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Abstract This paper presents an estimation algorithm for
continuous-time stochastic systems under coloured pertur-
bations using an extended form of the instrumental variable
method. A comparison between the extended an the simple
form was done using two numerical examples to test their
efficiency. The results showed that the simple version is able
to estimate coloured noise without additional information
and it is easier to implement than the extended version.

Keywords Parameter estimation · Stochastic systems ·
Instrumental variables

1 Introduction

Amodel is amathematical representation of anyphysical sys-
tem (biological, electronic, mechanical). System modelling
requires to consider all the relevant factors involved in its
description, when the model of a plant takes into account
random variations is defined as a stochastic system, these
variations can be present in the parameters, measurements,
inputs or disturbances, and if the inputs of the system repre-
sent functions of time determined for all instants beginning
from some initial instant, like analogous systems, then the
system is called continuous [1,2]. The interest in the study of
stochastic models has increased recently, due to the necessity
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to take into account the random effects present in physical
systems. Intensified research activity in this area has been
stimulated by the need to take into account random effects
in complicated physical systems [3].

A fundamental task in engineering and science, is the
extraction of the system information and the model from
measured data. A discipline that provides tools for an effi-
cient use of data, and the estimation of variables appearing
in mathematical models is parameter estimation [4]. Param-
eter identification for dynamic systems has been studied for
at least the last three decades, motivated by the need of
designing more efficient control systems (see [5,6]). In dis-
crete time systems, the most common technique is the Least
Squares Method (LSM) (see, [6–8]). This method has been
very successful in theory and applications, like econometrics,
robotics or mechanics.

Parameter estimation using instrumental variables has
been used in problems where the regressors are correlated
with the equation noise [9]. The instrumental variables can
be formed as different combinations of inputs, delayed inputs
and outputs, filtered inputs, etc., in [10] a general analysis of
various instrumental variable methods is presented. Systems
with additive-noise have the problem of errors in variable
perturbations, in [11] it is presented the instrumental vari-
able estimator in a general framework. In continuous-time
the refined instrumental variable has been implemented; in
[12] it is presented a study that provides the convergence
property of this method.

In this paper we present the parameter estimation problem
of continuous-time stochastic systems under coloured pertur-
bations. Here it is proposed the instrumental variable method
implemented in two different ways: the simple estimation
algorithm (see [13]) and an extended form of the algorithm,
similar to the extended LSM algorithm presented in [14].
Until now, this algorithms have been extensively applied
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in discrete time, but the implementation in continuous-time
stochastic systems is scarce. The main idea is to compare
both algorithms in order to show if the simple version is
good enough to estimate coloured noise, or if it is necessary
to extend the algorithm to estimate when the system presents
coloured noise.

Paper structure In the second section the problem formu-
lation is presented, as well as the assumptions needed. In the
third section the extended instrumental variable algorithm is
designed. Finally, the estimation technique is illustrated with
two numerical examples that will show the performance of
the extended IV and will compare it with the simple version
of the algorithm.

2 Problem formulation

Consider the stochastic correlated continuous-time system
with the dynamics states xt ∈ Rn given by the following
system of stochastic differential equations:

dxt = Atζ(xt )dt + ft dt + Btdst

dst = Htstdt + σt dWt (1)

where the unknown time-varying matrix to be identified is
At ∈ Rn×m , the matrix Ht := H0 + ΔHt has a nomi-
nal (central) matrix H0 ∈ Rn×n that is supposed to be a
priori known and ΔHt ∈ Rn×n is unknown but bounded,
i.e., ‖ΔHt‖ ≤ Δ+, Bt ∈ Rn×n is a known deterministic
matrix , σt ∈ Rn×l is known, ft is a measurable (available
at any t ≥ 0) deterministic bounded excitation vector-input,(‖ ft‖ ≤ f +)

, ζ : Rn → Rm is a known (measurable) non-
linear Lipschitz vector function or, a regressor, and Wt is a
standard vector Wiener process, st is the coloured perturba-
tion defined by the deterministic matrix Ht and the Wiener
process dWt .

2.1 Problem description

The main problem in this paper is to design an estimate Ât

of the time varying matrix At ∈ Rn×m implementing an
extended instrumental variable method based only on the
available data up to time t that includes all information about
the state dynamics xt and excitation inputs. The subsystem
that defines the coloured noise is formed by a nominal matrix
H0 that is known, and the perturbation matrix ΔHt that is
unknown but bounded, and also a Wiener process. Here we
will restudy the algorithm presented in [13], and extend it
for the coloured noise case, and will compare both forms of
the algorithm, and also compare their performance with the
LSM extended algorithm presented in [14].

