmonic ampli-
tude of A25 < 1×10−15 is observed. For more accuracy, the
more harmonic terms in the expression of periodic motions
should be included.

6 Sampled illustrations

In this section, comparison of numerical and analytical solu-
tions of periodic motions for a parametric Duffing oscillator
is presented. The initial conditions for numerical simula-
tion are obtained from analytical predictions. The black solid
curves represent numerical simulation result whilewhite hol-
low symbols are analytical results. The initial conditions are
represented by green circular symbols. To show effects of
harmonic amplitudes of periodic motions, harmonic ampli-
tudes versus harmonic orders are presented herein. For a
pair of asymmetric periodic motions, harmonic phases for
left asymmetric periodic motions are represented by gray
circles while the right asymmetric periodic motions are red
circles.

6.1 Symmetric period-2 motion

For � = 8.5, the trajectory for a symmetric period-2 motion
is showed in Fig. 16(i). The time histories of displacement
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Fig. 15 The frequency–amplitude characteristics of second bifurcation tree of period-1 to period-4 motions varying with excitation frequency.
i a(m)

0 (m = 4), ii–xiii Ak/m (k = 1, 2, 3, 4, 8, 96, . . . , 99, 100)(Q0 = 30, δ = 0.1, α = 5, β = 30) mod (k, N ) = 0
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Fig. 15 continued
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Fig. 16 Stable symmetric period-2 motion (� = 8.5). i Trajectory, ii displacement, iii velocity, iv harmonic amplitudes, v harmonic phases. Initial
conditions (x0 ≈ −0.010513, ẋ0 ≈ 5.536104). (Q0 = 30, δ = 0.1, α = 5, β = 30)

and velocity are presented in Fig. 16(ii), (iii), respectively.
Harmonic amplitude is presented in Fig. 16(iv). The ini-
tial conditions (x0 ≈ −0.010513, ẋ0 ≈ 5.536104) are
obtained from analytical prediction. The constant term is

for A0 = a(2)
0 = 0. The selected harmonic amplitudes are

A1/2 ≈ 1.1279, A3/2 ≈ 0.0617, A5/2 ≈ 1.9123e-3, A7/2 ≈
9.3468e-5, A9/2 ≈ 3.7946e-6, A11/2 ≈ 1.5804e-7, A13/2 ≈
6.6735e-9, A15/2 ≈ 2.7338e-10, A17/2 ≈ 1.1673e-11,
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A19/2 ≈ 4.7600e-13, A21/2 ≈ 2.0472e-14. Other har-
monic amplitudes are A2l/2 = Al = 0 (l = 1, 2, 3, . . .).
The harmonic amplitude decreases with increasing har-
monic order. In Fig. 16(v), harmonic phases are presented.
ϕ1/2 ≈ 1.5824,ϕ3/2 ≈ 1.5290,ϕ5/2 ≈ 4.7275,ϕ7/2 ≈
4.5935,ϕ9/2 ≈ 1.5856,ϕ11/2 ≈ 1.3786,ϕ13/2 ≈ 4.7310,
ϕ15/2 ≈ 4.4494,ϕ17/2 ≈ 1.5929,ϕ19/2 ≈ 1.2379, and
ϕ21/2 ≈ 4.7372.The symmetric period-2motion needs about
21 terms to get an approximate analytical expression by the
finite Fourier series. This is a traditional (1:2) periodicmotion
through perturbation method with one harmonic term. The
rough analytical solution can use two harmonic terms to
express the period-2 motion.

6.2 Asymmetric periodic motion on the first bifurcation
trees

For � = 5.265, the trajectory of a pair of asymmetric
period-1 motions are presented in Fig. 17(i), (ii), respec-
tively. The two asymmetric period-1 motions experience
one cycle for the two trajectories. To reduce abundant
illustrations, the time-histories of displacement and veloc-
ity will not be presented hereafter. Harmonic amplitudes
and phases are presented in Fig. 17(iii), (iv), respectively.
From the analytical prediction, the initial condition (x0 ≈
0.781730, ẋ0 ≈ 0.194175) for the left asymmetric period-
1 motion is obtained. Similarly, the initial condition (x0 ≈
−0.781730, ẋ0 ≈ −0.194175) is for the right asymmetric
period-1 motion. The paired asymmetric period-1 motions
have the same magnitudes. The constant term is A0 = aR

0 =
−aL0 ≈ 0.5867. The main harmonic amplitudes are A1 ≈
1.0104, A2 ≈ 0.0269, A3 ≈ 0.0393, A4 ≈ 9.0195e-4.
Other harmonic amplitudes are in Al ∈ (10−15, 10−4)(l =
5, 6, . . . , 22) with A22 ≈ 1.1917e-15. The first harmonic
term of A1 is very important for such period-1 motion. The
asymmetric period-1 motion needs about 22 terms to get an
approximate analytical expression by finite Fourier series.
The relations of harmonic phase of the pair of asymmet-
ric period-1 motions are ϕL

k = mod(ϕR
k + π, 2π). Three

harmonic terms in the Fourier series can give an acceptable
analytical solution of such asymmetric period-1 motions.