3 Instrumental variables algorithm for
continuous-time

In [14] an algorithm for parameter estimation in stochas-
tic systems under coloured perturbations using LSM was
presented, this method represented the plant dynamic in an
extended form, and it was necessary to estimate part of the
structure of the noise in order to estimate At . Here we will
include the instrumental variable in this algorithm and will
compare its performance with the simple instrumental vari-
able algorithm in order to analyse which version is more
suitable for coloured perturbations.

3.1 Estimation algorithm in the extended form

For the extended version of the IV algorithm, first let us rep-
resent the plant dynamics of Eq. (1) in the following extended
form

dxt = ztCtdt + ft dt + Btσt dWt + BtΔHtstdt (2)

where Ct is the vector to estimate, composed by elements
ai j,t from matrix At and the elements si,t from st

Ct := [
a11,t · · · a1m,t · · · an1,t · · · anm,t s1,t · · · sn,t

]�

∈ Rn×m+n (3)

and the new regressor zt is composedby the original regressor
xt , and the available data gi, j from Bt and H0

zt :=
⎡

⎢
⎣

x1,t · · · xm,t 0 0 · · · 0 g11,t · · · g1n,t
...

. . .
...

. . .
...

. . .
...

...
. . .

...

0 · · · 0 0 x1,t · · · xm,t gn1,t · · · gnn,t

⎤

⎥
⎦ (4)

First, notice that, by back-integrating, for t ≥ h Eq. (4)
can be expressed as

xt − xt−h −
∫ t

t−h

∫ t

t−h
fs′ds

′ =
∫ t

t−h
zs′Cs′ds

′

+
∫ t

t−h
Bs′σs′dWs′ +

∫ t

t−h
Bs′ΔHs′ss′ds

′ (5)

rearranging the terms of this equation in an extended output
Ft,t−h , an extended regressor Zt,t−h , and an extended pertur-
bation ξt,t−h in the corresponding “regression form” we get

Ft,t−h = Zt,t−hCt + ξt,t−h (6)
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where

Ft,t−h := xt − xt−h − ∫ t
t−h fs′ds′

Zt,t−h := ∫ t
s′=t−h zs′ds

′
ξt,t−h := ∫ t

t−h Bs′σs′dWs′ + ∫ t
t−h zs′ (Cs′ − Ct ) ds′

+ ∫ t
t−h Bs′ΔHs′ss′ds′

(7)

with h > 0 as a back-step, and Zt,t−h defined for τ ≥ h. Here
the “extended output” Ft,t−h and the “extended regressor”
Zt,t−h are known at each t ≥ 0. Now it is necessary to define
the instrumental variable as follows

Vt,t−h :=
∫ t

s′=t−h
υs′ds

′ (8)

here instead of the extended matrix zt it will be used the
matrix

υt :=
⎡

⎢
⎣

v1,t · · · vm,t 0 0 · · · 0 g11,t · · · g1n,t
...

. . .
...

. . .
...

. . .
...

...
. . .

...

0 · · · 0 0 v1,t · · · vm,t gn1,t · · · gnn,t

⎤

⎥
⎦

that is equivalent to (1) but without the Wiener process. In
this system xt is replaced by the instrument vt , that is noise
free and is based on the following system

dvt = Ãtvt dt + ft dt + Btdst

dst = Htstdt
(9)

since we are trying to estimate At , it is not realistic to use the
exact parameter in the instrumental variable, instead we use
an approximated value Ãt .

Multiplying (6) by the instrumental variable V�
t,t−h

and
integrating back from t − h to t , we get

∫ t

t−h
V�

τ,τ−h Fτ,τ−hdτ =
∫ t

t−h
V�

τ,τ−h Zτ,τ−hCτdτ

+
∫ t

t−h
V�

τ,τ−hξτ,τ−hdτ

=
(∫ t

t−h
V�

τ,τ−h Zτ,τ−hdτ

)
Ct + ξ̄t,t−h

where

ξ̄t,t−h =
∫ t

t−h
V�

τ,τ−h

(
Zτ,τ−h [Cτ − Ct ] + ξτ,τ−h

)
dτ (10)

If the “rate of parameter changing” ‖Cs′ − Ct‖ for any
s′ ∈ [t − h, t] is small enough (since h can be taken also
small enough), one can define the current parameter estimate
Ĉt as the matrix satisfying the equalities

∫ t

t−h
V�

τ,τ−h Fτ,τ−hdτ =
(∫ t

t−h
V�

τ,τ−h Zτ,τ−hdτ

)
Ĉt (11)

Then the “extended error-vector” ξ̄t,t−h will represent the
current identification error corresponding to the parameter
estimate Ĉt satisfying (11). If the “persistence excitation con-
dition” is fulfilled, i.e., if for any t ≥ h > 0

∫ t

t−h
V�

τ,τ−h Zτ,τ−hdτ > 0 (12)

then the estimate Ĉt can be represented by

Ĉt = Γt

[∫ t

t−h
V�

τ,τ−h Fτ,τ−hdτ

]
,

Γt :=
[∫ t

t−h
V�

τ,τ−h Zτ,τ−hdτ

]−1

(13)

that can be expressed, alternatively, as

Ĉt = Γt

[∫ t
0 V

�
τ,τ−h Fτ,τ−hχ (τ ≥ t − h) dτ

]

Γt :=
[∫ t

0 V
�
τ,τ−h Zτ,τ−hχ (τ ≥ t − h) dτ

]−1 (14)

Here, χ (τ ≥ t − h) is the characteristic function defined by

χ (τ ≥ t − h) :=
{
1 i f τ ≥ t − h
0 i f τ < t − h

(15)

In fact, this function characterizes the “window” [t − h, t]
within the integrals in (14). There, instead of χ (τ ≥ t − h),
a different kind of “windows” can be applied, for example,
the “window” corresponding to the “forgetting factor” that
leads to the following matrix estimate

Ĉt = Γt Yt , t ≥ h (16)

with

Yt =
∫ t

0
V�

τ,τ−h Fτ,τ−hr
t−τdτ, Γ −1

t

:=
∫ t

0
V�

τ,τ−h Zτ,τ−hr
t−τdτ (17)

where 0 < r < 1 is the forgetting factor. Below we will
analyse differential form of the matrix estimating algorithm
(16).

3.2 Differential form of the estimating algorithm

The direct derivation of (16) and (17) implies

d

dt
Ĉt = Γt Ẏt + Γ̇t Yt (18)
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where

Ẏt = V�
t,t−h Ft,t−h +

∫ t

0
V�

τ,τ−h Fτ,τ−h
d

dt
r t−τdτ (19)

Here d
dt r

t−τ = r t−τ ln r . In view of this, (19) can be rewritten
as

Ẏt = V�
t,t−h Ft,t−h +

∫ t

0
V�

τ,τ−h Fτ,τ−h
d

dt
r t−τdτ

= V�
t,t−h Ft,t−h +

(∫ t

0
V�

τ,τ−h Fτ,τ−hr
t−τdτ

)

ln r = V�
t,t−h Ft,t−h + Yt ln r (20)

To calculate Γ̇t , let us differentiate the identity ΓtΓ
−1
t = I

that leads to the following relations

Γ̇tΓ
−1
t + Γt

d

dt
Γ −1
t = 0, Γ̇t = −Γt

d

dt
Γ −1
t Γt (21)

The direct differentiation of (17) gives

d

dt
Γ −1
t = V�

t,t−h Zt,t−h + ln r
∫ t

0
V�

τ,τ−h Zτ,τ−hr
t−τdτ

= V�
t,t−h Zt,t−h + ln rΓ −1

t (22)

Replacing d
dt Γ

−1
t (22) in (21) we get

Γ̇t = −Γt V
�
t,t−h Zt,t−hΓt − ln rΓt (23)

Using (23) in (18), we derive

d

dt
Ĉt = Γt Ẏt + Γ̇t Yt = Γt

(
V�
t,t−h Ft,t−h + Yt ln r

)

+
(
−Γt V

�
t,t−h Zt,t−hΓt − ln rΓt

)
Yt

= Γt V
�
t,t−h

[
Ft,t−h − Zt,t−hĈt

]

So, finally, the relations (23) and (20) constitute the following
extended instrumental variable identification algorithm:

d

dt
Ĉt = Γt V

�
t,t−h

[
Ft,t−h − Zt,t−hĈt

]

Γ̇t = −Γt V
�
t,t−h Zt,t−hΓt − (ln r) Γt

t ≥ t0 > inf
t

{
t ≥ 0 : det Γ −1

t = det

(∫ t

0
V�

τ,τ−h Zτ,τ−hr
t−τdτ

)
>0

}

Γt0 =
[∫ t0

0
V�

τ,τ−h Zτ,τ−hr
t0−τdτ

]−1

, Ĉt0 = Γt0Yt0 (24)

In fact, t0 is any time just after the moment when the matrix
Γ −1
t is non-singular. This algorithm will be implemented for

the coloured noise case, and compared with the simple IV
algorithm shown in the following subsection.