On the same bifurcation tree, after period-doubling bifur-
cation, the asymmetric period-2 motion will be obtained.
For � = 4.60, the trajectories of the paired left and right
asymmetric period-2 motions are presented in Fig. 18(i),
(ii), respectively. In Fig. 18(iii), (iv), harmonic amplitude
and phase distributions are presented. The initial condi-
tions (x0 ≈ 0.908633, ẋ0 ≈ 0.347649) and (x0 ≈
−0.908633, ẋ0 ≈ −0.347649) are obtained from ana-
lytical prediction. The constant term is A0 = a(2)R

0 =
−a(2)L

0 ≈ 0.5941. The main harmonic amplitudes are
A1/2 ≈ 0.0791, A1 ≈ 0.7720, A3/2 ≈ 0.3522, A2 ≈

0.1403, A5/2 ≈ 0.0193, A3 ≈ 1.8867e-3. Other harmonic
amplitudes are in the interval of Al/2 ∈ (10−14, 10−3)(l =
7, 8, . . . , 48) with A24 ≈ 2.4033e-14. The harmonic terms
of Al/2 (l = 2, 3, 4) play important roles in two asymmet-
ric period-2 motions. The relations of harmonic phase of this
pair of period-2motions areϕL

k/2 = mod (ϕR
k/2+π, 2π). The

asymmetric period-2 motion needs about 48 terms to get an
approximate analytical expression by finite Fourier series.
The rough analytical solutions of the period-2 motions can
use 5 harmonic terms plus a constant to express.

On the same bifurcation tree. A pair of asymmetric period-
4 motions for � = 4.576, are presented in Fig. 19. In
Fig. 19(i), (ii), the trajectories of the left and right asym-
metric period-4 motion are presented. Harmonic amplitude
and phase distributions are presented in Fig. 19(iii), (iv),
respectively. The initial conditions (x0 ≈ 0.918978, ẋ0 ≈
0.471648) and (x0 ≈ −0.918978, ẋ0 ≈ −0.471648) are
obtained from analytical prediction. The constant term is
A0 = a(4)R

0 = −a(4)L
0 ≈ 0.5922. The main harmonic

amplitudes are A1/4 ≈ 5.5231e-3, A1/2 ≈ 0.0813, A3/4 ≈
0.0149, A1 ≈ 0.7611, A5/4 ≈ 0.0122, A3/2 ≈ 0.3593,
A7/4 ≈ 7.4385e-3, A2 ≈ 0.1462, A9/4 ≈ 4.3680e-3,
A5/2 ≈ 0.0177, A11/4 ≈ 1.5081e-3, A3 ≈ 2.0663e-3.
Other harmonic amplitudes are in Al/4 ∈ (10−14, 10−3)(l =
13, 14, . . . , 96) with A24 ≈ 3.0248e-14. The harmonic
terms of Al/2 (l = 2, 3, 4) still play important roles in
two asymmetric period-4 motions. The relations of har-
monic phase of this pair of period-4 motions are ϕL

k/4 =
mod(ϕR

k/4 + π, 2π). The analytical expression of the two
asymmetric period-4 motions can use 96 harmonic terms
to express. The approximate expression of such periodic
motions canuse 12harmonic terms in thefinite Fourier series.

On the first bifurcation tree, there are multiple bifurcation
branches. The trajectories of a pair of asymmetric period-
1 motions for � = 1.99595 are presented in Fig. 20(i),
(ii), respectively. Harmonic amplitude and phase distribu-
tions are presented in Fig. 20(iii), (iv), respectively. The
initial conditions (x0 ≈ 0.025705, ẋ0 ≈ −1.248546e-3) and
(x0 ≈ −0.025705, ẋ0 ≈ 1.248546e-3) for the two asymmet-
ric period-1 motions are obtained from analytical prediction.
The trajectories of asymmetric period-1 motions have two
cycles, compared with the one cycle period-1 motions. The
asymmetry of the paired period-1 motions can be observed.
The constant term is A0 = aR

0 = −aL0 ≈ 0.0186. The
main harmonic amplitudes are A1 ≈ 3.1997e-3, A2 ≈
0.0184, A3 ≈ 0.0103 and A4 ≈ 2.7366e-3. Other harmonic
amplitudes are in Al ∈ (10−15, 10−4)(l = 5, 6, . . . 20) with
A20 ≈ 2.3436e-15. The harmonic terms of Al (l = 2, 3)
play important roles in two asymmetric period-1 motions.
The asymmetric period-1 motion needs about 20 terms to
get an approximate analytical expression by finite Fourier
series. The relations of harmonic phase of this pair of period-
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Fig. 17 Stable asymmetric period-1 motion (� = 5.265). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions x0 ≈ 0.781730, ẋ0 ≈ 0.194175 and x0 ≈ −0.781730, , ẋ0 ≈ −0.194175 (Q0 = 30, δ = 0.1, α = 5, β = 30)

1 motions are ϕL
k = mod(ϕR

k + π, 2π). The four harmonic
terms can be used to determine the analytical expression of
asymmetric period-1 motions.