3.3 The simple form of the IV algorithm

The IV algorithm in the simple form is based on the system

dxt = Atζ(xt )dt + ft dt + σt dWt (25)

where the stochastic noise is only a Wiener process. Fol-
lowing the same procedure presented previously we get the
simple form of the IV method given by:

d
dt Ât = (− Ât Xt,t−h + Ft,t−h)V�

t,t−hΓt

Γ̇t = −Γt Xt,t−hV�
t,t−hΓt − (ln r) Γt

Γt0 =
⎡

⎣
t0∫

0

Xτ,τ−hV�
τ,τ−hr

t0−τdτ

⎤

⎦

−1

, Ât0 = Yt0Γt0

(26)

The error estimation analysis for both algorithms is similar
to the result presented in [13,14].

4 Numerical examples

In this section, we present two numerical examples in order
to show the performance of the estimation algorithms men-
tioned in the previous section.

Example A. In the first example, system (1) is defined as
follows

dxt = ((1.5 sin(0.1π t) − 5)xt

+ 10 sin(0.4)π t + 5)dt + dst , x(0) = 1.2 (27)

dst = (−3 + 0.5 sin (.3π t)) st + dWt , s(0) = 1.5 (28)

where σt = 1 and Bt = 1, h = 0.0001, and r = 0.3, the
simulation time is t = 100, and the simulation method used
in Matlab is ode1. The instrument vt for the simple version
(Eq.25) is

dv1t = ((1.5 sin(0.1π t) − 4)v1t

+ 10 sin(0.4)π t + 5)dt, x(0) = 1.2 (29)

and for the extended version (Eq.24)

dv2t = ((1.5 sin(0.1π t) − 4)v2t

+ 10 sin(0.4)π t + 5)dt + dst

dst = (−3 + 0.5sin (.3π t)) st

InFig. 1 it is shown the estimation algorithmusing instrumen-
tal variables in the extended form, and it is comparedwith the
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Fig. 1 Parameter at and its estimated using LSM and IV

Fig. 2 Parameter at and its estimated using both versions if IV

least squares method, also in an extended form. Both algo-
rithms have a similar performance, and there is not a visible
benefit in the implementation of the instrumental variable.

In Fig. 2, it is presented the result of the estimation algo-
rithm in the simple (IV2) and extended version (IV1) of the
instrumental variable. Here the simple version of the algo-
rithm shows a better performance than the extended version.
This Figure shows that the simple version of the instrumen-
tal variable algorithms is strong enough to estimate even
coloured noise, and is more effective than extending the
estimation algorithm by adding information of the coloured
noise.
The quality of the parameter estimation algorithm has been
evaluated using the following performance index

Jt = 1

t + ε

∫ t

0

(
aτ − âτ

)2
dτ

with ε = 0.0001 and t = 100, here ε is a regularizing param-
eter that avoids singularities in the beginning of the process
(t = 0). The performance index results for this example are:

J IV 1
t=100 = 2.044, J IV 2

t=100 = 1.181, J LSM
t=100 = 2.005

this index shows that indeed, the simple form of the instru-
mental variable method is more effective for parameter
estimation in systems under stochastic perturbations. Exam-
ple B. In this example the following system, from Eq. (1), is
defined by

dxt = ((sin(0.3π t) − 1.5)xt

+ 0.5 sin(0.5)π t + 12)dt + dst , x(0) = 2 (30)

dst = (−3 + 0.6sin (.3π t)) st + dWt , s(0) = 1.5

(31)

where σt = 1, Bt = 1, h = 0.02 and r = 0.2, the simulation
time is t = 50, and the simulation method used in Matlab is
ode3, the instrument for the simple version (Eq.25) is

dv1t = ((sin(0.3π t) − 1)v1t + 0.5

sin(0.5)π t + 12)dt, x(0) = 2

and for the extended version

dv2t = ((sin(0.3π t) − 1)v2t
+ 0.5 sin(0.5)π t + 12)dt + dst

dst = (−3 + 0.6sin (.3π t)) st

The estimated parameter it is presented in Fig. 3, that displays
the original parameter and the result of the estimation algo-
rithm, this Figure shows that the simple formof the algorithm,
even when some noise is present in the estimated parameter,
has a good performance and is able to estimate the time vary-
ing parameterwithout any additional information concerning
the coloured noise, and without any filtering or discretization
of the system. The performance index results in this example
are :

– For the simple case J IV
t=50 = 0.0284

– For the extended case J IV
t=50 = 0.0295

5 Conclusion

This study presented the instrumental variable (IV) tech-
nique for parameter estimation in continuous-time stochastic
systems under coloured perturbations. The IV estimation
algorithm was analysed in the simple form and in an
extended form, that estimates part of the structure of the
coloured noise. It was shown, through the performance
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Fig. 3 Parameter at and its
estimated

index, that even when the extended form shows a good
performance, the simple form is able to estimate coloured
noise without additional information, is easier to imple-
ment and, has a better performance than the extended
version.
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