On the same sub-branch of bifurcation tree, the period-1
motion with � = 1.99609 is considered, and the trajecto-
ries of a pair of asymmetric period-2 motions are presented
in Fig. 21(i), (ii). The corresponding harmonic amplitude
and phase distributions are presented in Fig. 21(iii), (iv).
The initial conditions (x0 ≈ 0.030354, ẋ0 ≈ −1.5026e-3)
and (x0 ≈ −0.030354, ẋ0 ≈ 1.5026e-3) for the paired
asymmetric period-2 motions are analytical predicted. The
four cycles of trajectories of the paired period-2 motions
are observed, which are doubled from the two cycles of
the trajectories of period-1 motion. The constant term is
A0 = a(2)R

0 = −a(2)L
0 ≈ 0.0189. The main harmonic

amplitudes are A1/2 ≈ 1.9132e-3, A1 ≈ 3.2548e-3, A3/2 ≈
2.4284e-3, A2 ≈ 0.0187, A5/2 ≈ 2.5442e-3, A3 ≈ 0.0104.
Other harmonic amplitudes are in the interval of Al/2 ∈
(10−15, 10−3)(l = 7, 8, . . . 40) with A20 ≈ 3.2308e-15.

The asymmetric period-2 motion needs about 40 terms to
get an approximate analytical expression by finite Fourier
series. The relations of harmonic phase of this pair of period-
2 motions are ϕL

k = mod(ϕR
k + π, 2π) .

On the same bifurcation tree, the trajectories of left
and right asymmetric period-4 motions are presented for
� = 1.996104 in Fig. 22(i), (ii), respectively. The ini-
tial conditions from the analytical prediction are (x0 ≈
0.030609, ẋ0 ≈ −4.810879e-3) and (x0 ≈ −0.030609, ẋ0
≈ 4.810879e-3). Harmonic amplitude and phase distribu-
tions are presented in Fig. 22(iii), (iv). The constant term
is a0 ≈ 0.0189. Only the four cycles for the trajectories of
period-4 motions are observed. The main harmonic ampli-
tudes are A1/4 ≈ 3.9723e-9, A1/2 ≈ 2.0122e-3, A3/4 ≈
1.0844e-9, A1 ≈ 3.2595e-3, A5/4 ≈ 2.3410e-9, A3/2 ≈
2.5540e-3, A7/4 ≈ 4.1711e-9, A2 ≈ 0.0187, A5/4 ≈
4.1573e-9, A5/2 ≈ 2.6759e-3, A7/4 ≈ 3.0619e-9, A3 ≈
0.0105. Other harmonic amplitudes are in the interval of
Al/4 ∈ (10−15, 10−3)(l = 13, 14, . . . , 80) . Harmonic
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Fig. 18 Stable asymmetric period-2 motion (� = 4.60). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases. Initial
conditions (x0 ≈ 0.908633, ẋ0 ≈ 0.347649) and (x0 ≈ −0.908633, ẋ0 ≈ −0.347649) (Q0 = 30, δ = 0.1, α = 5, β = 30)

amplitude A20 ≈ 3.3245e-15. Since the effects of har-
monic amplitude Al/4, (l = 1, 5, 7, . . .) are very small, the
trajectory of this asymmetric period-4 motion and the corre-
sponding period-2 motion are very close to each other. The
relations of harmonic phase are ϕL

k/4 = mod (ϕR
k/4 +π, 2π).

The 12 harmonic terms can be used for the approximate ana-
lytical expressions of such paired period-4 motions.

On the such bifurcation tree, there are two period-2motion
bifurcation trees without period-1 motions. Consider the
complex asymmetric period-2 motion at � = 2.9158, the
trajectories of a pair of asymmetric period-2 motions are
presented in Fig. 23(i), (ii). Harmonic amplitude and phase
distributions are presented in Fig. 23(iii), (iv). The trajecto-
ries of the paired period-2 motions have three cycles rather
than two cycles and four cycles. The constant term is A0 =
a(2)R
0 = −a(2)L

0 ≈ 0.5394. The main harmonic amplitudes
are A1/2 ≈ 0.1797, A1 ≈ 0.3937, A3/2 ≈ 0.3315, A2 ≈
0.1568, A5/2 ≈ 0.0716, A3 ≈ 0.0542, A7/2 ≈ 0.0115, A4 ≈
5.2709e-3. Other harmonic amplitudes are in Al/2 ∈

(10−15, 10−3)(l = 9, 10, . . . , 56) with A28 ≈ 1.3600e-15.
The harmonic terms of A1 and A3/2 play the most important
role on the two asymmetric period-2motions. In addition, the
harmonic terms of A1/2 and A2 are also important to change
the trajectories. The asymmetric period-2motion needs about
56 terms to get an approximate analytical expression by finite
Fourier series. The relations of harmonic phase of this pair
of period-2 motions are ϕL

k/2 = mod(ϕR
k/2 + π, 2π).

On the sub-bifurcation tree with period-1 motion, � =
2.91587 is considered, and the corresponding trajectories
of a pair of asymmetric period-4 motions are presented in
Fig. 24(i), (ii). Harmonic amplitude and phase distributions
are presented in Fig. 24(iii), (iv). The initial conditions (x0 ≈
0.346939, ẋ0 ≈ 1.842291) and (x0 ≈ −0.346939, ẋ0 ≈
−1.842291) are obtained from analytical prediction. The
constant term is A0 = a(4)R

0 = −a(4)L
0 ≈ 0.5397. The

main harmonic amplitudes are A1/4 ≈ 6.1734e-4, A1/2 ≈
0.1797, A3/4 ≈ 7.7205e-6, A1 ≈ 0.3938, A5/4 ≈
3.3498e-4, A3/2 ≈ 0.3314, A7/4 ≈ 1.3875e-3, A2 ≈
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Fig. 19 Stable asymmetric period-4 motion (� = 4.576). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.918978, ẋ0 ≈ 0.471648) and (x0 ≈ −0.918978, ẋ0 ≈ −0.471648) (Q0 = 30, δ = 0.1, α = 5, β = 30)

0.1573, A9/4 ≈ 1.1294e-3, A5/2 ≈ 0.0717, A11/4 ≈
3.4317e-5, A3 ≈ 0.0542, A9/4 ≈ 1.2517e-4, A5/2 ≈
0.0115, A11/4 ≈ 1.7765e-4, and A4 ≈ 5.3041e-3,Other har-
monic amplitudes are in the interval of Al/4 ∈ (10−15, 10−3)

(l = 13, 14, . . . , 56) with A14 ≈ 1.3620e-15. The asym-
metric period-4 motion needs about 112 terms to get an
approximate analytical expression by finite Fourier series.
The relations of harmonic phase of this pair of period-
4 motions are ϕL

k/4 = mod(ϕR
k/4 + π, 2π). The harmonic

terms of Ak/4 with mod(k, 2) �= 0 and mod(k, 4) �=0 have
very small effects on the period-4 motions.

6.3 Asymmetric motions on the second bifurcation tree

The second branch of bifurcation tree possesses asymmetric
period-1 to period-4motions in the interval of� ∈ (1.1, 2.9).
Two branches of period-2 and four branches of period-4
motions have been observed in the second branch of bifurca-
tion trees. Comparedwith the first branch of bifurcation trees,
the second branch of bifurcation trees possesses more com-

plicated periodic motions. The initial points are represented
by green solid circle and I.C. represents initial conditions.

Consider a pair of asymmetric period-1 motions at � =
2.7, the trajectories for two paired trajectories are presented
inFig. 25(i), (ii).Harmonic amplitude andphase distributions
are presented in Fig. 25(iii), (iv), respectively. The initial
conditions (x0 ≈ 0.610248, ẋ0 ≈ −2.607625) and (x0 ≈
−0.610248, ẋ0 ≈ 2.607625) for the two paired asymmet-
ric period-1 motions are obtained from analytical prediction.
Such asymmetric period-1 motions have two large cycles.
The second harmonic term plays important role in such peri-
odic motions. The two paired asymmetric period-1 motions
have the same harmonic amplitude. The constant term is
A0 = a0 ≈ 0.1527.Themain harmonic amplitudes are A1 ≈
0.4053, A2 ≈ 0.9126, A3 ≈ 0.2101, A4 ≈ 0.0923, A5 ≈
0.0450, A6 ≈ 0.0171. Other harmonic amplitudes are in
the interval of Al ∈ (10−15, 10−2)(l = 7, 8, . . . , 45) with
A45 ≈ 1.9000e-15. The asymmetric period-1 motion needs
about 45 terms to get an approximate analytical expression
by finite Fourier series. The main effects on the period-1

123



448 A. C. J. Luo, H. Ma

Displacement, x
-0.04 -0.02 0.00 0.02 0.04

V
el

oc
ity

, y

-0.2

-0.1

0.0

0.1

0.2

I.C.

(i) 
Displacement, x

-0.04 -0.02 0.00 0.02 0.04

V
el

oc
ity

, y

-0.2

-0.1

0.0

0.1

0.2

I.C.

(ii) 

Harmonic Order, k
0.0 5.0 10.0 15.0 20.0

H
am

on
ic

 A
m

pl
itu

de
, A

k

1.0e+1

1.0e-3

1.0e-7

1.0e-11

1.0e-15

A0

A20

(iii) 
Harmonic order, k

0.0 5.0 10.0 15.0 20.0

H
ar

m
on

ic
 P

ha
se

, 

(iv) 

Fig. 20 Stable asymmetric period-1 motion (� = 1.99595): i trajectory (left), ii trajectory (right), iii harmonic amplitude, iv harmonic phase.
Initial conditions (x0 ≈ 0.025705, ẋ0 ≈ −1.248546e−3) and (x0 ≈ −0.025705, ẋ0 ≈ 1.248546e−3). (Q0 = 30, δ = 0.1, α = 5, β = 30)

motions are from the harmonic terms of A2, A1 and A3. The
relations of harmonic phase of the paired asymmetric period-
1 motions are given by ϕL

k = mod(ϕR
k + π, 2π) .

Consider a pair of asymmetric period-2 motions at � =
2.516, the trajectories for two paired trajectories of the
asymmetric period-2 motions are presented in Fig. 26(i),
(ii). The corresponding harmonic amplitudes and phases
are presented in Fig. 26(iii), (iv), respectively. The initial
conditions (x0 ≈ 0.723750, ẋ0 ≈ 0.530036) and (x0 ≈
−0.723750, ẋ0 ≈ −0.530036) for two paired asymmetric
period-2 motions are also obtained from the analytical pre-
diction. Such asymmetric period-2 motions have two large
cycles. The two paired asymmetric period-1 motions have
the same harmonic amplitude. The constant term is A0 =
a(2)R
0 = −a(2)L

0 ≈ 0.1861. The main harmonic amplitudes
are A1/2 ≈ 0.0169, A1 ≈ 0.4166, A3/2 ≈ 0.0507, A2 ≈
0.8117, A5/2 ≈ 0.0639, A3 ≈ 0.1859, A7/2 ≈ 0.0153, A4 ≈
0.1023, A9/2 ≈ 0.0189, A5 ≈ 0.0381, A11/2 ≈ 0.0189,
and A6 ≈ 0.0117. Other harmonic amplitudes are in the

interval of Al/2 ∈ (10−15, 10−2)(l = 13, 14, . . . , 90) with
A45 ≈ 2.3000e-15.Themain effects on the period-2motions
are also from the harmonic terms of A2, A1 and A3. The
asymmetric period-2 motion needs about 90 terms to get an
approximate analytical expression by finite Fourier series.
The relations of harmonic phase of the paired asymmetric
period-1 motions are given by ϕL

k/2 = mod(ϕR
k/2 + π, 2π) .

Consider a pair of asymmetric period-4 motions at � =
2.4803, and the trajectories for two paired trajectories of
the asymmetric period-4 motions are presented in Fig. 27(i),
(ii). The corresponding harmonic amplitudes and phases
are presented in Fig. 27(iii), (iv), respectively. The initial
conditions (x0 ≈ 0.658462, ẋ0 ≈ 0.527202) and (x0 ≈
−0.658462, ẋ0 ≈ −0.527202) for two paired asymmetric
period-4 motions are obtained from the analytical predic-
tion. Such asymmetric period-4 motions have eight large
cycles. The second harmonic term plays important role in
such periodic motions. The two paired asymmetric period-
1 motion have the same harmonic amplitude. The constant
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Fig. 21 Stable asymmetric period-2 motion (� = 1.99609): i trajectory (left), ii trajectory (right), iii harmonic amplitude, iv harmonic phase.
Initial conditions (x0 ≈ 0.030354, ẋ0 ≈ −1.502572e-3) and (x0 ≈ −0.030354, ẋ0 ≈ 1.502572e-3). (Q0 = 30, δ = 0.1, α = 5, β = 30)

term is A0 = a(4)R
0 = −a(4)L

0 ≈ 0.1851.Themain harmonic
amplitudes are A1/4 ≈ 1.7731e-3, A1/2 ≈ 0.0473, A3/4 ≈
9.7882e-3, A1 ≈ 0.4061, A5/4 ≈ 9.0097e-3, A3/2 ≈
0.1397, A7/4 ≈ 0.0187, A2 ≈ 0.7611, A9/4 ≈ 0.0167,
A5/2 ≈ 0.1735, A11/4 ≈ 0.0144, A3 ≈ 0.2152, A13/4 ≈
7.9782e-3, A7/2 ≈ 0.0353, A15/4 ≈ 5.8061e-3, A4 ≈
0.0834, A17/4 ≈ 2.5797e-3, A9/2 ≈ 0.0456, A19/4 ≈
5.1039e-3, A5 ≈ 0.0181, A21/4 ≈ 2.0830e-3, A11/2 ≈
0.0255, A23/4 ≈ 2.9280e-3, A6 ≈ 3.1804e-4, A25/4 ≈
1.7848e-3, A13/2 ≈ 0.0100. Other harmonic amplitudes are
in the interval of Al/4 ∈ (10−15, 10−2)(l = 27, 28, . . . , 220)
with A45 ≈ 1.8000e-15. Because the main effects on
the period-2 motions are also from the harmonic terms
of A2, A1 and A3, the period-4 motions are similar to the
period-2 and period-1 motions on the same bifurcation trees.
The asymmetric period-1 motion needs about 220 terms to
get an approximate analytical expression by finite Fourier
series. However, the harmonic phases are different. The rela-

tions of harmonic phase of the paired asymmetric period-1
motions are given by ϕL

k/4 = mod(ϕR
k/4 + π, 2π).

Consider another pair of asymmetric period-1 motions
with smaller � = 1.90122, and the corresponding tra-
jectories for the paired asymmetric period-1 motions are
presented in Fig. 28(i), (ii). Harmonic amplitude and phase
are presented in Fig. 28(iii), (iv), respectively. The initial
conditions (x0 ≈ 0.610248, ẋ0 ≈ −2.607625) and (x0 ≈
−0.610248, ẋ0 ≈ 2.607625) for this pair of asymmetric
period-1 motions are obtained from analytical prediction.
The trajectories of the two paired asymmetric periodic
motions experience two large cycles and one small cycles.
The constant term is A0 = aR

0 = −aL0 ≈ 0.5184. The main
harmonic amplitudes are A1 ≈ 0.4786, A2 ≈ 0.1470, A3 ≈
0.6217, A4 ≈ 0.1325, A5 ≈ 0.0456, A6 ≈ 0.0286 and
A7 ≈ 0.0197. Other harmonic amplitudes are in Al ∈
(10−14, 10−3)(l = 8, 9, . . . , 50) with A50 ≈ 1.1810e-14.
The asymmetric period-1 motions are mainly determined by
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Fig. 24 Stable asymmetric period-4 motion (� = 2.91587). i Trajectory (left). ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions(x0 ≈ 0.346939, ẋ0 ≈ 1.842291) and (x0 ≈ −0.346939, ẋ0 ≈ −1.842291). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 25 Stable asymmetric period-1 motion (� = 2.7). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases. Initial
conditions (x0 ≈ 0.837291, ẋ0 ≈ 1.541319) and (x0 ≈ −0.837291, ẋ0 ≈ −1.541319). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 26 Stable asymmetric period-1 motion (� = 2.516). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.723750, ẋ0 ≈ 0.530036) and (x0 ≈ −0.723750, ẋ0 ≈ −0.530036). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 27 Stable asymmetric period-1 motion (� = 2.4803). i Trajectory (left), ii trajectory (right), iii harmonic amplitude, iv harmonic phase.
Initial conditions (x0 ≈ 0.658462, ẋ0 ≈ 0.527202) and (x0 ≈ −0.658462, ẋ0 ≈ −0.527202). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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the harmonic terms of A3, A1, A2 and A4. The asymmetric
period-1 motion needs about 50 terms to get an approximate
analytical expression by finite Fourier series. The relations
of harmonic phases of this pair of period-1 motions are
ϕL
k = mod(ϕR

k + π, 2π).
For � = 1.873052, the trajectories, harmonic ampli-

tudes and phase of a pair of asymmetric period-2 motions
are presented in Fig. 29. The initial conditions (x0 ≈
0.681983, ẋ0 ≈ −2.031983) and (x0 ≈ −0.681983, ẋ0 ≈
2.031983) for the paired asymmetric period-2 motions are
obtained from analytical prediction. The trajectories of the
paired period-2 motions have the six cycles. The constant
term is A0 = a(2)R

0 = −a(2)L
0 ≈ 0.4936.Themain harmonic

amplitudes are A1/2 ≈ 6.9424e-3, A1 ≈ 0.4286, A3/2 ≈
0.0197, A2 ≈ 0.0727, A5/2 ≈ 0.0227, A3 ≈ 0.6383, A7/2 ≈
0.0280, A4 ≈ 0.1872, A9/2 ≈ 1.4866e-3, A5 ≈ 0.0324,
A11/2 ≈ 3.7601e-3, A6 ≈ 0.0343, A13/2 ≈ 2.6339e-3,
and A7 ≈ 0.0132. Other harmonic amplitudes are in
Al/2 ∈ (10−14, 10−3)(l = 15, 16, . . . , 100) with A50 ≈
1.8888e-14. The asymmetric period-2 motions are still
mainly determined by the harmonic terms of A3, A1, A4 and
A2. The asymmetric period-2 motion needs about 100 terms
to get an approximate analytical expression by finite Fourier
series. The relations of harmonic phase of this pair of period-
2 motions are ϕL

k = mod(ϕR
k + π, 2π).

For � = 1.873052, The trajectories, harmonic ampli-
tudes and phases for a pair of asymmetric period-4 motions
are presented in Fig. 30 with initial conditions (x0 ≈
0.693702, ẋ0 ≈ −1.839290) and (x0 ≈ −0.693702, ẋ0 ≈
1.839290). The paired period-4 motions have 12 cycles
for phase trajectory. The constant term is A0 = a(4)R

0 =
−a(4)L

0 ≈ 0.4925. The main harmonic amplitudes are
A1/4 ≈ 1.3062e-3, A1/2 ≈ 0.0141, A3/4 ≈ 1.3826e-3, A1

≈ 0.4269, A5/4 ≈ 3.5668e-3, A3/2 ≈ 0.0399, A7/4 ≈
4.7811e-3, A2 ≈ 0.0717, A9/4 ≈ 3.5498e-3, A5/2 ≈
0.0456, A11/4 ≈ 7.1946e-3, A3 ≈ 0.6328, A13/4 ≈
5.0205e-3, A7/2 ≈ 0.0565, A15/4 ≈ 5.6333e-3, A4 ≈
0.1870, A17/4 ≈ 4.0999e-4, A9/2 ≈ 2.8431e-3, A19/4 ≈
8.9165e-4, A5 ≈ 0.0326, A21/4 ≈ 7.8678e-4, A11/2 ≈
7.5104e-3, A23/4 ≈ 1.2025e-3, A6 ≈ 0.0332, A25/4 ≈
4.7468e-4, A13/2 ≈ 5.2392e-3, A27/4 ≈ 5.3030e-4, A7 ≈
0.0125. Other harmonic amplitudes are in Al/4 ∈ (10−14,

10−3)(l = 29, 30, . . . 200) with A50 ≈ 1.3299e-14. The
asymmetric period-4 motions are also mainly determined
by the harmonic terms of A3, A1, A4 and A2. The asym-
metric period-4 motion needs about 200 terms to get an
approximate analytical expression by finite Fourier series.
The relations of harmonic phase of this pair of period-4
motions are ϕL

k/4 = mod(ϕR
k/4 + π, 2π) .

Consider a pair of asymmetric period-1 motions at � =
1.4208, and the corresponding trajectories and harmonic
amplitudes and phases are presented in Fig. 31. The initial

conditions (x0 ≈ 0.059049, ẋ0 ≈ −0.069673) and (x0 ≈
−0.059049, ẋ0 ≈ 0.069673) for the right and left asymmet-
ric period-1 motions are obtained from analytical prediction.
The two paired period-1 motions are very asymmetric. The
constant term is A0 = aR

0 = −aL0 ≈ 0.4120. The main
harmonic amplitudes are A1 ≈ 0.3682, A2 ≈ 0.2451, A3 ≈
0.1235, A4 ≈ 0.1265, A5 ≈ 0.0563, A6 ≈ 0.0423, A7 ≈
0.0248, A8 ≈ 0.0156. Other harmonic amplitudes are in
the interval of Al ∈ (10−15, 10−3)(l = 9, 10, . . . , 68) with
A68 ≈ 4.4420e-15. The most contributions of harmonic
terms on the period-1 motions are the first, second, third and
fourth harmonic terms. The two paired asymmetric period-1
motions need about 68 terms to get an approximate ana-
lytical expression by finite Fourier series. The relations of
harmonic phase of this pair of period-1 motions are ϕL

k =
mod(ϕR

k + π, 2π).
On the same bifurcation trees, � = 1.443083 is con-

sidered for a pair of asymmetric period-2 motions. The
corresponding trajectories, harmonic amplitudes and phases
are presented in Fig. 32. The initial conditions (x0 ≈
0.064165, ẋ0 ≈ 0.391496) and (x0 ≈ −0.064165, ẋ0 ≈
−0.391496) for the paired asymmetric period-2 motions are
obtained from the analytical prediction. The doubled trajec-
tory of the period-1 motion become the trajectory of the
asymmetric period-2 motion. The constant term is A0 =
a(2)R
0 = −a(2)L

0 ≈ 0.4177. The main harmonic amplitudes
are A1/2 ≈ 0.0347, A1 ≈ 0.3742, A3/2 ≈ 0.0222, A2 ≈
0.2476, A5/2 ≈ 0.0369, A3 ≈ 0.1172, A7/2 ≈ 0.0373, A4 ≈
0.1263, A9/2 ≈ 0.0188, A5 ≈ 0.0539, A11/2 ≈ 4.2620e-3,
A6 ≈ 0.0407, A13/2 ≈ 1.7209e-3, A7 ≈ 0.0236, A15/2 ≈
7.2592e-4 and A7 ≈ 0.0147. Other harmonic amplitudes
are in Al/2 ∈ (10−15, 10−3)(l = 17, 18, . . . , 136) with
A68 ≈ 2.3866e-15. The most contributions of harmonic
terms on the period-2 motions are also the first, second,
third and fourth harmonic terms. The contributions of Al

(mod(l, 2) �= 0) on the period-2 motion are not very small.
So the trajectory difference between period-1 and period-2
motions can be observed clearly. The asymmetric period-2
motion needs about 136 terms to get an approximate ana-
lytical expression. The harmonic phases of the two period-2
motions satisfy ϕL

k/2 = mod(ϕR
k/2 + π, 2π).

On the same bifurcation tree, � = 1.445237 is consid-
ered for a pair of asymmetric period-4motions are presented.
The corresponding trajectories, harmonic amplitudes and
phases are presented in Fig. 33. The initial conditions (x0 ≈
0.064293, ẋ0 ≈ 0.364504) and (x0 ≈ −0.064293, ẋ0 ≈
−0.364504) for the paired two asymmetric period-4 motions
are obtained from the analytical prediction. The constant term
is A0 = a(4)R

0 = −a(4)L
0 ≈ 0.4178. The main harmonic

amplitudes are A1/4 ≈ 4.0681e-4, A1/2 ≈ 0.0374, A3/4 ≈
7.7298e-4, A1 ≈ 0.3746, A5/4 ≈ 5.8643e-4, A3/2 ≈
0.0239, A7/4 ≈ 2.4921e-4, A2 ≈ 0.2480, A9/4 ≈
3.6485e-4, A5/2 ≈ 0.0398, A11/4 ≈ 9.8609e-4, A3 ≈
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Fig. 28 Stable asymmetric period-1 motion (� = 1.90122). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.610248, ẋ0 ≈ −2.607625) and (x0 ≈ −0.610248, ẋ0 ≈ 2.607625). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 29 Stable asymmetric period-2 motion (� = 1.873052). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.681983, ẋ0 ≈ −2.031983) and (x0 ≈ −0.681983, ẋ0 ≈ 2.031983) (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 30 Stable asymmetric period-4 motion (� = 1.869652). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.693702, ẋ0 ≈ −1.839290) and (x0 ≈ −0.693702, ẋ0 ≈ 1.839290). (Q0 = 30, δ = 0.1, α = 5, β = 30)

Displacement, x
-0.3 0.2 0.7 1.2 1.7

V
el

oc
ity

, y

-3.0

-1.5

0.0

1.5

3.0

I.C.

(i) 
Displacement, x

-1.7 -1.2 -0.7 -0.2 0.3

V
el

oc
ity

, y

-3.0

-1.5

0.0

1.5

3.0

I.C.

(ii) 

Harmonic Order, k
0.0 17.0 34.0 51.0 68.0

H
am

on
ic

 A
m

pl
itu

de
, A

k

1.0e+1

1.0e-3

1.0e-7

1.0e-11

1.0e-15

A0

A68

A1

(iii) 

Harmonic order, k
0.0 17.0 34.0 51.0 68.0

H
ar

m
on

ic
 P

ha
se

,

(iv) 

Fig. 31 Stable asymmetric period-1 motion (� = 1.4208). i Trajectory (left), ii trajectory (right, iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.059049, ẋ0 ≈ −0.069673) and (x0 ≈ −0.059049, ẋ0 ≈ 0.069673). (Q0 = 30, δ = 0.1, α = 5, β = 30)

123



Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator 457

Displacement, x
-0.3 0.2 0.7 1.2 1.7

V
el

oc
ity

, y

-3.0

-1.5

0.0

1.5

3.0

I.C.

1T

(i) 
Displacement, x

-1.7 -1.2 -0.7 -0.2 0.3

V
el

oc
ity

, y

-3.0

-1.5

0.0

1.5

3.0

I.C.

1T

(ii) 

Harmonic Order, k/2

0.0 17.0 34.0 51.0 68.0

H
am

on
ic

 A
m

pl
itu

de
, A

k/
2

1.0e+1

1.0e-3

1.0e-7

1.0e-11

1.0e-15

A0

A68

A1/2
A1

(iii) 
Harmonic order, k/2

0.0 17.0 34.0 51.0 68.0

H
ar

m
on

ic
 P

ha
se

, 

(iv) 

Fig. 32 Stable asymmetric period-2 motion (� = 1.443083). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.064165, ẋ0 ≈ 0.391496) and (x0 ≈ −0.064165, ẋ0 ≈ −0.391496). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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Fig. 33 Stable asymmetric period-4 motion (� = 1.445237). i Trajectory (left), ii trajectory (right), iii harmonic amplitudes, iv harmonic phases.
Initial conditions (x0 ≈ 0.064293, ẋ0 ≈ 0.364504) and (x0 ≈ −0.064293, ẋ0 ≈ −0.364504). (Q0 = 30, δ = 0.1, α = 5, β = 30)
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0.1181, A13/4 ≈ 9.3527e-4, A7/2 ≈ 0.0402, A15/4 ≈
5.4981e-4, A4 ≈ 0.1258, A17/4 ≈ 3.6439e-4, A9/2 ≈
0.0203, A19/4 ≈ 3.6759e-4, A5 ≈ 0.0542, A21/4 ≈
1.9883e-4, A11/2 ≈ 4.5420e-3, A23/4 ≈ 3.2059e-5, A6 ≈
0.0404, A25/4 ≈ 2.0653e-5, A13/2 ≈ 1.8217e-3, A27/4 ≈
6.8546e-5, A7 ≈ 0.0235, A29/4 ≈ 3.8022e-5, A15/2 ≈
7.4559e-4, A31/4 ≈ 4.0792e-5, A8 ≈ 0.0147. Other har-
monic amplitudes are in Al/4 ∈ (10−15, 10−3)(l = 33, 34,
. . . , 272) with A68 ≈ 2.2652e-15. The asymmetric period-4
motion needs about 272 terms to get an approximate ana-
lytical expression by finite Fourier series. Because of small
Am/4(m = 1, 5, 9, . . .), the trajectories of period-2 and
period-4 motions are very close to each other. The rela-
tions of harmonic phase of this pair of period-4 motions are
ϕL
k/4 = mod(ϕR

k/4 + π, 2π).

7 Conclusions

In this paper, bifurcation trees of period-1 motion to chaos
in a parametric Duffing oscillator were obtained by a semi-
analytic method. The semi-analytic method can be directly
employed for such a nonlinear dynamical system. The bifur-
cation trees of period-1 to period-4 motions were presented
to demonstrate the bifurcation tree of period-1 motions to
chaos. Through the discretization of differential equations,
the mapping structure of periodic motions was constructed.
The periodic motions were analytically predicted by the
implicit mapping structure and the corresponding stabil-
ity and bifurcation analysis were carried out by eigenvalue
analysis. The harmonic frequency–amplitude characteristic
was discussed for a better understanding of the complexity
of periodic motions. Using the analytical prediction from
periodic motions, the numerical simulations for period-1
to period-4 motions were completed. Through the numeri-
cal simulations, analytical and numerical results of periodic
motions on the bifurcation trees matched each other very
well. The complexity and asymmetry of periodic motions
were strongly dependent on the contributions of harmonic
amplitudes of periodic motions.
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